Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 070, 11 pages      arXiv:2410.05846      https://doi.org/10.3842/SIGMA.2025.070

Mikami-Weinstein Type Theorem for Cosymplectic Groupoid Actions

Shuhei Yonehara
National Institute of Technology, Yonago College, Tottori, 683-8502, Japan

Received January 20, 2025, in final form August 06, 2025; Published online August 16, 2025

Abstract
The Mikami-Weinstein theorem is a generalization of the classical Marsden-Weinstein-Meyer symplectic reduction theorem to the case of symplectic groupoid actions. In this paper, we introduce the notion of a cosymplectic groupoid action on a cosymplectic manifold and prove a theorem which is a natural analogue of the Mikami-Weinstein theorem.

Key words: cosymplectic manifolds; cosymplectic groupoids; momentum maps; Hamiltonian actions.

pdf (361 kb)   tex (17 kb)  

References

  1. Albert C., Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys. 6 (1989), 627-649.
  2. Cappelletti-Montano B., De Nicola A., Yudin I., A survey on cosymplectic geometry, Rev. Math. Phys. 25 (2013), 1343002, 55 pages, arXiv:1305.3704.
  3. Crainic M., Fernandes R.L., Lectures on integrability of Lie brackets, in Lectures on Poisson Geometry, Geom. Topol. Monogr., Vol. 17, Geometry and Topology Publications, Coventry, 2011, 1-107, arXiv:math.DG/0611259.
  4. Crainic M., Fernandes R.L., Mărcuţ I., Lectures on Poisson geometry, Graduate Studies in Mathematics, Vol. 217, American Mathematical Society, Providence, RI, 2021.
  5. Djiba S.A., Wade A., On cosymplectic groupoids, C. R. Math. Acad. Sci. Paris 353 (2015), 859-863.
  6. Fernandes R.L., Iglesias Ponte D., Cosymplectic groupoids, J. Geom. Phys. 192 (2023), 104928, 20 pages, arXiv:2304.06163.
  7. Guillemin V., Miranda E., Pires A.R., Codimension one symplectic foliations and regular Poisson structures, Bull. Braz. Math. Soc. (N.S.) 42 (2011), 607-623, arXiv:1009.1175.
  8. Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyperkähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
  9. Mackenzie K.C.H., Xu P., Integration of Lie bialgebroids, Topology 39 (2000), 445-467, arXiv:dg-ga/9712012.
  10. Marsden J., Weinstein A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121-130.
  11. Meyer K.R., Symmetries and integrals in mechanics, in Dynamical Systems, Academic Press, New York, 1973, 259-272.
  12. Mikami K., Weinstein A., Moments and reduction for symplectic groupoids, Publ. Res. Inst. Math. Sci. 24 (1988), 121-140.
  13. Moerdijk I., Mrčun J., Introduction to foliations and Lie groupoids, Grad. Stud. Math., Vol. 91, Cambridge University Press, Cambridge, 2003.
  14. Weinstein A., Symplectic geometry, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 1-13.
  15. Xu P., Morita equivalence of Poisson manifolds, Comm. Math. Phys. 142 (1991), 493-509.
  16. Xu P., Morita equivalent symplectic groupoids, in Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., Vol. 20, Springer, New York, 1991, 291-311.
  17. Yonehara S., Reduction of coKähler and 3-cosymplectic manifolds, J. Geom. Symmetry Phys. 68 (2024), 59-80, arXiv:2404.13253.

Previous article  Next article  Contents of Volume 21 (2025)