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1 Introduction

Since the pioneering work of Marsden–Weinstein and Meyer [10, 11], many types of reduction
theorems have been studied for various geometric structures on manifolds. Albert [1] studied
Hamiltonian actions on cosymplectic manifolds, which are odd-dimensional analogues of sym-
plectic manifolds (see [2] for more details about cosymplectic manifolds) and proved a reduction
theorem. On the other hand, Mikami–Weinstein [12] generalized the Marsden–Weinstein–Meyer
theorem to symplectic groupoid actions, which extends the notion of a Hamiltonian action on
symplectic manifolds.

In this paper, we define a notion of an action of a cosymplectic groupoid on a cosymplectic
manifold by using the notion of a Lagrangian–Legendrian submanifold. Afterwards, we prove
a reduction theorem which is an analogue of the Mikami–Weinstein theorem. The notion of
a cosymplectic groupoid is introduced by [5] and recently studied in [6]. They are defined as Lie
groupoids whose space of arrows is endowed with a multiplicative cosymplectic structure.

Phase space Symmetry

Marsden–Weinstein–Meyer symplectic manifold Lie group

Mikami–Weinstein symplectic manifold symplectic groupoid

Albert cosymplectic manifold Lie group

this paper cosymplectic manifold cosymplectic groupoid

This paper is organized as follows. In Section 2, we briefly recall cosymplectic structures and
the reduction theorem by Albert. In Section 3, we recall the notion of a symplectic groupoid
and its role in Poisson geometry. In addition, we review the definition and some properties of
cosymplectic groupoids. In Section 4, we introduce the notion of a Lagrangian–Legendrian sub-
manifold of cosymplectic manifolds, and define cosymplectic actions of cosymplectic groupoids
on cosymplectic manifolds. We observe that if a cosymplectic groupoid G = (G1 ⇒ G0) acts on
a cosymplectic manifold M , then a symplectic groupoid SG = (SG1 ⇒ G0), where SG1 is the
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symplectic leaf of G1 that contains unit arrows, acts on each symplectic leaf of M . In Section 5,
we prove the main theorem.

Theorem 1.1 (Theorem 5.3). Let G = (G1 ⇒ G0) be a cosymplectic groupoid and (M,η, ω)
a cosymplectic, free and proper left G-module with respect to a momentum map ρ : M → G0.
Assume that ξ ∈ ρ(M) is a regular value of ρ. Then (SG)ξ\ρ−1(ξ) admits a unique cosymplectic
structure

(
ηξ, ωξ

)
such that p∗ηξ = η|ρ−1(ξ), p

∗ωξ = ω|ρ−1(ξ), where (SG)ξ is the isotropy group
at ξ and p : ρ−1(ξ)→ (SG)ξ\ρ−1(ξ) is the quotient map.

In Section 6, we give examples of our main theorem. The main example reconstructs Al-
bert’s cosymplectic reduction theorem. Lastly, in Section 7, we mention Morita equivalence of
cosymplectic groupoids and show potential for future research.

2 Cosymplectic manifolds

An almost cosymplectic structure on a (2n+1)-dimensional manifold M is a pair of η ∈ Ω1(M)
and ω ∈ Ω2(M) such that η ∧ ωn ̸= 0. On an almost cosymplectic manifold (M,η, ω), there is
a unique vector field R which satisfies ω(R,−) = 0, η(R) = 1. The vector field R is called
the Reeb vector field of (M,η, ω). Moreover, we have an isomorphism of C∞(M)-modules
♭ : X(M) → Ω1(M) defined by ♭(X) = ω(X,−) + η(X)η. Conversely, a pair (η, ω) is an al-
most cosymplectic structure if and only if the map ♭ : X(M) → Ω1(M) defined as above is an
isomorphism and there is a vector field R which satisfies the above conditions.

An almost cosymplectic structure (η, ω) is called a contact structure when ω = dη. On
the other hand, an almost cosymplectic structure (η, ω) is called a cosymplectic structure when
dη = 0, dω = 0.

For a contact structure η ∈ Ω1(M), the distribution Ker η is completely non-integrable. On
the other hand, for a cosymplectic structure (η, ω), the distribution Ker η is integrable since η
is closed. Therefore, contact structures and cosymplectic structures are two classes of almost
cosymplectic structures which are polar opposites of each other.

Two cosymplectic manifolds (M1, η1, ω1) and (M2, η2, ω2) are said to be isomorphic if there
is a diffeomorphism f : M1 →M2 which satisfies f∗η2 = η1 and f∗ω2 = ω1. Then f is called an
isomorphism of cosymplectic manifolds.

Let (M1, η1, ω1) and (M2, η2, ω2) be two cosymplectic manifolds and dimM1 = 2n + 1,
dimM2 = 2m+ 1. Then a pair (η, ω) of forms defined by η = η1 + η2, ω = ω1 + ω2 + η1 ∧ dt is
a cosymplectic structure on M1×M2×R, where t denotes the coordinate of R. In fact, η and ω
are closed and

η ∧ ωn+m+1 = (n+m+ 1)ωn
1 ∧ ωm

2 ∧ η2 ∧ η1 ∧ dt ̸= 0

holds.
A cosymplectic structure (η, ω) on M induces a Poisson structure π ∈ Γ

(
∧2TM

)
on M

by π(α, β) = ω
(
♭−1β, ♭−1α

)
, where α, β ∈ T ∗M . This Poisson structure is regular and has

corank 1. Its symplectic leaves coincide with those of the integrable distribution Ker η and the
symplectic form on a symplectic leaf S is ω|S . In fact, it is known that a cosymplectic structure
on M is equivalent to a corank 1 regular Poisson structure on M with a Poisson vector field
which is transverse to the symplectic leaves [7].

For every function f ∈ C∞(M) on a cosymplectic manifold M , we can associate a vector
field Xf by Xf = ♭−1(df−R(f)η). Xf is called the Hamiltonian vector field of f . This condition
is equivalent to ω(Xf ,−) = df − R(f)η, η(Xf ) = 0. Xf coincides with the usual notion of the
Hamiltonian vector field determined by the Poisson bivector; namely, Xf = π♯(df) holds, where
the map π♯ : T ∗M → TM is defined by β

(
π♯(α)

)
= π(α, β).
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Let (M,η, ω) be a cosymplectic manifold, G a Lie group acts onM from left, and Lg : M →M
the map of left action by g ∈ G. We suppose that the action preserves η, ω, i.e., L∗

gη = η,
L∗
gω = ω. Denote the Lie algebra of G as g. Albert [1] defined the notion of a momentum map

on cosymplectic manifolds.

Definition 2.1. A smooth map µ : M → g∗ is called a momentum map when the following
conditions are satisfied:

� µ is equivariant, i.e., µ(gx) = Ad∗gµ(x) holds for any x ∈M and g ∈ G.

� For any A ∈ g, the induced vector field A∗ ∈ X(M) is the Hamiltonian vector field of
a function µA : M → R defined by µA(x) = (µ(x))(A),

� For the Reeb vector field R and any A ∈ g, dµA(R) = 0 holds.

The action of G is said to be Hamiltonian if there is a momentum map. Now we assume
that there is a Hamiltonian action of G on (M,η, ω) which is free and proper. Let ξ ∈ g∗

be a regular value of a momentum map µ : M → g∗. Since µ is equivariant, the isotropy
group Gξ acts on µ−1(ξ). We denote the quotient Gξ\µ−1(ξ) as M ξ and the natural projec-
tion as p : µ−1(ξ)→M ξ. The following theorem is an analogue of Marsden–Weinstein–Meyer
theorem.

Theorem 2.2 (Albert [1]). There is a unique cosymplectic structure
(
ηξ, ωξ

)
on M ξ which

satisfies p∗ηξ = η|µ−1(ξ), p
∗ωξ = ω|µ−1(ξ).

Remark 2.3. In [17], reduction theorems of coKähler manifolds and 3-cosymplectic manifolds
are proved. They are natural odd-dimensional analogues of the reduction theorems of Kähler
manifolds and hyperKähler manifolds [8], respectively.

3 Symplectic groupoids and cosymplectic groupoids

A groupoid is a small category in which all arrows are invertible. This is summarized in the
following diagram

G1 s×tG1 m
// G1

i
XX

s //
t
// G0 u

// G1,

where G1 s×tG1 = {(g, h) ∈ G1 × G1 | s(g) = t(h)}.1 G1 is a set of arrows and G0 is a set
of objects, m, i, s, t, u (these maps are called structure maps of the groupoid) are maps
of multiplication, inverse, source, target, and unit, respectively. G1 and G0 are sometimes
called the total space and the base space, respectively. For any ξ ∈ G0, s−1(ξ) ∩ t−1(ξ) is
a group. This group is called the isotropy group on ξ, and denoted by Gξ. We simply denote
a groupoid G = (G1, G0,m, i, s, t, u) by G = (G1 ⇒ G0), m(g, h) by gh, u(ξ) by 1ξ for ξ ∈ G0.

A groupoid is called a Lie groupoid if G1 and G0 are smooth manifolds, s, t are smooth
submersions, and m, i, u are smooth maps. A Lie groupoid H1 ⇒ H0 is called a Lie subgroupoid
of another Lie groupoid G1 ⇒ G0 when H1 ⇒ H0 is a subcategory of G1 ⇒ G0 and H1 is an
immersed submanifold of G1. A morphism between Lie groupoids is a smooth functor.

In Poisson geometry, there is an important class of Lie groupoids, namely, symplectic group-
oids. Roughly speaking, symplectic groupoids are “integration” of Poisson manifolds.

Definition 3.1. A symplectic groupoid is a pair (G1 ⇒ G0, ωG1) of a Lie groupoid and a symplec-
tic form on G1 which ismultiplicative, i.e., m∗ωG1 = pr∗1ωG1+pr∗2ωG1 holds, where pri : G1 s×tG1

→ G1 denotes the natural projections.

1Throughout the paper, we will use this “fibered product” notation without explanation.
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The space of objects G0 of a symplectic groupoid (G1 ⇒ G0, ωG1) has a unique integrable2

Poisson structure such that the source map is a Poisson map. Conversely, Mackenzie and Xu [9]
proved that for any integrable Poisson manifold G0, there exists a unique (up to isomorphism)
symplectic groupoid (G1 ⇒ G0, ωG1) whose s-fiber s−1(ξ) on each ξ ∈ G0 is simply connected
(such a Lie groupoid is said to be s-simply connected), and these operations are inverses of each
other. So there is a correspondence

{s-simply connected symplectic groupoid} 1:1←→ {integrable Poisson manifold}.

Example 3.2. Let G0 be a manifold and G a Lie group acting on G0 from left. Then one
obtains a Lie groupoid G×G0 ⇒ G0 by defining the following structure maps:

s(g, ξ) = ξ, t(g, ξ) = gξ, 1ξ = (e, ξ),

(g, hξ)(h, ξ) = (gh, ξ), i(g, ξ) =
(
g−1, gξ

)
,

where g, h ∈ G, ξ ∈ G0 and e is the unit of G. The Lie groupoid G × G0 ⇒ G0 is called the
action groupoid associated to the Lie group action.

Let g be the Lie algebra of G. There is a left G-action Ad∗ : G→ GL(g∗) on g∗ called
the coadjoint action. Consider the action groupoid associated to this action. The space of
arrows G× g∗ ≃ T ∗G has the canonical symplectic form, and G × g∗ ⇒ g∗ is a symplectic
groupoid by this symplectic form. In this case, the corresponding Poisson structure on the space
of objects g∗ is the linear Poisson structure, which is defined by {f, g}(ξ) = ξ([dfξ,dgξ]) for
f, g ∈ C∞(g∗) and ξ ∈ g∗, where [·, ·] is the Lie bracket of g and we consider dfξ,dgξ : g

∗ → R
identifying Tξg

∗ with g∗.

The notion of a cosymplectic groupoid is defined in exactly the same way as that of a sym-
plectic groupoid:

Definition 3.3. A cosymplectic groupoid is a triplet (G1 ⇒ G0, ηG1 , ωG1) of a Lie groupoid and
a cosymplectic structure on G1 such that

m∗ηG1 = pr∗1ηG1 + pr∗2ηG1 m∗ωG1 = pr∗1ωG1 + pr∗2ωG1

holds.

Example 3.4. Let G1 ⇒ G0 be a Lie groupoid and G an abelian Lie group. Then a pair
(P ⇒ G0, (p, idG0)) of a Lie groupoid P ⇒ G0 and a morphism (p, idG0) : (P ⇒ G0)→(G1 ⇒ G0)
is called a central extension of G1 ⇒ G0 by G when G acts on P and the map p : P → G1 is
a principal G-bundle.

For any symplectic groupoid (G1 ⇒ G0, ωG1), let us consider a central extension (P ⇒ G0,
(p, idG0)) by G = R or G = S1. Let ηP be a multiplicative, flat connection form of the principal
bundle p : P → G1. Then (P ⇒ G0, ηP , ωP ) is a cosymplectic groupoid, where ωP = p∗ωG1 .
In particular, the trivial R-central extension (G1 × R ⇒ G0,pr

∗
Rdt,pr

∗
G1

ωG1), where pr denotes
the projections, is a cosymplectic groupoid.

The space of arrows of a cosymplectic groupoid has a symplectic foliation defined by the
distribution Ker η and there is a distinguished symplectic leaf:

Theorem 3.5 ([6]). Let G = (G1 ⇒ G0) be a cosymplectic groupoid. Then any unit arrow in G1

belongs to the same symplectic leaf SG1. Moreover, SG := (SG1 ⇒ G0) is a Lie subgroupoid of G
and it is a symplectic groupoid.

2A Poisson manifold is said to be integrable when induced Lie algebroid (cotangent bundle) is integrable by
a Lie groupoid. For more details, see [3], for example.
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4 Actions of cosymplectic groupoids

The notion of an action of a Lie groupoid on a manifold M is a generalization of the situation
where an action of Lie group G on M and an equivariant map ρ : M → G0, where G0 is another
manifold on which G acts, is given.

Definition 4.1. Let G = (G1 ⇒ G0) be a Lie groupoid and M be a manifold. A left action
of G on M is a pair (ρ,Φ) of smooth maps ρ : M → G0 and Φ: G1 s×ρM → M which satisfies
the following conditions:

(1) ρ(Φ(g, x)) = t(g) when (g, x) ∈ G1 s×ρM ,

(2) Φ(g,Φ(h, x)) = Φ(gh, x) when (g, h) ∈ G1 s×tG1, (h, x) ∈ G1 s×ρM ,

(3) Φ(1ρ(x), x) = x for any x ∈M .

Hereinafter, we simply denote Φ(g, x) by gx and refer to M as left G-module. The map
ρ : M → G0 is called a momentum map. A right action of G on M is also defined similarly, by
swapping the role of the source map and the target map.

A left G-action on M (or a left G-module M) is said to be

� free if gx = x (for some x ∈M such that (g, x) ∈ G1 s×ρM) implies g = 1ρ(x),

� proper if a map G1 s×ρM →M ×M ; (g, x) 7→ (gx, x) is proper.

The orbit space G\M of a free and proper Lie groupoid action is a smooth manifold and
the quotient map M → G\M is a submersion. Then one also calls M → G\M a princi-
pal G-bundle (see [13]). In particular, for any regular value ξ ∈ G0 of ρ, the isotropy Lie
group Gξ = s−1(ξ) ∩ t−1(ξ) smoothly acts on ρ−1(ξ), and the quotient map ρ−1(ξ)→ Gξ\ρ−1(ξ)
is a submersion to the smooth quotient space.

Let (G, ωG1) be a symplectic groupoid and (M,ω) a symplectic manifold. A left G-action
on M (or a left G-module M) is said to be symplectic if the graph of the action, i.e.,

{(g, x, gx) ∈ G1 ×M ×M | (g, x) ∈ G1 s×ρM}

is a Lagrangian submanifold of (G1 ×M ×M,ωG1 + ω1 − ω2), where ωi denotes the symplectic
structure of i-th M .

Remark 4.2. The condition that the graph is a Lagrangian submanifold is grounded in Wein-
stein’s “symplectic creed” [14] philosophy.

Example 4.3. Let G0 be a manifold and G a Lie group acting on G0 from left. Consider the
action groupoid G = (G×G0 ⇒ G0). Then we obtain a correspondence

{left G-action on M} 1:1←→ {left G-action on M with a equivariant map ρ : M → G0}

by a formula gx = (g, ρ(x))x, where the left side means the action of g ∈ G on x ∈ M and the
right side means the action of (g, ρ(x)) ∈ G×G0 on x. Moreover, when G is G×g∗ ⇒ g∗ and M
has a symplectic form ω, we have a correspondence

{symplectic left G-action on (M,ω)} 1:1←→ {Hamiltonian left G-action on (M,ω)}

(see [4], for example).
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In order to define the notion of a cosymplectic groupoid action, we need to consider an
analogue of Lagrangian submanifolds.

Let (M,η, ω) be a cosymplectic manifold and N ⊂ M a submanifold. Then we call N
a Lagrangian–Legendrian submanifold or in short, LL submanifold if TpN ⊂ Ker ηp (Legendrian
property), (TpN)ωp|Ker ηp = TpN (Lagrangian property) holds for any p ∈ N , where (TpN)ωp|Ker ηp

denotes the orthogonal complement of TpN with respect to ωp|Ker ηp .
In fact, the notion of a LL submanifold is defined for almost cosymplectic manifolds. In the

case of contact manifolds, the definition of a LL submanifold coincides with that of a Legendrian
submanifold.

Remark 4.4. An embedding ι : N ↪→M to a cosymplectic manifold (M,η, ω) is a LL submani-
fold if ι∗η = 0, ι∗ω = 0 and dimM = 2dimN + 1 holds.

Lemma 4.5. Let (M1, η1, ω1) and (M2, η2, ω2) be two cosymplectic manifolds and f : M1 →M2

a diffeomorphism. Then f is an isomorphism of cosymplectic manifolds if and only if the graph
of f , i.e.,

Γ := {(x, f(x), 1) ∈M1 ×M2 × R | x ∈M1}

is a LL submanifold of a cosymplectic manifold (M1 ×M2 × R, η, ω), where

η = η1 − η2, ω = ω1 − ω2 + η1 ∧ dt.

Proof. The graph Γ is the image of an embedding ι : M1 → M1 ×M2 × R, ι(x) = (x, f(x), 1).
Then we obtain

ι∗η = ι∗(p∗1η − p∗2η) = η − f∗η, ι∗ω = ι∗(p∗1ω − p∗2ω + (p∗1η) ∧ dq) = ω − f∗ω,

where pi and q denotes projections to Mi and R, respectively. In addition, we have

2 dimΓ + 1 = 2dimM1 + 1 = dim(M1 ×M2 × R).

Therefore, Γ is a LL submanifold if and only if f∗η2 = η1, f∗ω2 = ω1. ■

We can also rephrase the definition of a cosymplectic groupoid by using the notion of a LL
submanifold.

Proposition 4.6. Let G = (G1 ⇒ G0) be a Lie groupoid and (η, ω) a cosymplectic structure
on G1. Then a triplet (G, η, ω) is a cosymplectic groupoid if and only if the graph of the multi-
plication, i.e.,

Γ := {(g, h, 1, gh, 1) ∈ G1 ×G1 × R×G1 × R | (g, h) ∈ G1 s×tG1}

is a LL submanifold of a cosymplectic manifold (G1 ×G1 × R×G1 × R, η̃, ω̃), where

η̃ := η1 + η2 − η3, ω̃ := (ω1 + ω2 + η1 ∧ dt1)− ω3 + (η1 + η2) ∧ dt2

(ti denotes the coordinate of i-th R and (ηi, ωi) denotes the cosymplectic structure of i-th G1).

Proof. The graph Γ is the image of an embedding ι : G1 s×tG1 → G1×G1×R×G1×R given
by ι(g, h) = (g, h, 1, gh, 1). Then we obtain

ι∗η̃ = ι∗(p∗1η + p∗2η − p∗3η) = pr∗1η + pr∗2η −m∗η,

ι∗ω̃ = ι∗(p∗1ω + p∗2ω − p∗3ω + (p∗1η) ∧ dq1 + (p∗1η + p∗2η) ∧ dq2) = pr∗1ω + pr∗2ω −m∗ω,
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where pi and qi denotes projections to i-th G1 and i-th R, respectively, and pri : G1 s×tG1 → G1

also denotes projections. Hence the multiplicativity of η and ω is equivalent to ι∗η̃ = 0
and ι∗ω̃ = 0, respectively. In addition, we have dimΓ = dim(G1 s×tG1) = 2 dimG1 − dimG0,
and since dimG1 = 2dimG0 + 1 (see [6]), we obtain

2 dimΓ + 1 = 4dimG1 − 2 dimG0 + 1 = 3dimG1 + 2 = dim(G1 ×G1 × R×G1 × R).

Therefore, the multiplicativity condition is equivalent to Γ being a LL submanifold. ■

Now we can define a notion of a cosymplectic groupoid action.

Definition 4.7. Let (G = (G1 ⇒ G0), ηG1 , ωG1) be a cosymplectic groupoid and (M,η, ω)
a cosymplectic manifold. A left G-action on M (or a left G-module M) is said to be cosymplectic
if the following conditions are satisfied:

(1) The momentum map ρ : M → G0 of the action satisfies dρ(R) = 0, where R is the Reeb
vector field of (M,η, ω).

(2) The graph of the action, i.e.,

Γ := {(g, x, 1, gx, 1) ∈ G1 ×M × R×M × R | (g, x) ∈ G1 s×ρM}

is a LL submanifold of a cosymplectic manifold (G1 ×M × R×M × R, η̃, ω̃), where

η̃ := ηG1 + η1 − η2, ω̃ := (ωG1 + ω1 + ηG1 ∧ dt1)− ω2 + (ηG1 + η1) ∧ dt2

(ti denotes the coordinate of i-th R and (ηi, ωi) denotes the cosymplectic structure of
i-th M).

Remark 4.8. Condition (1) means that the Reeb vector field R lies in the direction of the
fibers of the momentum map ρ, and this will later be necessary for constructing a cosymplectic
structure on our reduced space.

The following proposition is essentially used in Section 5 for the proof of our main theorem.

Proposition 4.9. Let (G = (G1 ⇒ G0), ηG1 , ωG1) be a cosymplectic groupoid, (M,η, ω) a cosym-
plectic left G-module and (ρ,Φ) its action maps. Let SG = (SG1 ⇒ G0) be the symplectic sub-
groupoid obtained by Theorem 3.5. Then any symplectic leaf S of (M,η, ω) is a symplectic left
SG-module by action maps

ρ|S : S → G0, Φ|SG1 s×ρ S : SG1 s×ρ S → S.

Proof. Firstly, we see that the Legendrian property of the graph Γ of the action (ρ,Φ) im-
plies Φ(SG1 s×ρ S) ⊂ S. Let (g, x) ∈ SG1 s×ρ S and (g(t), x(t)) be a smooth path in SG1 s×ρ S
whose starting point is (1ρ(x), x) and ending point is (g, x). Then we obtain a smooth path
(g(t), x(t), 1, (gx)(t), 1) in Γ and

0 = η̃(ġ(t), ẋ(t), 0, (ġx)(t), 0) = ηG1(ġ(t)) + η(ẋ(t))− η((ġx)(t)) = −η((ġx)(t))

holds. Therefore, two points x = 1ρ(x)x and gx are in the same symplectic leaf S.
Secondly, we see that the Lagrangian property of the graph Γ implies that the restricted

action (ρ|S ,Φ|SG1 s×ρ S) is symplectic. Let (g(t), x(t)) be a smooth path in SG1 s×ρ S. Then we
have

0 = ω̃(ġ(t), ẋ(t), 0, (ġx)(t), 0) = ωG1(ġ(t)) + ω(ẋ(t))− ω((ġx)(t)).

In addition to this, taking the dimension count into consideration, we can see that the graph of
the SG-action on S is a Lagrangian submanifold. ■



8 S. Yonehara

5 Mikami–Weinstein type theorem

Now we recall the statement of the Mikami–Weinstein theorem.3

Theorem 5.1 ([12]). Let G = (G1 ⇒ G0) be a symplectic groupoid and M a symplectic, free
and proper left G-module with respect to a momentum map ρ : M → G0. Assume that ξ ∈ ρ(M)
is a regular value of ρ. Then Gξ\ρ−1(ξ) is a symplectic manifold. Moreover, if ρ is submersive,
the family of symplectic manifolds

{
Gξ\ρ−1(ξ)

}
ξ∈ρ(M)

is precisely the symplectic foliation of the
Poisson manifold G\M .

Example 5.2. Consider the case of G = (G×g∗ ⇒ g∗). For any ξ ∈ g∗, Gξ ≃ {g ∈ G | Ad∗gξ = ξ}.
Thus by the correspondence in Example 4.3, we can see that the Marsden–Weinstein–Meyer the-
orem is a special case of the Mikami–Weinstein theorem.

The following is our main theorem.

Theorem 5.3. Let G = (G1 ⇒ G0) be a cosymplectic groupoid and (M,η, ω) a cosymplectic, free
and proper left G-module with respect to a momentum map ρ : M → G0. Assume that ξ ∈ ρ(M)
is a regular value of ρ. We denote (SG)ξ\ρ−1(ξ) as M ξ and the quotient map as p : ρ−1(ξ) →
M ξ. Then M ξ admits a unique cosymplectic structure

(
ηξ, ωξ

)
such that p∗ηξ = η|ρ−1(ξ) and

p∗ωξ = ω|ρ−1(ξ).

Proof. Let {Si}i∈I be the symplectic foliation of M . Since the Reeb vector field R of M
satisfies dρ(R) = 0, each Si intersects transversely with ρ−1(ξ), and thus (ρ|Si)

−1(ξ) is a smooth
manifold.

By Proposition 4.9, the symplectic groupoid SG acts on each leaf Si symplectically. Hence{
Sξ
i := (SG)ξ\(ρ|Si)

−1(ξ)
}
i∈I forms a foliation on M ξ of codimension 1 (see [13, Section 1.3]).

In addition, we can apply Theorem 5.1 on each leaf and thus
{
Sξ
i

}
i∈I is a symplectic foliation

on M ξ.
Let Lg : ρ

−1(ξ)→ ρ−1(ξ) be the left action map by g ∈ (SG)ξ and x(t) a integral curve of R
in ρ−1(ξ). Then by the Legendrian property of the graph,

η((Lg)∗R) = η((ġx)(t)) = ηG1(0) + η(ẋ(t)) = η(R) = 1

holds. Similarly, by the Lagrangian property of the graph, we have ω((Lg)∗R,−) = 0 and thus R
is left invariant. Hence R descends to a vector field Rξ := dp(R) on the quotient M ξ. The vector
field Rξ is transverse to the symplectic foliation on M ξ.

The reduced foliation
{
Sξ
i

}
i∈I is coorientable since {Si}i∈I is. We choose a defining 1-form ηξ

of the foliation
{
Sξ
i

}
i∈I such that ηξ

(
Rξ

)
= 1 holds. Then we have p∗ηξ = η|ρ−1(ξ). Let ωi be

the symplectic form on Sξ
i . Then we define a 2-form ωξ on M ξ by ωξ

(
Rξ,−

)
= 0, ωξ|

Sξ
i
= ωi.

Then we have p∗ωξ = ω|ρ−1(ξ). η
ξ, ωξ are closed since η, ω are closed and p is a submersion.

Moreover, since ηξ
(
Rξ

)
̸= 0 and ωn

i ̸= 0, ηξ ∧
(
ωξ

)n
is a volume form, where n is an integer

such that dimM ξ = 2n+ 1. Therefore, a pair
(
ηξ, ωξ

)
is a cosymplectic structure on M ξ. ■

6 Examples

In this section, we give two examples of Theorem 5.3.

Example 6.1. Let G = (G1 ⇒ G0) be a cosymplectic groupoid. Then G acts on G1 by the
multiplication of groupoid with t : G1 → G0 as the momentum map. This action is free, proper
and cosymplectic. In fact, the graph of the action is a LL submanifold because of Proposition 4.6,
and the Reeb vector field R of G1 satisfies R ∈ Ker dt (see [6]).

3In [16], an alternative proof utilizing Morita equivalence was given.
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For any ξ ∈ G0, the reduced cosymplectic manifold (SG)ξ\t−1(ξ) is obtained by Theorem 5.3.
Here the symplectic leaf (SG)ξ\(t|SG1

)−1(ξ) coincides with the SG-orbit in G0 through ξ. We can
see that it is also a leaf of the symplectic foliation of a Poisson manifold G0 by Theorem 5.1,
and thus we have two foliated manifolds each having the orbit as a leaf.

Example 6.2. Let G be a Lie group acts on a cosymplectic manifold (M,η, ω) freely and
properly. We assume that there is a momentum map µ : M → g∗ with respect to the action.
Then let us consider a cosymplectic groupoid

T ∗G× R ≃ G× g∗ × R ⇒ g∗

(the trivial R-central extension of a symplectic groupoid T ∗G ⇒ g∗).
For any ε > 0, we define

Mε = {x ∈M | Reeb flow φt(x) is defined in t ∈ [−ε, ε]},
Gε = (G× g∗ × (−ε, ε) ⇒ g∗).

In fact, although Gε is not a Lie groupoid, it is a local Lie groupoid (i.e., the composition of
arrows is defined only in a neighborhood of the unit arrows) whose structure maps are the same
as those of G× g∗ × R ⇒ g∗, and the previously discussed concepts related to actions can also
be applied to local Lie groupoids. We can define a cosymplectic Gε-action on Mε by

(g, ξ, t) · x := φt(gx)

for (g, ξ, t) ∈ G × g∗ × (−ε, ε), x ∈ Mε, with µ|Mε : Mε → g∗ as the momentum map. In this
case, Theorem 5.3 coincides with Theorem 2.2 for the G-action on (Mε, η|Mε , ω|Mε).

7 Further study: Morita equivalence

We defined the notion of a cosymplectic groupoid action, thus we can also define the notion of
Morita equivalence between cosymplectic groupoids as in the case of symplectic groupoids [16].

Definition 7.1. A cosymplectic groupoid G = (G1 ⇒ G0) is said to be Morita equivalent to
another cosymplectic groupoid H = (H1 ⇒ H0) when there is a cosymplectic manifold M , a left
cosymplectic G-action and a right cosymplectic H-action on M which satisfies the following
conditions:

(1) Momentum maps ρ : M → G0 and σ : M → H0 are surjective submersions.

(2) Actions of G and H on M are both free and proper.

(3) The two actions commute with each other.

(4) The map ρ is constant on each orbit of the action of H and an induced map M/H → G0 is
a diffeomorphism. Similarly, σ is constant on each orbit of the action of G and an induced
map G\M → H0 is a diffeomorphism.

The triplet (M,ρ, σ) is called an equivalence bimodule from G to H,

G1

�� ��

M

ρ~~ σ !!

H1

�� ��
G0 H0.

Regarding the relationship between the Morita equivalence of cosymplectic groupoids G, H
and that of their symplectic subgroupoids SG , SH, we obtain the following.
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Proposition 7.2. Let G = (G1 ⇒ G0) and H = (H1 ⇒ H0) be Morita equivalent cosymplectic
groupoids and SG = (SG1 ⇒ G0), SH = (SH1 ⇒ H0) their symplectic subgroupoids. Let (M,ρ, σ)
be an equivalence bimodule from G to H and assume that there is a symplectic leaf S of M which
satisfies the following conditions:

� ρ|S : S → G0, σ|S : S → H0 are surjective.

� For any x ∈ S and g ∈ G1 such that gx is defined, gx ∈ S implies g ∈ SG1.

� For any x ∈ S and h ∈ H1 such that xh is defined, xh ∈ S implies h ∈ SH1.

Then the triplet (S, ρ|S , σ|S) is an equivalence bimodule from SG to SH, and thus these symplectic
groupoids are Morita equivalent,

SG1

�� ��

S

ρ|S~~ σ|S   

SH1

�� ��
G0 H0.

Proof. First, Proposition 4.9 implies that actions of SG and SH preserves the leaf S, and these
actions are both symplectic.

Since actions of G, H are both cosymplectic, dρ(R) = 0, dσ(R) = 0 holds for the Reeb vector
field R of M . Hence ρ|S , σ|S are submersions.

Then ρ|S is constant along each orbit of the SH-action, and it induces a diffeomorphism
S/SH → G0 since for x ∈ S, gx ∈ S implies g ∈ SG1 and ρ induces a diffeomorphismM/H → G0.
Similarly, we can see that σ|S induces a diffeomorphism SG\S → H0. The other conditions can
be easily verified. ■

Xu [16] studied the notion of Morita equivalence of symplectic groupoids and applied it to
investigate Morita equivalence of Poisson manifold [15]. In this paper, we defined the notion of
a cosymplectic groupoid action and that of Morita equivalence between cosymplectic groupoids.
Regarding them, future work includes demonstrating that results parallel to those in the case of
symplectic groupoids hold (e.g., whether Morita equivalence between two cosymplectic groupoids
implies an equivalence of categories between their module categories).
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