|
SIGMA 21 (2025), 070, 11 pages arXiv:2410.05846
https://doi.org/10.3842/SIGMA.2025.070
Mikami-Weinstein Type Theorem for Cosymplectic Groupoid Actions
Shuhei Yonehara
National Institute of Technology, Yonago College, Tottori, 683-8502, Japan
Received January 20, 2025, in final form August 06, 2025; Published online August 16, 2025
Abstract
The Mikami-Weinstein theorem is a generalization of the classical Marsden-Weinstein-Meyer symplectic reduction theorem to the case of symplectic groupoid actions. In this paper, we introduce the notion of a cosymplectic groupoid action on a cosymplectic manifold and prove a theorem which is a natural analogue of the Mikami-Weinstein theorem.
Key words: cosymplectic manifolds; cosymplectic groupoids; momentum maps; Hamiltonian actions.
pdf (361 kb)
tex (17 kb)
References
- Albert C., Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys. 6 (1989), 627-649.
- Cappelletti-Montano B., De Nicola A., Yudin I., A survey on cosymplectic geometry, Rev. Math. Phys. 25 (2013), 1343002, 55 pages, arXiv:1305.3704.
- Crainic M., Fernandes R.L., Lectures on integrability of Lie brackets, in Lectures on Poisson Geometry, Geom. Topol. Monogr., Vol. 17, Geometry and Topology Publications, Coventry, 2011, 1-107, arXiv:math.DG/0611259.
- Crainic M., Fernandes R.L., Mărcuţ I., Lectures on Poisson geometry, Graduate Studies in Mathematics, Vol. 217, American Mathematical Society, Providence, RI, 2021.
- Djiba S.A., Wade A., On cosymplectic groupoids, C. R. Math. Acad. Sci. Paris 353 (2015), 859-863.
- Fernandes R.L., Iglesias Ponte D., Cosymplectic groupoids, J. Geom. Phys. 192 (2023), 104928, 20 pages, arXiv:2304.06163.
- Guillemin V., Miranda E., Pires A.R., Codimension one symplectic foliations and regular Poisson structures, Bull. Braz. Math. Soc. (N.S.) 42 (2011), 607-623, arXiv:1009.1175.
- Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyperkähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
- Mackenzie K.C.H., Xu P., Integration of Lie bialgebroids, Topology 39 (2000), 445-467, arXiv:dg-ga/9712012.
- Marsden J., Weinstein A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121-130.
- Meyer K.R., Symmetries and integrals in mechanics, in Dynamical Systems, Academic Press, New York, 1973, 259-272.
- Mikami K., Weinstein A., Moments and reduction for symplectic groupoids, Publ. Res. Inst. Math. Sci. 24 (1988), 121-140.
- Moerdijk I., Mrčun J., Introduction to foliations and Lie groupoids, Grad. Stud. Math., Vol. 91, Cambridge University Press, Cambridge, 2003.
- Weinstein A., Symplectic geometry, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 1-13.
- Xu P., Morita equivalence of Poisson manifolds, Comm. Math. Phys. 142 (1991), 493-509.
- Xu P., Morita equivalent symplectic groupoids, in Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., Vol. 20, Springer, New York, 1991, 291-311.
- Yonehara S., Reduction of coKähler and 3-cosymplectic manifolds, J. Geom. Symmetry Phys. 68 (2024), 59-80, arXiv:2404.13253.
|
|