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Abstract. Extended Bose–Hubbard models have been employed in the study of cold-atom
systems with dipolar interactions. It is shown that, for a certain choice of the coupling
parameters, there exists an integrable extended 3-site Bose–Hubbard model with nearest-
neighbour interactions. A Bethe ansatz procedure is developed to obtain expressions for the
energy spectrum and eigenstates.
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1 Introduction

There is consensus that the Bose–Hubbard model on three or more sites with open boundary
conditions is not an integrable system, due to the display of chaotic behaviours [4, 9, 15, 16,
17, 25, 27]. Extended Bose–Hubbard models, which accommodate quadratic number opera-
tor interaction terms between different sites, have received attention for their role in modelling
cold-atom systems with dipolar interactions [8, 18, 19, 29]. From the mathematical perspec-
tive, these extended models also open avenues for constructing integrable generalisations of the
Bose–Hubbard model. A broad class of integrable, extended Bose–Hubbard models associated
with complete bipartite graphs was formulated in [36], generalising the 2-site case [20]. Within
this class there is a 3-site model, first studied in [35] with emphasis on the response to an
integrability-breaking tilting of the potential. This model has been studied further to charac-
terise the interface between quantum chaos and integrability [6, 7, 32, 33], and in relation to
entanglement generation [31, 34].

There exists integrable 3-site Bose–Hubbard models with periodic boundary conditions, such
as the homogeneous trimer studied in [28] and the non-hermitian system with unidirectional
hopping [37]. One of the distinctive features of the model of [35] is that it has open boundary
conditions with respect to the tunneling terms (i.e., no tunneling between sites 1 and 3), yet
closed boundary conditions with respect to the intersite quadratic number operator interactions
(i.e., site 1 couples to site 3). While it is feasible to engineer a potential to simulate such a Hamil-
tonian, as discussed in [31, 35], it is of complementary interest to consider integrable Hamiltonian
open chains where the interactions are restricted to being on-site or nearest-neighbour only. In
this work, it will be demonstrated how this can be achieved for a 3-site system. Remarkably,
the construction provides for the inclusion of a tilting of the potential that does not break inte-
grability. However, there is a compensation to be paid, viz. the model is not homogeneous with
respect to the on-site interactions strength. On the other hand, such a property can in principle
be accommodated due to the dipolar properties of the constituent particles [8, 18, 19, 29].

The integrable Hamiltonian is introduced in Section 2. It is demonstrated how the Hamil-
tonian may be formulated via the o(4) = o(3) ⊕ o(3) Lie algebra, realised by canonical boson

mailto:jrl@maths.uq.edu.au
https://people.smp.uq.edu.au/JonLinks/
https://doi.org/10.3842/SIGMA.2025.077


2 J. Links

operators. Through this construction the conserved operators for the Hamiltonian are identi-
fied. It is also instructive to view this approach through the lens of the representation theory
of o(4), in order to set up a Bethe ansatz solution. In Section 3, an explicit basis is chosen for
the Fock space, in a manner that facilitates the derivation of the Bethe ansatz equations. The
roots of these equations charaterise both the energy spectrum and the eigenstates of the system.
Concluding remarks are offered in Section 4, including comments regarding the completeness
of the Bethe ansatz solution. The appendix contains some technical calculations required for
deriving the Bethe ansatz results.

2 Hamiltonian and symmetries

Let
{
bj , b

†
j | j = 1, 2, 3

}
denote bosonic annihilation and creation operators satisfying the canon-

ical commutation relations[
bk, b

†
k

]
= δjkI, [bj , bk] =

[
b†j , b

†
k

]
= 0,

where I denotes the identity operator. Set Nj = b†jbj and N = N1 +N2 +N3. The Hamiltonian
for a tilted, 3-site, extended Bose–Hubbard model with nearest-neighbour interactions has the
general form

H = U1N
2
1 + U2N

2
2 + U3N

2
3 + U12N1N2 + U23N2N3

+ µ1N1 + µ3N3 + E12
(
b†1b2 + b†2b1

)
+ E23

(
b†2b3 + b†3b2

)
. (2.1)

The Hamiltonian acts on the Fock space F spanned by the basis vectors

|l,m, n⟩ =
(
b†1
)l(
b†2
)m(

b†3
)n|0⟩,

where |0⟩ denotes the Fock vacuum. For the manipulations below, it is necessary to work
with a particular choice of non-normalised Fock vectors; this is the reason for the omission of
normalisation coefficients.

Extended Bose–Hubbard Hamiltonians have been studied in recent times as models for sys-
tems comprised of dipolar particles [8, 18, 19, 29]. Progress in experimental techniques offers
a remarkable level of control over dipolar systems via the capacity to tune the Hamiltonian cou-
pling parameters through the dipolar interactions. For the 3-site case, a schematic representation
is provided in Figure 1. While the figure represents the trapping potential as a two-dimensional
image, it is important to emphasise that in a physical setup each site is accommodated by an
ellipsoidal, three-dimensional, localised potential. The on-site dipole interaction, along with
on-site contact interactions, are represented by the couplings U1, U2, U3. These can be varied
from negative through to positive values, by changing the shape of the ellipsoid from prolate
to oblate [14]. In addition to influencing interactions on-site, the collective dipole at each site
induces interactions between sites, represented by the couplings U12, U23. It is this level of
control in adjusting the interaction parameters that renders dipolar systems as candidates for
realising integrable systems, whereby the interaction parameters need to be finely tuned to reach
integrable limits of the system.

It is straightforward to verify that (2.1) conserves the total particle number N , viz. that
[H,N ] = 0 holds. Consequently there is the decomposition

F =

∞⊕
n=0

FN ,
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Figure 1. Schematic representation for a system of dipolar bosons tunneling in a tilted 3-site potential.

The narrow profile of the potential at site 2 leads to attractive on-site dipole interaction, such that U2

may be tuned to be a lower value than U1 and U3.

where FN = span{|l,m, n⟩ | l+m+n = N}, and each non-zero element of FN is an eigenvector
of N with eigenvalue N . The dimensions of the components in the decomposition are given by
the triangular numbers TN through

dim(FN ) = TN+1 =
(N + 1)(N + 2)

2
.

Below it will be shown that the Hamiltonian possesses an additional conserved operator under
the constraints

E12 = E23 = E , (2.2)

U1 = 2U2 = U3 = U12 = U23 = 2U, (2.3)

µ3 = −µ1 = µ. (2.4)

In order to expose the symmetries underlying this specialisation of (2.1) set

e1 =
√
2
(
b†1b2 + b†2b3

)
, h1 = 2(N1 −N3), f1 =

√
2
(
b†2b1 + b†3b2

)
,

e2 =
1

2
b†2b

†
2 − b†1b

†
3, h2 =

1

2
(2N + 3I), f2 = b1b3 −

1

2
b2b2.

These operators realise the o(4) Lie algebra by satisfying the commutation relations

[ej , fk] = δjkhj , [hj , ek] = 2δjkek, [hj , fk] = −2δjkfk.

It is found that the Hamiltonian (2.1) subject to the constraints (2.2), (2.3), (2.4) is expressible as

H = H1 +H2, H1 =
U

4
h21 −

µ

2
h1 +

E√
2
(e1 + f1), H2 = U

(
h2 −

3

2
I

)2

. (2.5)

Under this realisation, the corresponding o(4) Casimir invariants assume the form

C1 =
1

2
h21 + e1f1 + f1e1 = 2N2 + 2N − 8N1N3 − 2N2

2 + 2N2 + 4b†2b
†
2b1b3 + 4b†1b

†
3b2b2,

C2 =
1

2
h22 + e2f2 + f2e2 =

1

4
C1 −

3

8
I.

This realisation of the Casimir invariants provides the third independent conserved operator
required to claim integrability of (2.5).
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3 Bethe ansatz solution

To derive the Bethe ansatz solution of the model, differential operator methods are adapted
from [21, 23]. Before proceeding to that task, it is first necessary to completely describe the o(4)
action on the module provided by the Fock space. This exercise belongs to a class of well-
known problems in developing a suitable symmetry-adapted basis with respect to a subalgebra
embedding of o(3) ⊂ gl(3). See, for example, [24].

With respect to the action of o1(3) = span{e1, h1, f1}, the Fock space decomposes into
a direct sum of irreducible modules with lowest weight vectors |0, 0,m⟩ such that f1|0, 0, n⟩ = 0,
h1|0, 0, n⟩ = −2n|0, 0, n⟩, C1|0, 0, n⟩ = 2n(n+1)|0, 0, n⟩. Such vectors are simultaneously lowest-
weight vectors with respect to the action of o2(3) = span{e2, h2, f2}, satisfying

f2|0, 0, n⟩ = 0, h2|0, 0, n⟩ =
1

2
(2n+ 3)|0, 0, n⟩,

C2|0, 0, n⟩ =
1

2

(
n(n+ 1)− 3

4

)
|0, 0, n⟩.

Now set, for (N − n)/2 ∈ Z≥0, the recursive definition

|n, 0, n} = |0, 0, n⟩, |N + 2, 0, n} =
−2

N + n+ 3
e2|N , 0, n}.

The following hold:

f1|N , 0, n} = 0, h1|N , 0, n} = −2n|N , 0, n}, C1|N , 0, n} = 2n(n+ 1)|N , 0, n},

h2|N , 0, n} =
1

2
(2N + 3)|N , 0, n}, C2|N , 0, n} =

1

2

(
n(n+ 1)− 3

4

)
|N , 0, n}.

Similarly recursively define, for m = 0, . . . , 2n− 1,

|N ,m+ 1, n} =
1

2n−m
e1|N ,m, n}.

Then the action of the o(4) algebra on this set of states is given by (recall (N − n)/2 ∈ Z≥0)

f1|N ,m, n} = m|N ,m− 1, n}, h1|N ,m, n} = 2(m− n)|N ,m, n},
e1|N ,m, n} = (2n−m)|N ,m+ 1, n}, C1|N ,m, n} = 2n(n+ 1)|N ,m, n},

f2|N ,m, n} =
N − n

2
|N − 2,m, n}, h2|N ,m, n} =

1

2
(2N + 3)|N ,m, n},

e2|N ,m, n} = −N + n+ 3

2
|N + 2,m, n},

C2|N ,m, n} =
1

2

(
n(n+ 1)− 3

4

)
|N ,m, n}.

Since the eigenvalues with respect to h1, h2, C1 uniquely identify |N ,m, n}, it follows that the
set of such vectors is linearly independent. That they span F follows by a counting argument.
Each vector |N , 0, n} is a lowest-weight vector of weight −2n, so it generates an irreducible
o1(3)-model Vn of dimension dim(Vn) = 2n+ 1. Now if N is even, then n is even, and

N∑
n∈2Z≥0

dim(Vn) =

N/2∑
k=0

dim(V2k) =

N/2∑
k=0

(4k + 1) =
(N + 1)(N + 2)

2
= dim(FN ).
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Otherwise, if N is odd such that p = n− 1 is even,

N−1∑
p∈2Z≥0

dim(Vp+1) =

(N−1)/2∑
k=0

dim(V2k+1) =

(N−1)/2∑
k=0

(4k + 3) =
(N + 1)(N + 2)

2
= dim(FN ).

Having established that the vectors |N ,m, n} provide a basis for F , define the N -particle states

|Ψ(u1, . . . , u2n;N )⟩ =
2n∏
j=1

(e1 − ujI)|N , 0, n}, (3.1)

|Ψk(u1, . . . , u2n;N )⟩ =
2n∏
j ̸=k

(e1 − ujI)|N , 0, n}.

It is found that

e1|Ψ(u1, . . . , u2n;N )⟩ = −
2n∑
k=1

uk|Ψ(u1, . . . , u2n;N )⟩ −
2n∑
k=1

u2k|Ψk(u1, . . . , u2n;N )⟩, (3.2)

h1|Ψ(u1, . . . , u2n;N )⟩ = 2n|Ψ(u1, . . . , u2n;N )⟩+ 2
2n∑
k=1

uk|Ψk(u1, . . . , u2n;N )⟩, (3.3)

h21|Ψ(u1, . . . , u2n;N )⟩ = 4n2|Ψ(u1, . . . , u2n;N )⟩+ 8

2n∑
k=1

2n∑
l ̸=k

u2k
uk − ul

|Ψk(u1, . . . , u2n;N )⟩

− 4(2n− 1)
2n∑
k=1

uk|Ψk(u1, . . . , u2n;N )⟩, (3.4)

f1|Ψ(u1, . . . , u2n;N )⟩ =
2n∑
k=1

|Ψk(u1, . . . , u2n;N )⟩. (3.5)

As the calculations leading to the above formulae are somewhat technical, the details have been
placed in Appendix A.

The above show that the action of (2.5) on (3.1) is evaluated as

H|Ψ(u1, . . . , u2n;N )⟩

= UN 2|Ψ(u1, . . . , u2n;N )⟩+ U

4

(
4n2|Ψ(u1, . . . , u2n;N )⟩

+ 8

2n∑
k=1

2n∑
l ̸=k

u2k
uk − ul

|Ψk(u1, . . . , u2n;N )⟩ − 4(2n− 1)

2n∑
k=1

uk|Ψk(u1, . . . , u2n;N )⟩

)

− µ

2

(
2n|Ψ(u1, . . . , u2n;N )⟩+ 2

2n∑
k=1

uk|Ψk(u1, . . . , u2n;N )⟩

)

− E√
2

(
2n∑
k=1

uk|Ψ(u1, . . . , u2n;N )⟩+
2n∑
k=1

u2k|Ψk(u1, . . . , u2n;N )⟩

−
2n∑
k=1

|Ψk(u1, . . . , u2n;N )⟩

)
.

The unwanted terms |Ψk(u1, . . . , u2n;N )⟩ cancel when the Bethe ansatz equations

2U

2n∑
l ̸=k

u2k
uk − ul

= (U(2n− 1) + µ)uk +
E√
2

(
u2k − 1

)
, k = 1, . . . , 2n, (3.6)
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hold, rendering |Ψ(u1, . . . , u2n;N⟩ an eigenstate with energy eigenvalue

E = U
(
N 2 + n2

)
− 2µn+

E√
2

2n∑
k=1

uk. (3.7)

Note that the above solution includes the cases n = 0, for which the state |N , 0, 0} is an
eigenstate of the Hamiltonian (2.1) with eigenvalue UN 2 for each N ∈ 2Z≥0.

4 Conclusion

This work reports the construction of an integrable 3-site, extended, Bose–Hubbard model,
providing a counterpoint to the integrable model studied in [6, 7, 31, 32, 33, 34, 35]. Two
distinguishing features of the Hamiltonian (2.5) are that all interactions are on-site or nearest
neighbour, and that the Hamiltonian remains integrable in the presence of a tilting potential
with coupling µ. A by-product of the integrability is that the model admits a Bethe ansatz
solution.

The Bethe ansatz solution presented above through equations (3.1), (3.6), and (3.7) is com-
plete. All eigenstates of the system can be cast into the form (3.1). See Appendix B for details.
Moreover, spurious solutions of (3.6) cannot occur. Spurious solutions of Bethe ansatz equations
arise when the evaluation of the Bethe state through the Bethe roots yields a null state. While
this is a feature of some spin [1, 2, 10, 13, 26], fermionic [22], and anyonic [5] systems, spurious
solutions do not arise here. Since boson creation operators do not admit a non-trivial kernel,
the general form (3.1) cannot vanish for any choice of {u1, . . . , u2n}.

For future work, one avenue is to investigate the quantum dynamics of the system utilising the
Bethe ansatz solution and undertaking a comparison with the results of [6, 7, 31, 32, 33, 34, 35].
A particular focus will be to characterise the dynamics in the so-called resonant tunnelling
regime, where there are oscillations that are approximately harmonic. It would be of interest
to derive analytic formulae for the amplitude and frequency of these oscillations, to understand
their dependency on the tilting parameter µ.

Finally, an important consequence of the formulation above is that it facilitates extension
to systems with more degrees of freedom. In particular, a 4-site system is accommodated
through a realisation of o(3) ⊕ o(3) ⊕ o(3), providing a counterpoint to the integrable model
studied in [3, 11, 12] for interferometric applications. A study of this 4-site system, obtained by
extending the methods developed above, will be communicated in a forthcoming publication.

A Action of o1(3) on the Bethe states

To derive the formulae (3.2), (3.3), (3.4), (3.5), it is useful to exploit a correspondence between
the algebraic action and differential operators. Making the identification |N ,m, n} 7→ xm, it is
seen that e1 7→ 2nx− x2 d

dx , h1 7→ 2x d
dx − 2n, f1 7→ d

dx is a Lie algebra isomorphism. It follows
that

e1|Ψ(u1, . . . , u2n;N )⟩ = 2ne1|Ψ(u1, . . . , u2n;N )⟩ −
2n∑
k=1

e21|Ψk(u1, . . . , u2n;N )⟩

= −
2n∑
k=1

uke1|Ψk(u1, . . . , u2n;N )⟩

= −
2n∑
k=1

uk|Ψ(u1, . . . , u2n;N )⟩ −
2n∑
k=1

u2k|Ψk(u1, . . . , u2n;N )⟩,
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which is equation (3.2). Similarly,

h1|Ψ(u1, . . . , u2n;N )⟩ = 2

2n∑
k=1

e1|Ψk(u1, . . . , u2n;N )⟩ − 2n|Ψ(u1, . . . , u2n;N )⟩

= 2
2n∑
k=1

uk|Ψk(u1, . . . , u2n;N )⟩+ 2n|Ψ(u1, . . . , u2n;N )⟩,

providing (3.3), while (3.5) follows directly.
The derivation of (3.4) is more involved. Defining |Ψkl(u1, . . . , u2n;N )⟩ =

∏2n
j ̸=k,l(e1 −

ujI)|N , 0, n}, k ̸= l and using h21 7→ 4x2 d2

dx2 − 4x(2n− 1) d
dx + 4n2, results in

h21|Ψ(u1, . . . , u2n;N )⟩

= 4

2n∑
k=1

2n∑
l ̸=k

e21|Ψkl(u1, . . . , u2n;N )⟩ − 4(2n− 1)

2n∑
k=1

e1|Ψk(u1, . . . , u2n;N )⟩

+ 4n2|Ψ(u1, . . . , u2n;N )⟩

= 4

2n∑
k=1

2n∑
l ̸=k

e21|Ψkl(u1, . . . , u2n;N )⟩ − 4

2n∑
k=1

2n∑
l ̸=k

e1(e1 − ul)|Ψkl(u1, . . . , u2n;N )⟩

+ 4n2|Ψ(u1, . . . , u2n;N )⟩

= 4
2n∑
k=1

2n∑
l ̸=k

ule1|Ψkl(u1, . . . , u2n;N )⟩+ 4n2|Ψ(u1, . . . , u2n;N )⟩.

Elimination of the |Ψkl(u1, . . . , u2n;N )⟩ terms is achieved through

2n∑
k=1

2n∑
l ̸=k

ule1|Ψkl(u1, . . . , u2n;N )⟩

=
2n∑
k=1

2n∑
l ̸=k

(uk + ul)e1|Ψkl(u1, . . . , u2n;N )⟩ −
2n∑
k=1

2n∑
l ̸=k

ukul|Ψkl(u1, . . . , u2n;N )⟩

−
2n∑
k=1

2n∑
l ̸=k

uk(e1 − ul)|Ψkl(u1, . . . , u2n;N )⟩

=

2n∑
k=1

2n∑
l ̸=k

u2k − u2l
uk − ul

e1|Ψkl(u1, . . . , u2n;N )⟩ −
2n∑
k=1

2n∑
l ̸=k

u2kul − uku
2
l

uk − ul
|Ψkl(u1, . . . , u2n;N )⟩

− (2n− 1)
2n∑
k=1

uk|Ψk(u1, . . . , u2n;N )⟩

=

2n∑
k=1

2n∑
l ̸=k

u2k
uk − ul

|Ψk(u1, . . . , u2n;N )⟩ −
2n∑
l=1

2n∑
k ̸=l

u2l
uk − ul

|Ψl(u1, . . . , u2n;N )⟩

− (2n− 1)
2n∑
k=1

uk|Ψk(u1, . . . , u2n;N )⟩

= 2

2n∑
k=1

2n∑
l ̸=k

u2k
uk − ul

|Ψk(u1, . . . , u2n;N )⟩ − (2n− 1)

2n∑
k=1

uk|Ψk(u1, . . . , u2n;N )⟩,

leading to (3.4).
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B Proof of completeness of the Bethe ansatz solution

Here it will be shown that the Bethe ansatz solution is complete, by utilising established methods
in the analysis of ordinary differential equations. See, for example, [30].

The set of states{
ej1|N , 0, n} | j = 0, . . . , 2n

}
(B.1)

provides a basis of weight states for an o1(3) module of highest weight 2n. Note the actions

e2n+1
1 |N , 0, n} = 0, h1e

j
1|N , 0, n} = 2(j − n)ej1|N , 0, n},

f1e
j
1|N , 0, n} = j(2n+ 1− j)ej−1

1 |N , 0, n}.

Since the module spanned by (B.1) is invariant under the action of the Hamiltonian (2.5), it
follows that all eigenstates of (2.5) within this subspace may be expressed in the form

|ψ⟩ =

 2n∑
j=0

αje
2n−j
1

 |N , 0, n}, αj ∈ C. (B.2)

Now

H|ψ⟩ = UN 2
2n∑
j=0

αje
2n−j
1 |N , 0, n}+ U

4

2n∑
j=0

4(n− j)2αje
2n−j
1 |N , 0, n}

− µ

2

2n∑
j=0

2(n− j)αje
2n−j
1 |N , 0, n}

+
E√
2

2n∑
j=1

αje
2n−j+1
1 |N , 0, n}+ E√

2

2n−1∑
j=0

(2n− j)(j + 1)αje
2n−j−1
1 |N , 0, n}.

In order to satisfy the eigenvalue equation H|ψ⟩ = E|ψ⟩, the following system of recursion
equations must be satisfied:

α1 =

√
2

E
(
E − U

(
N 2 + n2

)
+ µn

)
α0, (B.3)

αj+1 =

√
2

E
(
E − U

(
N 2 + (n− j)2

)
+ µ(n− j)

)
αj − j(2n− j + 1)αj−1,

j = 1, . . . , 2n− 1, (B.4)

0 =
(
E − U

(
N 2 + n2

)
− µn

)
α2n −

√
2Enα2n−1. (B.5)

Observe that setting α0 = 0 enforces αj = 0 for all j = 1, . . . , 2n. Without loss of generality,
since the system (B.3), (B.4), (B.5) is homogeneous, set α0 = 1. Then it is seen from (B.3),
(B.4) that each αj is a polynomial in E of degree j. The right-hand side of equation (B.5) is
thus a polynomial of degree 2n + 1, while the 2n + 1 roots of this polynomial that solve (B.5)
provide the complete spectrum on the subspace spanned by (B.1). For each E contained in this
complete spectrum, the equations (B.3), (B.4) uniquely determine, subject to α0 = 1, the αj

appearing in the corresponding eigenstate (B.2). Thus, the spectrum is simple.
The next step is to show that there is a one-to-one correspondence between the eigenstates

of the form (B.2) as described above and the solutions of the Bethe ansatz equations (3.6). Set

Q(x) =

2n∑
j=0

αj

j!
x2n−j . (B.6)
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Recalling that α0 = 1, Q(x) admits a unique factorisation

Q(x) =
2n∏
j=1

(x− vj). (B.7)

As a result of the system of equations (B.3), (B.4), (B.5), it follows that (B.6) satisfies the
ordinary differential equation

Ux2Q′′(x) +

(
(U(1− 2n)− µ)x+

E√
2

(
1− x2

))
Q′(x)

+
(
U
(
N 2 + n2

)
+ µn+

√
2Enx

)
Q(x) = EQ(x). (B.8)

Now it is asserted that, for any given eigenvalue E, the corresponding roots {v1, . . . , v2n} ap-
pearing in (B.7) are distinct. The proof is by contradiction. Supposing that vk has multiplic-
ity mk > 1, then

dpQ(x)

dxp

∣∣∣∣
x=vk

=

{
0, p < mk,

non− zero, p = mk.

Differentiating (B.8) mk − 2 times and making the substitution x = vk yields

Uv2k
dmkQ(x)

dxmk

∣∣∣∣
x=vk

= 0,

imposing that vk = 0 for U ̸= 0. (For U = 0 the system is diagonalisable by a canonical
transformation.) However, if vk = 0 is a root ofQ(x) then α2n = 0. The recursion relations (B.3),
(B.4), (B.5) subsequently establish that Q(x) = 0, contradicting the assumption α0 = 1. Hence
for each eigenvalue E the roots of the associated polynomial Q(x) are free of multiplicities.

Finally, setting u = vk in (B.8) yields

v2k
Q′′(vk)

Q′(vk)
= (4U(2n− 1)) + µ)vk +

E√
2

(
v2k − 1

)
, k = 1, . . . , 2n. (B.9)

Using

Q′′(vk)

Q′(vk)
=

2n∑
l ̸=k

2

vk − vl

shows that (B.9) is identical to (3.6). Moreover, equating the coefficients of the terms of order 2n
in (B.8) produces (3.7).

Hence the Bethe ansatz is complete. Each eigenstate (B.2) uniquely determines a polyno-
mial (B.6), or equivalently (B.7), whose roots satisfy (3.6). The correspondence is one-to-one;
each solution of (3.6) uniquely determines a polynomial which, expressed in the form (B.6), pro-
vides a solution {α0, . . . , α2n} for the recursion relations (B.3), (B.4), (B.5). Since the spectrum
of the Hamiltonian is simple, all eigenstates arise in this manner.
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