Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 074, 44 pages      arXiv:2306.07216      https://doi.org/10.3842/SIGMA.2025.074

Cyclic Objects from Surfaces

Ivan Bartulović
Institut für Geometrie, Zellescher Weg 12-14, 01062 Dresden, Germany

Received May 27, 2024, in final form August 20, 2025; Published online September 06, 2025

Abstract
In this paper, we endow the family of all closed genus $g \ge 1$ surfaces with a structure of a (co)cyclic object in the category of 3-dimensional cobordisms. As a corollary, any $3$-dimensional TQFT induces a (co)cyclic module, which we compute algebraically for the Reshetikhin-Turaev TQFT.

Key words: cyclic objects; cobordisms; topological quantum field theories (TQFTs).

pdf (1103 kb)   tex (822 kb)  

References

  1. Akrami S.E., Majid S., Braided cyclic cocycles and nonassociative geometry, J. Math. Phys. 45 (2004), 3883-3911, arXiv:math.QA/0406005v1.
  2. Asaeda M., Tensor functors on a certain category constructed from spherical categories, J. Knot Theory Ramifications 20 (2011), 1-46.
  3. Atiyah M., Topological quantum field theories, Publ. Math. Inst. Hautes Études Sci (1988), 175-186.
  4. Barter D., Jones C., Tucker H., Eigenvalues of rotations and braids in spherical fusion categories, J. Algebra 515 (2018), 52-76, arXiv:1611.00071.
  5. Bartulović I., On the braided Connes-Moscovici construction, J. Noncommut. Geom. 18 (2024), 837-889, arXiv:2205.15641.
  6. Bartulović I., Cyclic sets from ribbon string links, J. Knot Theory Ramifications 34 (2025), 2550034, 44 pages, arXiv:2211.10977.
  7. Beliakova A., De Renzi M., Kerler-Lyubashenko functors on 4-dimensional 2-handlebodies, Int. Math. Res. Not. 2024 (2024), 10005-10080, arXiv:2105.02789.
  8. Bobtcheva I., Piergallini R., On 4-dimensional 2-handlebodies and 3-manifolds, J. Knot Theory Ramifications 21 (2012), 1250110, 230 pages, arXiv:1108.2717.
  9. Bruguières A., Virelizier A., Hopf diagrams and quantum invariants, Algebr. Geom. Topol. 5 (2005), 1677-1710, arXiv:math.QA/0505119.
  10. Burde G., Zieschang H., Heusener M., Knots, De Gruyter Stud. Math., Vol. 5, extended ed., De Gruyter, Berlin, 2014.
  11. Connes A., Cohomologie cyclique et foncteurs ${\rm Ext}^n$, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 953-958.
  12. Connes A., Non-commutative differential geometry, Publ. Math. Inst. Hautes Études Sci 62 (1985), 41-144.
  13. Crane L., Yetter D., On algebraic structures implicit in topological quantum field theories, J. Knot Theory Ramifications 8 (1999), 125-163, arXiv:hep-th/9412025.
  14. Drinfeld V.G., Almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990), 321-342.
  15. Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., Vol. 205, American Mathematical Society, Providence, RI, 2015.
  16. Etingof P., Ostrik V., Finite tensor categories, Mosc. Math. J. 4 (2004), 627-654, arXiv:math.QA/0301027.
  17. Farsad V., Gainutdinov A.M., Runkel I., ${\rm SL}(2,\mathbb{Z})$-action for ribbon quasi-Hopf algebras, J. Algebra 522 (2019), 243-308, arXiv:1702.01086.
  18. Feigin B.L., Tsygan B.L., Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras, in $K$-theory, Arithmetic and Geometry (Moscow, 1984-1986), Lecture Notes in Math., Vol. 1289, Springer, Berlin, 1987, 210-239.
  19. Fenn R., Rourke C., On Kirby's calculus of links, Topology 18 (1979), 1-15.
  20. Habiro K., Bottom tangles and universal invariants, Algebr. Geom. Topol. 6 (2006), 1113-1214, arXiv:math.GT/0505219.
  21. Joyal A., Street R., Braided monoidal categories, Macquarie Math. Rep. (1985), 85-0067, 31 pages, https://web.science.mq.edu.au/ street/BMC850067.pdf.
  22. Joyal A., Street R., Braided monoidal categories, Macquarie Math. Rep. (1985), 860081, 54 pages, http://maths.mq.edu.au/ street/JS1.pdf.
  23. Joyal A., Street R., The geometry of tensor calculus. I, Adv. Math. 88 (1991), 55-112.
  24. Kerler T., Genealogy of non-perturbative quantum-invariants of $3$-manifolds: the surgical family, in Geometry and Physics (Aarhus, 1995), Lecture Notes in Pure and Appl. Math., Vol. 184, Dekker, New York, 1997, 503-547, arXiv:q-alg/9601021.
  25. Kerler T., Bridged links and tangle presentations of cobordism categories, Adv. Math. 141 (1999), 207-281, arXiv:math.GT/9806114.
  26. Kerler T., Towards an algebraic characterization of 3-dimensional cobordisms, in Diagrammatic Morphisms and Applications (San Francisco, CA, 2000), Contemp. Math., Vol. 318, American Mathematical Society, Providence, RI, 2003, 141-173, arXiv:math.GT/0106253.
  27. Khalkhali M., Rangipour B., A note on cyclic duality and Hopf algebras, Comm. Algebra 33 (2005), 763-773, arXiv:math.KT/0310088.
  28. Kirby R., A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), 35-56.
  29. Lickorish W.B.R., An introduction to knot theory, Grad. Texts in Math., Vol. 175, Springer, New York, 1997.
  30. Loday J.-L., Cyclic homology, 2nd ed., Grundlehren Math. Wiss., Vol. 301, Springer, Berlin, 1998.
  31. Lyubashenko V., Invariants of $3$-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172 (1995), 467-516, arXiv:hep-th/9405167.
  32. Lyubashenko V., Modular transformations for tensor categories, J. Pure Appl. Algebra 98 (1995), 279-327.
  33. Lyubashenko V., Tangles and Hopf algebras in braided categories, J. Pure Appl. Algebra 98 (1995), 245-278.
  34. Mac Lane S., Natural associativity and commutativity, Rice Univ. Stud. 49 (1963), 28-46.
  35. Mac Lane S., Homology, Classics Math., Springer, Berlin, 1995.
  36. Mac Lane S., Categories for the working mathematician, 2nd ed., Grad. Texts in Math., Vol. 5, Springer, New York, 1998.
  37. Majid S., Braided groups, J. Pure Appl. Algebra 86 (1993), 187-221.
  38. Majid S., Algebras and Hopf algebras in braided categories, in Advances in Hopf Algebras (Chicago, IL, 1992), Lecture Notes in Pure and Appl. Math., Vol. 158, Dekker, New York, 1994, 55-105, arXiv:q-alg/9509023.
  39. Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
  40. Müger M., From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra 180 (2003), 159-219, arXiv:math.CT/0111205.
  41. Reidemeister K., Elementare Begründung der Knotentheorie, Abh. Math. Sem. Univ. Hamburg 5 (1927), 24-32.
  42. Reshetikhin N.Yu., Turaev V.G., Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1-26.
  43. Reshetikhin N.Yu., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  44. Shimizu K., The monoidal center and the character algebra, J. Pure Appl. Algebra 221 (2017), 2338-2371, arXiv:1504.01178.
  45. Shum M.C., Tortile tensor categories, J. Pure Appl. Algebra 93 (1994), 57-110.
  46. Tsygan B.L., The homology of matrix Lie algebras over rings and the Hochschild homology, Russian Math. Surveys 38 (1983), 198-199.
  47. Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Stud. Math., Vol. 18, Walter de Gruyter, Berlin, 2010.
  48. Turaev V.G., Virelizier A., Monoidal categories and topological field theory, Progr. Math., Vol. 322, Birkhäuser, Cham, 2017.
  49. Vafa C., Toward classification of conformal theories, Phys. Lett. B 206 (1988), 421-426.
  50. Virelizier A., Kirby elements and quantum invariants, Proc. London Math. Soc. 93 (2006), 474-514, arXiv:math.GT/0312337.
  51. Weibel C.A., An introduction to homological algebra, Cambridge Stud. Adv. Math., Vol. 38, Cambridge University Press, Cambridge, 1994.

Previous article  Next article  Contents of Volume 21 (2025)