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Abstract. Endo–Pajitnov manifolds are generalizations to higher dimensions of the Inoue
surfaces SM . We study the existence of complex submanifolds in Endo–Pajitnov manifolds.
We identify a class of these manifolds that do contain compact complex submanifolds and es-
tablish an algebraic condition under which an Endo–Pajitnov manifold contains no compact
complex curves.

Key words: Inoue surface; Oeljeklaus–Toma manifold; Endo–Pajitnov manifold; foliation

2020 Mathematics Subject Classification: 53C55

1 Introduction

Among the surfaces in Kodaira’s class VII, the three types of Inoue surfaces [7], play a prominent
role. They are compact non-Kähler surfaces with no non-trivial meromorphic functions and
without complex curves.

The Inoue surfaces of type SM are solvmanifolds, quotients of H×C, where H is the Poincaré
half-plane, by a group constructed out of a matrix M ∈ SL(3,Z) with one real (irrational)
eigenvalue α > 1 and two complex conjugate ones, β, β̄. Denoting with (ai), respectively (bi),
a real eigenvector of α, respectively an eigenvector of β, we can define g0(w, z) = (αw, βz)
and gi(w, z) = (w + ai, z + bi), i = 1, 2, 3, and let GM be the group generated by g0, g1, g2, g3.
Then the Inoue surface SM is GM\H× C.

In 2005, the surfaces SM were generalized to higher dimensions by Oeljeklaus and Toma [8].
Each such manifold is covered by Hs × Ct and it is associated to a number field with s real
places and t complex ones. The Oeljeklaus–Toma (OT) manifolds are non-Kähler and contain
no compact complex curves [11], and no compact complex submanifolds of dimension 2 except
Inoue surfaces [10]. Moreover, the OT manifolds which admit locally conformally Kähler metrics
do not have non-trivial meromorphic functions and hence they do not admit compact complex
submanifolds [9].

In 2019, Endo and Pajitnov [5] proposed another generalization of the Inoue surfaces SM

to higher dimensions, again based on an integer matrix M with special requirements on its
eigenvalues, just like the original construction. They proved that these new manifolds are
non-Kähler and, if M is diagonalizable, then some of these manifolds are biholomorphic to
OT manifolds. Further topological and metric properties of the Endo–Pajitnov manifolds were
discussed in [4].

In this note, we study the existence of complex submanifolds in Endo–Pajitnov manifolds.
We describe a class of Endo–Pajitnov manifolds which contain complex submanifolds, specifically
complex tori (Theorem 3.1). On the other hand, we determine an algebraic condition which
prohibits the existence of compact complex curves (Theorem 4.1). We also obtain a result
(Proposition 4.5) regarding the existence of surfaces in an Endo–Pajitnov manifold from the class
of those without complex curves.
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2 Endo–Pajitnov manifolds

In this section, we recall the construction of the Endo–Pajitnov manifolds, as introduced in [5].

Let n > 1 and M ∈ SL(2n+1,Z) such that the eigenvalues of M are α, β1, . . . , βk, β1, . . . , βk
with α > 0, α ̸= 1 and Im(βj) > 0.

Denote by V the eigenspace corresponding to α and set

W (βj) =
{
x ∈ C2n+1 | ∃ N ∈ N such that (M − βjI)

Nx = 0
}
,

W =

k⊕
j=1

W (βj), W =

k⊕
j=1

W
(
βj

)
.

We then have C2n+1 = V ⊕W ⊕W . Let a ∈ R2n+1 be a non-zero eigenvector corresponding
to α and fix a basis {b1, . . . , bn} in W ,

a =
(
a1, a2, . . . , a2n+1

)T
, bi =

(
b1i , b

2
i , . . . , b

2n+1
i

)T
, 1 ≤ i ≤ n.

For any 1 ≤ i ≤ 2n+1, we let ui =
(
ai, bi1, . . . , b

i
n

)
∈ R×Cn ≃ R2n+1. Note that {u1, . . . , u2n+1}

are linearly independent over R, since
{
a, b1, . . . , bn, b1, . . . , bn

}
is a basis of C2n+1.

Let now fM : W −→ W be the restriction of the multiplication by M on W and R the
matrix of fM with respect to the basis {b1, . . . , bn}. Let H be the Poincaré upper half-plane,
and consider the automorphisms g0, g1, . . . , g2n+1 : H× Cn −→ H× Cn,

g0(w, z) =
(
αw,RTz

)
, gi(w, z) = (w, z) + ui, w ∈ H, z ∈ Cn, 1 ≤ i ≤ 2n+ 1.

These automorphisms are well defined because α > 0 and the first component of ui is a
i ∈ R.

Let GM be the subgroup of Aut(H× Cn) generated by g0, g1, . . . , g2n+1.

Theorem 2.1 ([5]). The action of GM on H × Cn is free and properly discontinuous. Hence,
the quotient TM := (H × Cn)/GM is a compact complex manifold of complex dimension n + 1,
with π1(TM ) ≃ GM .

Definition 2.2. The above quotient TM := (H×Cn)/GM is called an Endo–Pajitnov manifold.

Remark 2.3. In the same paper, the authors prove that

� If M is diagonalizable, then some TM are biholomorphic to OT manifolds [5, Proposi-
tion 5.3].

� If M is not diagonalizable, then TM cannot be biholomorphic to any OT manifold [5,
Proposition 5.6].

3 A class of Endo–Pajitnov manifolds containing submanifolds

We shall identify a class of Endo–Pajitnov manifolds that admit compact complex submanifolds.
The idea is to define a holomorphic submersion from TM to another complex manifold; the
fibers will be the complex submanifolds we look for. More precisely, these submanifolds will
be complex tori. The existence of such a structure depends on a suitable choice of the initial
matrix M .

Let n > 1, k ≥ 1 and M ∈ SL(2n+ 1,Z) be a matrix which can be written in block form:

M =

(
N 0
0 P

)
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where P is a square matrix of dimension 2k, N ∈ SL(2(n− k) + 1,Z), such that

Spec(N) =
{
α, β1, . . . , βN , β1, . . . , βN | α ∈ R, α > 0, α ̸= 1, Im(βj) > 0

}
and

Spec(P ) =
{
βN+1, . . . , βP , βN+1, . . . , βP | Im(βj) > 0

}
.

It is clear that M satisfies the conditions required in the construction of Endo–Pajitnov mani-
folds. In this case, the matrix R (see Section 2) is a block diagonal matrix.

Denote by WM (βj), W
N (βj), and WP (βj) the generalised eigenspaces of βj for M , N ,

and P respectively. We pick a basis {b1, . . . , b2n+1} in W which comes from bases in each
WM (βj) that in turn come from bases in WN (βj) and W

P (βj), using the fact that WM (βj) =
WN (βj)⊕WP (βj).

The diffeomorphisms g0, g1, . . . , g2n+1 : H×Cn −→ H×Cn can be written explicitly as follows:

g0(w, (z1, . . . , zn)) =
(
αw,RTz

)
, (3.1)

gi(w, z) = (w, z) +

{(
ai, bi1, . . . , b

i
n−k, 0, . . . , 0

)
, 1 ≤ i ≤ 2(n− k) + 1,(

0, 0, . . . , 0, bin−k+1, . . . , b
i
n

)
, i > 2(n− k) + 1,

w ∈ H, z ∈ Cn.

Since R is a block diagonal matrix and gi acts independently on each component for any
1 ≤ i ≤ 2n + 1, and owing to the special form of the automorphisms (3.1), there exist
g̃i : H× Cn−k −→ H× Cn−k such that the following diagram commutes:

H× Cn H× Cn

H× Cn−k H× Cn−k.

gi

prn−k prn−k

g̃i

Let ΓN the subgroup of Aut
(
H× Cn−k

)
generated by g̃0, . . . , g̃2(n−k)+1. Since the matrix N

satisfies the conditions in the construction in Section 2, the action of ΓN generates an Endo–
Pajitnov manifold TN of dimension n− k + 1, TN =

(
H× Cn−k

)
/ΓN .

It is known that TM has a solvmanifold structure, TM ≃ G/Γ [4, Theorem 3.1]. Let us denote
by g the Lie algebra of G. Our goal is to show that TM is the total space of a holomorphic fiber
bundle with base TN . To achieve this, we use the fact that both TM and TN are solvmanifolds
and we analyze the structure of g. The idea is to write g as a semidirect product between an
abelian ideal that will correspond to the fiber, and a complementary subalgebra corresponding
to the base TN .

This structure naturally extends to the corresponding Lie group level. We also describe the
lattice Γ as a semidirect product between a lattice generating TN and a lattice consisting only of
translations. The compatibility between the semidirect product structures of G and Γ allows us
to define a holomorphic submersion π between TM and TN , and the fiber will be a complex torus.

Consider the subspace

h =
〈
Y2n−k+1 + iYn−k+1, . . . , Y2n + iYn, Y2n−k+1 + iYn−k+1, . . . , Y2n + iYn

〉
C.

A direct computation shows that h is an abelian ideal of g. Indeed, from the structure equations
of g, it is sufficient to prove that

[
A, Y2n−k+j + iYn−k+j

]
∈ h, for any 1 ≤ j ≤ k.

Let us prove the case j = 1. We have

[A, Y2n−k+1 + iYn−k+1] = −
∑

i≤n−k

Im∆i,n−k+1 · Yi +
∑

i≤n−k

Re∆i,n−k+1 · Yn+i

+ i

( ∑
i≤n−k

Re∆i,n−k+1 · Yi +
∑

i≤n−k

Im∆i,n−k+1 · Yn+i

)
,

where ∆ = logRT (see [4, Theorem 3.1]).
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Since R is a block diagonal matrix, ∆ inherits this structure and, thus ∆i,n−k+1 = 0, for all
i ≤ n− k. Therefore,

[A, Y2n−k+1 + iYn−k+1] = ∆n−k+1,n−k+1(Y2n−k+1 + iYn−k+1) ∈ h.

Analogously, we can prove the same thing for any j, hence, h is ideal of g and from the structure
equations it is clear that h is abelian.

Consider l := g/h. Then l is the Lie algebra corresponding to the Endo–Pajitnov manifold TN .
Moreover,

l =
〈
A+ iX,Yn+1 + iY1, . . . , Y2n + iYn, A+ iX, . . . , Y2n + iYn

〉
C

is a subalgebra of g, and l acts on h via the adjoint representation, giving g = l⋊φ h.
Let H := Ck be the simply-connected complex Lie group corresponding to h and L := H ×

Cn−k the simply-connected complex Lie group corresponding to l. As differentiable manifolds,
G = L × H. Since H is simply-connected, we can identify Aut(h) = Aut(H) and by [2,
Theorem 3], the following diagram commutes:

l Der(h)

L Aut(H),

φ

exp exp

φ̃

where φ̃ is given by conjugation. Thus, L acts on H and by Lie’s third theorem we have that
G = L⋊φ̃ H with the composition group law

(l1, h1) · (l2, h2) = (l1l2, φ̃(l1)(h2)).

Let ΓP :=
〈
g2(n−k)+2, . . . , g2n+1

〉
. Then ΓP is a lattice of Ck. We will prove that Γ = ΓN⋊ΓP .

We define an action ρ : ΓN −→ Aut(ΓP ) by ρ(g)(h) = ghg−1, for any g ∈ ΓN and h ∈ ΓP . This
map is well defined. To verify this, it suffices to show that for every gi with 0 ≤ i ≤ 2(n− k)+1
and every gj with 2(n− k) + 2 ≤ j ≤ 2n+ 1, the conjugate gigjg

−1
i ∈ ΓP .

For i > 0, it is trivial. For i = 0, using [5, Lemma 2.3], we have

g0gjg
−1
0 = g

mj,1

1 · · · gmj,2n+1

2n+1 .

Given the block form of M , it follows that mj,l = 0, for any l ≤ 2(n− k) + 1, and thus

g0gjg
−1
0 = g

mj,2(n−k)+2

2(n−k)+2 · · · g2n+1m
j,2n+1 for all 2(n− k) + 2 ≤ j ≤ 2n+ 1.

Hence, we obtain the semidirect product structure, Γ = ΓN ⋊ ΓP .
Let us consider p : G −→ L the projection p(h, l) = l. Since p(Γ) = ΓN , this descends to a

well-defined map on the quotients:

π : G/Γ ≃ TM −→ L/ΓN ≃ TN , π(gΓ) = p(g)ΓN .

To see that π is well-defined, suppose gΓ = g′Γ, which implies g−1g′ ∈ Γ. For g = (l, h),
g′ = (l′, h′), we have

g−1g′ =
(
l−1, l−1h−1l

)
· (l′, h′) =

(
l−1l′, l−1h−1l · φ̃

(
l−1

)
(h′)

)
∈ Γ.

Hence, l−1l′ ∈ ΓN . So p(g)−1p(g′) ∈ ΓN , and therefore p(g)ΓN = p(g′)ΓN .
Since π is induced by the projection p on the first coordinates, it is clearly a holomorphic

submersion. Also, it is a proper map. By Ehresmann theorem [6, Corollary 6.2.3], it follows that
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π : TM −→ TN is a locally trivial fibration. Since holomorphic local trivializations exist, π defines
a holomorphic fiber bundle.

We will prove that the fibers of π, which are complex submanifolds of TM , are complex tori, by
constructing an explicit isomorphism between each fiber and a complex torus. Fix lΓN ∈ L/ΓN .
Then

π−1(lΓN ) = {gΓ ∈ G/Γ | p(g)ΓN = lΓN}.

Define a map

ψl : H −→ π−1(lΓN ), ψl(h) = (l, h)Γ.

Since ΓP is generated only by translations, it is a normal subgroup in Γ. We obtain an induced
map

ψ̄l : H/ΓP ≃ Tk −→ π−1(lΓN ), ψ̄l(hΓP ) = (l, h)Γ.

It is clear that ψ̄l is a biholomorphism. Thus, the fiber of π is a complex torus.
In conclusion, we can state the following.

Theorem 3.1. Let X be an Endo–Pajitnov manifold associated to a block diagonal matrix such
that one of the blocks produces a (smaller dimensional) Endo–Pajitnov manifold Y . Then X
admits the structure of a holomorphic fiber bundle over Y . In particular, X contains complex
tori, as complex submanifolds.

In the following, we provide a numerical example in the lowest possible dimension.

Example 3.2. We give an example1 of an Endo–Pajitnov manifold that contains complex
curves. Let n = 2, k = 1, and a diagonalizable matrix M

M =

(
N 0
0 P

)
, where N =

 1 2 −1
−1 0 −2
0 1 −1

 , P =

(
0 −1
1 0

)
.

It is easy to see thatM ∈ SL(5,Z) and satisfies the special conditions from construction of Endo–
Pajitnov manifold. Thus, we obtain TM , an Endo–Pajitnov manifold of complex dimension 3.

On the other hand, N ∈ SL(3,Z) has a single real eigenvalue, α, and two complex conjugate
eigenvalues β1, β1, and hence it defines an Inoue surface of type SN , call it TN = H× C/GN .

As in the general case, we define the projection π : TM −→ TN

π([w, (z1, z2)]) = [[w, z1]], w ∈ H, z1, z2 ∈ C.

Since π is a holomorphic submersion, Theorem 3.1 assures that TM projects over an Inoue
surface, with complex curves as fibres.

4 Curves on Endo–Pajitnov manifolds

In this section, we derive a necessary condition that the matrix M must satisfy so that the
manifold TM does not contain complex curves. The condition we find is algebraic, expressed
in terms of the components of the eigenvector a associated with the real eigenvalue α of the
matrix M . The proof is similar to the one in [11], where it was shown that no OT manifold can
contain complex curves.

1We are much grateful to Alexandru Gica for offering us this example.
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Theorem 4.1. Let TM be an Endo–Pajitnov manifold. If the components of the eigenvec-
tor a associated to the real eigenvalue α of the matrix M are linearly independent over Z, then
there are no compact complex curves on TM .

Proof. The idea of the proof is the following. We construct an exact, semipositive (1,1)-form ω
on TM whose integral over any compact complex curve of TM will be necessarily nonnegative
and such that any complex curve in TM should stay in a leaf of the null foliation of ω. We then
show that the stated condition implies that these leaves are isomorphic to Cn, which contains
no compact curves.

Here are the details.
Step 1. Construction of the form ω. We start by constructing a semipositive (1, 1)-form ω̃

on the universal cover T̃M := H× Cn of TM , invariant by the action of the deck group GM .
Let (w, z1, . . . , zn) be the complex coordinates on T̃M and define φ : T̃M −→ R, by

φ(w, z1, . . . , zn) =
1

Imw
, w ∈ H, z1, . . . , zn ∈ C.

It is clear that φ(w, z1, . . . , zn) > 0 on T̃M .
Define ω̃ := i∂∂̄ log(φ). In the above coordinates on T̃M , ω̃ is expressed as

ω̃ = i
1

4(Imw)2
dw ∧ dw̄.

Note that using the d and dc operators, we can rewrite

ω̃ =
1

2
ddc logφ,

and hence ω̃ is an exact form on T̃M .
Let us consider ωH, the Poincaré metric on H and pr1 : H×Cn −→ H the projection onto the

first factor. Then, we have

ω̃ = pr∗1(ωH).

Since pr1 is a holomorphic submersion, it follows that ω̃ is semipositive definite. Moreover,
since ωH is invariant under translations and multiplications by real numbers, we obtain that ω̃ is
invariant under the action of GM . Since ω̃ is GM -invariant, it is the pullback of an (1, 1)-form ω
on TM := T̃M/GM . Clearly, ω is an exact, semipositive (1, 1)-form on TM .

Step 2. The action of the deck group on the leaves of the null foliation of ω̃. If V = Z + A,
where Z ∈ TH, A ∈ TCn and Z = X + iY , then

ω̃(V, JV ) =
i

4(Imw)2
· (−2i) dw(Z) dw̄(Z) =

2

4(Imw)2
(
|X|2 + |Y |2

)
. (4.1)

From (4.1), we obtain that any (maximal) leaf of the zero foliation of ω̃ on T̃M is isomorphic
to Cn.

Let L = {w} × Cn, for some fixed w, be such a leaf. We look at the image of the action
of GM on L and we determine its intersection with L. By the description of L, for any σ ∈ GM

such that L∩σ(L) ̸= ∅, the first coordinate of the points in L coincide with the first coordinate
of the points in σ(L). In general, σ contains all generators of GM . Its most general form is
σ = gs00 ◦ gs11 ◦ · · · ◦ gs2n+1

2n+1 , where si ∈ Z.
We show that g0 cannot appear. Indeed, the above mentioned coincidence of the first coor-

dinates translates in the following equation:

αs0w +

2n+1∑
i=1

sia
i = w,
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which is equivalent to

(αs0 − 1)w = −
2n+1∑
i=1

sia
i.

Taking imaginary parts in the equation and using the fact that w ∈ H, we necessarily obtain
that s0 = 0. We conclude that σ cannot contain the generator g0. It is then obtained only from
translations, σ = gs11 ◦ · · · ◦ gs2n+1

2n+1 , and we have

s1a
1 + · · ·+ s2n+1a

2n+1 = 0,

a linear dependence relation over Z which contradicts the hypothesis. Thus, we showed that
L ∩ σ(L) = ∅, for all σ ∈ GM .

Step 3. The zero foliation of ω on TM . Recall that ω is semipositive on TM (Step 1) and
hence its integral on any compact complex curve γ ⊂ TM is nonnegative. By Stokes theorem,
since ω is exact, this integral vanishes. Thus, ω vanishes on all closed complex curves in TM .
Equivalently, any compact complex curve in TM stays in a leaf of the zero foliation of ω.

On the other hand, since ω̃ is GM -invariant, each leaf of the zero foliation of ω on TM
is isomorphic to a component of the leaf of the zero foliation of ω̃ on T̃M . Therefore, it is
isomorphic with Cn, which does not contain any compact complex submanifold. ■

Remark 4.2. Clearly, Example 3.2 does not satisfy the condition in Theorem 4.1. At the
moment, we cannot prove that the condition is also sufficient. However, we dare to propose the
following:

Conjecture 4.3. Let TM be an Endo–Pajitnov manifold, with real eigenvalue α. Then TM
admits complex curves if and only if the components of the eigenvector a are not linearly inde-
pendent over Z.

Remark 4.4. In [4, Example 5.8], we constructed an example of a 4-dimensional Endo–Pajitnov
manifold admitting both pluriclosed and astheno-Kähler metrics. Moreover, the condition in
Theorem 4.1 is satisfied, so the manifold contains no compact complex curves.

In a manner similar to [10], we obtain a result concerning the existence of complex surfaces
in Endo–Pajitnov manifolds.

Proposition 4.5. Let TM be an Endo–Pajitnov manifold without compact complex curves.
Then TM does not contain any closed complex surfaces except Inoue surfaces.

Proof. The idea of the proof is based on a result by Brunella about classification of surfaces of
Kähler rank one.

It was shown in [5] that Endo–Pajitnov manifolds are non-Kähler. In the previous proof,
we constructed a non-trivial closed semipositive (1, 1)-form ω on TM . The restriction of ω to
any complex surface in TM yields a non-trivial closed semipositive (1, 1)-form on that surface.
Therefore, any compact complex surface in TM must have Kähler rank one.

Compact surfaces of Kähler rank 1 have been classified in [3] and [1]. They can be

1. Non-Kählerian elliptic fibrations;

2. certain Hopf surfaces, and their blow-ups;

3. Inoue surfaces, and their blow-ups.

By definition, elliptic fibrations contain curves, as do Hopf surfaces and their blow-ups.
Since TM does not contain any compact complex curves by hypothesis, it cannot contain any
surface from the above classification except for Inoue surfaces. ■



8 C. Ciulică
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