Symmetry, Integrability and Geometry: Methods and Applications SIGMA 21 (2025), 061, 32 pages

Deformation Quantization
with Separation of Variables of G 4(C)

Taika OKUDA ® and Akifumi SAKO

a) Graduate School of Science, Department of Mathematics and Science Education,
Tokyo University of Science, 1-8 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
E-mail: warriors.aboot@gmail.com
URL: https://sites.google.com/view/taiokutus/

b) Faculty of Science Division II, Department of Mathematics, Tokyo University of Science,

1-8 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
E-mail: sako@rs.tus.ac.jp
URL: https://www.rs.tus.ac.jp/sako/

Received December 10, 2024, in final form July 14, 2025; Published online July 23, 2025
https://doi.org/10.3842/SIGMA.2025.061

Abstract. We construct a deformation quantization with separation of variables of the
Grassmannian G2 4(C). A star product on G 4(C) can be explicitly determined as the solu-
tion of the recurrence relations for G2 4(C) given by Hara and one of the authors (A. Sako).
To provide the solution to the recurrence relations, it is necessary to solve a system of linear
equations in each order. However, to give a concrete expression of the general term is not
simple because the variables increase with the order of the differentiation of the star prod-
uct. For this reason, there has been no formula to express the general term of the recurrence
relations. In this paper, we overcome this problem by transforming the recurrence relations
into simpler ones. We solve the recurrence relations using creation and annihilation oper-
ators on a Fock space. From this solution, we obtain an explicit formula of a star product
with separation of variables on Gg 4(C).

Key words: noncommutative differential geometry; deformation quantization; complex
Grassmannians; Kahler manifolds; locally symmetric spaces

2020 Mathematics Subject Classification: 14M15; 32Q15; 46L87; 53D55

1 Introduction

In this paper, we construct a noncommutative complex Grassmannian Gg4(C) explicitly. In
gauge theories with background magnetic fields or in high-energy physics where gravity is quan-
tized, noncommutative manifolds or quantized spacetime appear naturally. G2 4(C) appears in
various situations in physics. As an example of the motivation for this paper, let us take the
twistor theory here.

The twistor theory proposed by Penrose was introduced in an attempt to quantize gravity
theories [41, 42, 43]. Although it does not directly correspond to the original purpose, Pen-
rose’s twistor theory is useful for constructing solutions of (anti-)self-dual Yang—Mills equations,
Einstein’s equations, etc. For example, it is known that solutions of (anti-)self-dual Yang—Mills
equations correspond to holomorphic vector bundles over the complex projective space CP3
[41, 42, 43, 65, 66]. For more detailed discussions, see [30, 66]. This correspondence is under-
stood as the twistor (Klein) correspondence G 4(C) <= Fy24(C) ™ CP3. Noncommutative
deformation of the (anti-)self-dual Yang—Mills theory is known as a successful example of non-
commutative deformations of integrable systems. See, for example, [18, 19, 35] and references
therein. It is also expected that it makes sense to construct a noncommutative deformation of
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the twistor correspondence Gg4(C) LS F124(C) I CP3, where F124(C) is the complex flag
manifold defined by Fy24(C) := {(V4,Va) | Vi C Vo C C*, dim¢ Vi = k, k = 1,2}. To achieve
this, it is essential to construct a deformation quantization of G 4(C). Noncommutative CP3
was already constructed. However, their explicit ones have not yet been determined for general
complex Grassmannians. The quantizations of CP3 and G2 4(C) may contribute not only to
the development of noncommutative twistor theory but also to the successful quantization of
gravity. For this reason, it is worth constructing noncommutative G2 4(C) explicitly in physics.
For a symplectic manifold, the quantization method called “deformation quantization” is one
of the construction methods of noncommutative differentiable manifolds. It is known as the
quantization method based on a deformation for a Poisson algebra. Two types of deformation
quantizations are known: “formal deformation quantization” proposed by Bayen et al. [1] and
“strict deformation quantization”, based on C*-algebra proposed by Rieffel [45, 46, 47]. In this
paper, we use “deformation quantization” in the sense of “formal deformation quantization”.

Definition 1.1. Let (M, {-,-}) be a Poisson manifold and C*°(M)[#] be the ring of formal
power series over C*°(M). Let * be a star product denoted by f * g = >, Cx(f, g)h* satisfying
the following conditions:

(1) For any f,g,h € C*(M)[A], f*(g*h) = (f*g)*h.
(2) For any f € C®(M)[h], fx1=1x%f = f.
(3) Each Ck(-,-) is a bidifferential operator.
(4) Colf,9) = fg, C1(f,9) — Cily, f) = {f. 9}
A pair (C*°(M)[h],*) is called “a deformation quantization” for the Poisson manifold M.

A well-known example of a star product is the Moyal product. It was constructed indepen-
dently by Groenewold [16] and Moyal [34], and is often called Groenewold-Moyal product. Since
it is a star product on R2V, it gives the noncommutative R?" as a deformation quantization.
A star product on CV, called Wick-Voros product, is also known as a star product that is
equivalent to the Moyal product [64]. For more detailed reviews of deformation quantization,
see for example [17, 33]. For any symplectic manifolds, a construction methods of deformation
quantization is given by de Wilde-Lecomte [11], Omori-Maeda—Yoshioka [40] and Fedosov [14].
More generally, a deformation quantization was constructed by Kontsevich for Poisson mani-
folds [28]. Recently, for any contact manifolds, its deformation quantization was constructed by
Elfimov—Sharapov [13].

On the other hand, construction method of a deformation quantization for any Kéhler mani-
fold was studied by Karabegov [22, 23]. Let M be an N-dimensional Ké&hler manifold and (U, ¢)
be a chart of M. For p € M, we choose ¢(p) = (z},, e ,z;l],V) as local coordinates at p € M. To
use the Kéhler potential of M, we assume that U is contractible in the following discussion. In
the following discussion, we omit p € M when denoting local coordinates of U. For the Kahler

manifold M, the Kéhler 2-form w and the Kahler metric g can be locally expressed as
w= igk[dzk A le, Il = 6k8[(1)

by using a Kéhler potential ®, where 0y := 9/02* and j := 8/82Z = 9/0%'. Note that we use
the Einstein summation convention for index £ and [ on the above. We also denote the inverse
matrix of (gg;) by (glk). Karabegov proposed a construction method of deformation quantization

for Kahler manifolds such that the following conditions, called “separation of variables”, are
satisfied [22, 23].

Definition 1.2. Let M be an N-dimensional Ké&hler manifold. A star product * on M is
“separation of variables” if the following two conditions are satisfied for any open set U C M
and f € C®(U):
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(1) For any holomorphic function @ on U, a * f = af.

(2) For any anti-holomorphic function b on U, f *b = fb.

Here we introduce two local differential operators. The differential operators D* and DF are
defined by D¥ := gkl&l, DF .= gkl 0;, where we use the Einstein summation convention for index [
and [. Note that ¢ = glk We define the set of differential operators

S = {A ‘ A=Y azD% az € COO(U)}.
B‘*

Here, D :_: (Di cee N) and E = (B1,...,0n) is a multi-index, i.e., D& is expressed as
DF" = Dl) ! (DN )5 N We also define the differential operators D% and DPn as

Dd'n — Dal DaN Docz — (Dk:)ag’

DPn — DBn — DAY ... DBY, DB — (DE)B;’;

for

&’n,gne {(’yl,...,’yN) ez

The sum &, + Em is defined in ZV as usual.

We define_ Dfn = 0 when there exists at least one negative aj ¢ Z>o for k € {1,...,N}.
Similarly, DF =0 if B* has negative components. For f € C°°(U), we can construct the left
x-multiplication operator Ly with respect to f such that Lyg := f * g. The following theorem
states that Ly is expressed by a formal power series with respect to the differential operators
inS.

Theorem 1.3 ([22, 23]). Let M be an N-dimensional Kihler manifold with the Kdhler form w.
There exists a unique star product * on M such that for any contractible open neighborhood U
on M with a Kdhler potential ® of the form w and any f € C>(U), the left x-multiplication
operator Ly satisfies the following three conditions:

(1) [Lf, Roe] = 0, where Ry.o = 0;P + ho; is the right x-multiplication operator with respect
to O;P.

(2) Lil=fx1=F.
(3) For any g,h € C*°(U), the left *-multiplication operator is associative, i.e.,

Li(Lgh) = f*(g*h) = (f*g)*h=Lrgh.

More generally, Karabegov constructed a unique separation of variables type star prod-

uct *,, for the formal deformation wp = w + hw + h%wy + --- for the Kihler form w. wy
is called a Karabegov form of ,,, denoted by kf(*.,). The formal Kéhler potential ®; is
given by ®;, = ® + h®; + h?®, + - -- using each Kihler potential ®, &1, Py,.... Conversely,

given a star product * for a Kahler manifold M and its Kahler form w, there exists a unique
Karabegov form kf(x) = wp = w + Aw; + h?wy + - -+ such that * = x,, [24]. In particular, the
star product for a Karabegov form with no higher-order form terms, i.e., w; = w, is called the
standard product. We note that the aim in our study is to give an explicit standard product for
the Kéhler form w, which contains no higher-order formal terms.

The final goal of this study is to construct a deformation quantization with separation of vari-
ables for the complex Grassmannian Gy, ,+4(C). Noncommutative complex Grassmannians have
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been studied from several viewpoints. From fuzzy physics, noncommutative Grassmannians as
fuzzy manifolds have been obtained by Dolan—-Jahn [12] and Halima—Wurzbacher [2]. From the
viewpoint of deformation quantization, Karabegov has studied deformation quantization with
separation of variables as an example for pseudo-Kéhler manifold [25]. In [25], however, in the
sense that each term of the expansion of the star product is written out explicitly, no explicit
expression is given for a star product with separation of variables for G, ,14(C). On the other
hand, it is known that there is a previous study that has obtained an explicit star product
on Gppt4¢(C) [55] using a phase space reduction proposed by Bordemann et al. [5]. As another
approach to the above background, there are known construction methods that explicitly give
a star product with separation of variables on locally symmetric Kahler manifolds. These meth-
ods were proposed by one of the authors of this paper (A. Sako), Suzuki, and Umetsu [49, 50] and
Hara and Sako [20, 21]. From these methods, explicit star products with separation of variables
on any locally symmetric Kéhler manifolds were obtained for the 1- and 2-dimensional cases |20,
21, 37, 38]. Using these construction methods, we can determine a star product with separation of
variables by solving the recurrence relations. In previous works [20, 21], the recurrence relations
for G,4(C) were obtained via the construction methods. In this work, we construct the explicit
star product with separation of variables by solving the recurrence relations given by [20, 21].

We now introduce the complex Grassmannian. The complex Grassmannian G, p,44(C) is
defined by

Gpp+q(C) := {V C CP*9 |V is p-dimensional complex vector subspace}.

In particular if p =1, G1,144(C) is complex projective space CP4. The simplest complex Grass-
mannian which is not CPY is known to be G2,4(C), i.e., p = ¢ = 2. We introduce the local coor-
dinates of G p14(C) using the following procedure [27]. Let (z!,22,...,2P"?) be a natural local
coordinate of CP™4 and S be the p-dimensional subspace of CP*4 such that z*1,..., 2% are lin-
early independent. Here 2% |g, ..., 2%?|g are the local coordinates restricted to S, and a, ..., o
are the integers such that 1 < oy < --- < a < p+ ¢q. We take the subset Uy, C Gpp44(C)
defined by

U, :={S c CP"? | dim¢c S = p, 2*'|g,...,2*?|g are linearly independent}

for the set o := {ay,...,ap}. We can take (p;q) patterns of such U,, and they give the open
coverings of Gp,44(C). In the following discussion, we consider the case o = {1,...,p}, and
denote Uy = Uy, p) simply as U.

Let us choose a local coordinate of Gyppy4(C) using U C Gppie(C) introduced above.
Let M*(p + ¢, p; C) be the set of (p+¢) x p matrices of rank p, and w: M*(p+q,p; C) = Gp p14(C)
be a smooth projection. GL,(C) acts freely and transitively on M*(p + ¢, p; C) from the right.

Therefore, M*(p + ¢, p; C) is a principal GL,(C)-bundle over G, ;14(C). We now take a set

Y;
N U) = {y: ( Ytl) ) e M*(p+4q,p;C) | Yy € GL,(C), Y7 € M(q,p;C)}
C M*(p+q,p;C).

We consider a map ¢: 7 1(U) — M(q,p;C) = C% defined by Y + ¢(Y) := YlY(f1 for Y €
7~ YU). ¢ is a GL,(C)-invariant, i.e., for any Y € 7= }(U) and A € GL,(C), ¢(Y A) = ¢(Y). By
using this ¢, we can choose Z = (zI) = (z”/) = ¢(Y) as a local coordinate of U C G, ,14(C).
A more detailed discussion of the local coordinates of G, ,14(C) is given, for example, in [27].
Here I = 4¢’ is “the capital letter index”, which consists of two indices 7 and 7’. In general,

IT=d' =11,....1p,...,q1,....qp
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fori e {1,...,q} and i’ € {1',...,p'}. For example, I =i’ = 11',12',13/,21",22',23’ for ¢ = 2,
p = 3. If p = ¢ = 2, then the other index which is not ¢ (or not ') is uniquely determined
when ¢ (or ') is fixed. We denote by { (or ) the index such that it is not ¢ (or not /). For
example, if I = 12/, then if/ = 11’, {i'’ = 22’ and / = 21’. By using this notation, we can
choose (zl) = (zl, z/, zi/{/, zﬁ/) as the local coordinates of G 4(C) up to their order. The set of
capital letter indices ({I =i’ | 1 <i < g, 1’ <4 <p'},<¢) can be identified with the set of
ordinary indices ({1,...,gp}, <) as a totally ordered set. By this identification, a capital letter
index can also be regarded as an ordinary index I = 1,...,¢gp. See Appendix A for more details.
For p = q = 2, the set Z of capital letter indices is defined by Z := {I,,if’,i'} for a fixed I.
Note that it can also be rewritten as Z = {11’,12',21’,22'}. The Kahler potential of G p44(C)
is given by ® = logdet B, where B = Id,, + Z1Z. When we express B = (lyj,), in terms of its
element each entry lyj/ is written as

il -/ ol !
by = 0,050 + 2™ 2™ :51" R L 1.1
g ) J

Since B is regular, its inverse matrix B! is given by B~! = (b’ij') = ﬁ (Ej—,i,), where B is an
adjugate matrix of B, and ( j,l/) is the transpose matrix of (B /J,) By using the above @, the
Kahler metric 91 5 can be expressed as g, 7= 81&@ Here 9; = 0; and 05 = % are defined
by 0r == 8/92' = 9/0z" and Oy :=0/0z’ = /0777, Some useful properties of Gp7p+q((C) are
summarized in Appendix A.

In order to give an explicit star product with separation of variables on G 4(C) by using
the construction method proposed by [20, 21], it is necessary to solve the recurrence relations.
However, if we attempt to solve the recurrence relations sequentially order by order, we need to
solve a system of linear equations for each order. In addition, the recurrence relations contain
variables given by the four partitions of order n. The number of variables increases combina-
torially with increasing n. Therefore, there has been no formula for the general term of the
recurrence relations. In this work, we derive a method that determines the general term of the
recurrence relations for G 4(C) without solving the system of linear equations. Furthermore,
we explicitly determine a star product with separation of variables on G 4(C). In other words,
we obtain a deformation quantization with separation of variables for G2 4(C) based on the
solution of the recurrence relations given by [20, 21]. The main theorem of this paper for an
explicit star product with separation of variables on G 4(C) is as follows.

Theorem 1.4 (main result). For f,g € C*°(G24(C)), a star product with separation of variables
on G24(C) is given by

o0 2 nog—; T ANPIR
f*g: Z Z Z (H k33,1 l;—{l‘]} {ki} ) (H HQ(stJm7km>>

n=0 J;e{J;}n hki=1 \i=1 SeZr=1 \m=1
YE{Y}n k E{k }"

X (D%em=1%m f)(DXxez Lm=r xim b x g) (1.2)

where

7105,k + 1+ anzl dmvju’{/,t]mkm
U +1) +2{3 1 (615, + 5¢¢',Jm)}{25n:1(5/Jm + 5¢¢/,Jm)}’
A8,k 7= 08,0 + 05010, (08,007 = 054, j1)

foglv”’ =L...,nn:=1- l+h D el itn = 2T Do eTr 2aYie{Yikn = DoViET T 2aYieTs
fie1 Zkl = Zk _1, and 0: R — {0,1} is the step function defined by

1 >0
O(z) =< r=b
0, x<0.

Yo (gin dkitn =
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It may appear that Y; (71, (x,), depends on the capital letter index I € Z. Note, however,
that in fact, it does not depend on the choice of I € Z. Proposition B.1 stated in Appendix B
guarantees this I-independence. From this fact, the star product (1.2) is the expression which
is independent of I € Z.

This paper is organized mainly into four sections and three appendices. In Section 2, we re-
view the previous works by [20, 21] related to a deformation quantization with separation of
variables for a locally symmetric Kéhler manifold. In Section 3, we give the solvable recur-
rence relations which gives a star product with separation of variables for general Gy 4(C).
We focus on the simplest complex Grassmannian Gg4(C) which is not CPY. We give the
solution of the recurrence relations for G 4(C) by using a linear operator on a Fock space.
Furthermore, we construct an explicit star product with separation of variables on Gg4(C)
from the solution. In Section 4, we concretely give the explicit lower-order solutions of the
recurrence relations for confirmation. In Section 5, we summarize our work. In addition, we
present a future work for noncommutative deformation of twistor correspondence using an ex-
plicit star product on G24(C). In Appendix A, we summarize useful properties of Gy p14(C).
In Appendix B, we denote a property of symmetric functions whose variables are capital let-
ter indices. By using this property, we state that some functions and operators appearing in
this paper do not depend on the choice of a capital letter index I. Finally, we show that
the obtained star product on G 4(C) is the expression which is independent of I. In Ap-
pendix C, we show that the explicit form of solutions is actually recovered from a linear oper-
ator.

2 Construction method of deformation quantization
for locally symmetric Kahler manifolds

A general definition of quantization was first proposed by Berezin [3, 4]. In particular, Berezin
also constructed the quantization of Kahler manifolds in the case of phase space by using sym-
bol algebras. Bordemann et al. also studied the quantization of Kéhler manifolds via Toeplitz
quantization [6]. For the case of compact K&hler manifolds, its Berezin—Toeplitz quantization
was studied by Karabegov and Schlichenmaier [26, 56, 57, 58, 59, 60]. See the review [61, 62]
summarized by Schlichenmaier for their previous works related to Berezin—Toeplitz quanti-
zation of compact Kéhler manifolds. From other perspectives of deformation quantization,
deformation quantizations for Kéhler manifolds were provided by Moreno [31, 32], Omori-
Maeda—Miyazaki-Yoshioka [39] and Reshetikhin-Takhtajan [44]. It is also known that the
relations between Berezin quantization and deformation quantization were studied by Cahen—
Gutt—Rawnsley [7, 8, 9, 10]. As a different approach to Moreno, Omori-Maeda—Miyazaki—
Yoshioka and Reshetikhin—Takhtajan, a deformation quantization with separation of variables
for Kéhler manifolds was proposed by Karabegov [22, 23]. The formula for Karabegov’s defor-
mation quantization given by interpreting the graph as a bidifferential operator was proposed
by Gammelgaard [15]. After that, a deformation quantization with separation of variables for
locally symmetric Kéhler manifolds was studied by one of the authors of this paper (A. Sako),
Suzuki, and Umetsu [49, 50] and Hara and Sako [20, 21], inspired by the construction method by
Karabegov. Deformation quantization of Kéhler manifolds is applied for modern physics. Using
Karabegov’s deformation quantization, Fock representations on noncommutative Kahler mani-
folds constructed by Sako, Suzuki and Umetsu as a recipe to construct gauge theories on non-
commutative Ké&hler manifolds [49, 50, 52, 53, 54]. For the case of complex Grassmannians, their
Fock representations are studied by authors [36]. Gauge theories on noncommutative Kéhler
manifolds were studied by Maeda, Sako, Suzuki and Umetsu [29, 48]. In particular, for CPY,
Sako, Suzuki and Umetsu analyzed exact solutions corresponding to Bogomol’'ny equation [51].
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As an application to solitons, scalar noncommutative multi-solitons in noncommutative scalar
field theory on Kéhler manifolds were constructed and analyzed their stability conditions for
homogeneous ones by Spradlin—Volovich [63].

In this section, we review the construction method of a deformation quantization with sepa-
ration of variables for locally symmetric Kéhler manifolds proposed by Hara and Sako [20, 21].
A Kahler manifold M is “locally symmetric” if its Riemann curvature tensor satisfies Vy, R4 Bc?
=0 for A,B,C,D,FE € {1, ..,N,1,... ,W}. In this paper, we define the Riemann curvature
tensor RY : I'(TM) x T(TM) x I'(TM) — I'(TM) on M for vector fields X,Y € I'(TM) by

RY(X,Y):=VxVy — VyVx — Vixy].

We denote the component of RV by RV(QA, Op)0c = RupcP0p as a local expression. Here,
we note that the notation R4pc” used in this paper can be expressed by the relation Rypc? =
RL oup using the notation

RY(D4,08)0c = RPcapdp (2.1)

by Kobayashi-Nomizu [27]. Note that Rupc? = —Rapc?

Let M be an N-dimensional locally symmetric Kéhler manifold, and (U, ¢) be a chart of M.
We now assume the following form for a star product with separation of variables on M for
any f,g € C*(U):

frog=Lrgi=Y > T2 5 (D™ f)(D%g). (2.2)

n=0g, Gx

Here, recalling that D%, DB are differential operators defined by
D&” = DY ... DO‘R;7 D% — (Dk)a;;’
D DBn — DA ... DBx, DBE .— (DE)ﬁ,?’

) }

k=1

0_2717/8716 {(’Y{Lav N EZN

respectively. Note that f is included in the coefficient Tﬂ for n > 1. The coeflicients Tﬂ w2
can be assumed to be Covarlantly constants by usmg the flact that M is a locally symmetrlc
space. Here, we define 17, g =0 when @, ¢ Z%, or B ¢ Z>0 For n = 0,1, it is known

that the coefficient T 2 are expllcltly given as follows.

Proposition 2.1 ([20, 21]). For a star product with separation of variables * on U,

0 1
Tsg- =1, e = M9 (2.3)
where €; = (014, .-, 0N;)-

Proposition 2.1 states that the coefficients for n = 0,1 are completely determined for any
N-dimensional locally symmetric Kahler manifold. In particular, the fact “Tg G = 1”7 plays the
role of the initial condition for the recurrence relations which gives the star product to be shown
later. The following theorem proposed by [20, 21] describes the existence of a star product with
separation of variables such that it is given by (2.2).
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Theorem 2.2 ([20, 21]). Let M be an N-dimensional locally symmetric Kdhler manifold.
For f,g € C*°(M), there exists locally a star product with separation of variables * such that

TL T'L n
=1
N—-1N—k N
T Z h(Bg — 5kﬂ ik + 1)(5k+z 5k+l,p — ikt +1)
k=1 1=1 p=1
k+1km
R R (24)

Here (Z) 18 a binomial coefficient.

Note that these recurrence relations in Theorem 2.2 are equivalent to the [49, equations (6.9)].
To obtain an explicit star product with separation of variables on any N-dimensional locally sym-
metric Kahler manifold, we have to solve the recurrence relations in Theorem 2.2 with the initial
condition T9 =1 (in (2.3) in Proposition 2.1). However, to determine the general term Ty Fn
satisfying thls system of recurrence relations is not easy, except for the one-dimensional Chsé.
For arbitrary N-dimensional locally symmetric Kahler manifold, explicit formulae have been
obtained by Hara and Sako [20, 21] for N = 1 and the authors of this paper [37, 38] for N = 2.

3 Deformation quantization with separation of variables

fOI‘ G2’4((C)

In Section 3.1, we give the recurrence relations for general Gj,14(C) by using the recurrence
relations (2.4) given in [20, 21]. We also focus on the case of G2 4(C) in Sections 3.2 and 3.3. In
Section 3.2, we give another recurrence relations to solve more easily. Finally, we determine a star
product with separation of variables for G 4(C) based on the general term of the recurrence
relations obtained in Section 3.3.

3.1 Recurrence relations for G, ,14(C)

For G p+4(C), we obtain the recurrence relations that give a star product from Theorem 2.2.

Theorem 3.1. The recurrence relations which give a star product with separation of variables
on Gp p+q(C) are given by

hzgmg L e w—ﬁf{wh ﬁ(ﬂﬂrZﬁ +Y 85, )} s

J'# J#i
n n
By Bl A DB VTG G o (3.1)
JFi R
j/;éi/

where I =4i', J = jj' and D = dd’ are capital letter indices.
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Proof. It is sufficient to calculate the right-hand side of (2.4). By Proposition A.4, we have
RMKKT = _%WK‘SWF’ where 077 = 07 550 1= 04;045:. Therefore, the second term on the
right-hand side of (2.4) is modified to

qp qp
67[1_5KM_5[K+2 KK n
3 o L

BT — 5KM Orx +2 n
=—2h Z Z ( 577“/ K(Slm' FTozn,,B 7€]M+26K eI (32)
K=1M=1

Let us introduce 1 as a one-to-one correspondence between two sets, the set of pairs (i,i’) with
1<i<qgand1<1i <p, and the set of positive integers less than or equal to pg by

O {I =it = (i) |1<i<q 1< <p'}
%{1""7p7p+17""2p7"'7(q_1)p+17"'7qp}’
I=di' — () :=p(i—1) + iy,
where i’y is a natural number that is mapped to ¢ in a natural way. For example, if i/ = 3/,
then i’y = 3'y = 3. See also Appendix A. Therefore, we regard K and M as ordinary ordered

indices by such an identification, respectively. In addition, note that summation, addition K + L,
and Kronecker’s delta in (3.2) are defined by

Z Z Y(K + L) = (K)+ (L), SR M = Oy(K) (M)

P(K)=1

respectively. Since d— =d0-— x=1ifand only if K = M =1, (3.2) is expressed as

mi/ K “im
(3.2) = =hp1 (6] = VT 5. (3.3)

We next calculate for the third term on the right-hand side of (2.4). Since the curvature

_KK+L_ _ _s s e s s ;
is Ryy 7= 6im,7K(5mi,7K+L 5im,7K+L6mi,7K from Proposition A.4, the third term can be

rewritten as

gp—1gp—K gqp

YD Y Bk —drm — Ok + V(B — drvra — S krr +1)
K=1 L=1 M=1
KK+L qm
X R=+ =TT
M I anﬁfz_éﬁzkw"‘éw[(""é}k@rL_éﬁ;
gp—1qp—K qp

=—h Z Z Z (B — 0xm — 01 + 1)(Bryp —0xyr,m — 01,40 + 1)
K=1 =1 M=1

X (07— =0—=

im/, K T i0mi )Tn (34)

mi' , K+L + 6zm’ JK+L"mi' K Bn & ek 4o

—eyteg e, L~ e’

where Y 97 X is defined by > K Z?f L;Z} i() To transform (3.4) in more detail, we divide

the summatlon >-M_, into the followmg four cases:

(I M =1, ) M =45, j#7,

(D) M =ji'j #i, (V) M=J=jj, j#i j#i.
Based on the above four cases, (3.4) can be rewritten as

(BA) =71+ > v+ > v + D W

JI# J#i A
j/#i/
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where
gp—1gp—K
yr==2hy Y (B —20mk +1)(Bcyr — 20rk+1 + 1)o7 07 werr
K=1 L=1
n
X T@naﬁn_2el+6K+eK+L
gp—1gp—K
Yoy = =h > > (B = Okay — 1k + 1) (Bfsr, — Sk rLiy — Orker + 1)
K=1 L=1
X (617?511’ K+L + 51]’ K"‘L(S“/ K) an, B —e; /+6K+8K+L e’
gp—1gp—K
Vi = =0 > > (B = Ok g — 61 + D) (Biyp — Oktrjir — Ork4L + 1)
K=1 L=1
mn
* (07 7057w+ + 0w kv 07 ®) T, g &t ey L€
gp—1gp—K
J==h Z Z (B — 0k — 61k + 1)(Bgyp — Ok, — Or,k+1 + 1)
K=1 L=1
R W mn
X ((5ij/,K5ji,,K+L + (5”/ K+L(5]z/ K)Tan76n 5J+5K+6K+L eI
respectively.

(I) M = I: In this case, 67 507 777 = 057 7057 z7r 1S equal to 0 since K # K + L always
holds. Hemce7 fy[ =0 when M = 1.
(II) M = ij (j # 1'): Since ;jr is expressed as a summation over K = kk', v, is written

as i = EK 1 'yw, > where

@p—K
Vi = —h Y (Bf = 0wy — b1k + 1) (Bfeyp = Ox4 15 — Oricr +1)
L=1
X (07 7207 o7 + O 7077 T" . . 3.5
( iy’ K i, K+L i/, K+L" 11 K> 5n ij/+eK+6K+L_eI ( )
If k # i, then ’Yz/'j',K =0 from 07 = 51.7.,7? = 0. Thus we consider the case k = i as a non-zero
contribution.

e e
For K = I =i’ 075 707 131 + 03 1720771 = O3 1L

L =ij’ — I. Therefore, if K = I with j/ # i, then

from 6II+L =0, and 6—

FITL = = 1 when

Vi = — BT = 15 — 011 + 1) (BT yijr—1 — Or4ijr—1i5 — Or,14i5—1 + 1)
X (6m5771+l.7,_]+6U7/7]+Z],_]5ﬁ)Tn 5*—6 /+€I+ il T
ij
= — WP BLTY

For the other cases, ie., K = ij'(j' # ), (07 g07 mz + 07, K+L5“/ %) in (3.5) becomes

5772-7,(577m+5i7,7m(577i] 51 1L since &0+ = = 0, and 0= = 1 when L = [ — Zj

Therefore, if K =ij’ (j' # '), then we have

1,35 1ij'+L

/ n n
Yijrijr = —Bis — Gijrijr — 014 + 1) (Bijrr—ijr — Oijrr1—ijrijr — Orijre1—ijr + 1)

mn
x (5ij’ia 07 =iy T 513 "ig'+1—ig’ 51@1 )Tan,ﬁ*fe e e €7

ig! +I1—ig! €I
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Note that (L) is positive and j’ (# i) is fixed, L can take either I —ij’ or ij’ — I depending
on j. In fact, if 5/ > 4/, L cannot take I — ij’ because ¢ (I) — ¢(ij") < 0. Conversely, if j" < ¢/,
it can be verified that L cannot take 75’ — I. Therefore,

K

for any j'(# i'). In a similar way, the cases (III) and (IV) are also calculated, and it can be
verified that

’in/ = —hﬁ? ‘;’L,L/T(;_:L —'* for ] # 'L.7 (37)
v = —h(B + 1) (B} +1)T’} Froeie he e, for j#i, j #4. (3.8)

Substituting v7 = 0 and (3.6)—(3.8) into (3.4), we obtain

(B4 =D (36)+> BD+D > (38)

5/ ji i §A
SRl OO
j'# i
n n
N hz Z + D) (G + 1)T~ n By € e, e, (3.9)
J#i A moY

Hence, the right-hand side of (2.4) for G} +4(C) is obtained as follows:

BITE 5 +(33) +(3.9)

=BTy 5 - hﬁz(ﬁl—l)*ﬁ*_hﬁ?<zﬁ" +2 5 >ﬂ5*

J'# J#
EOIPCIRSIC R A
i1 3
=ar{en- h(mz )
JF# J#i
_hz Z o+ 1)(8% +1)Tnn,,8*—é}*—e e (3.10)
J#L g F
This means that we obtain (3.1). [

Recalling that a capital letter index can be identified with an ordinary index, (3.1) can be
rewritten as

hz Z 91D (Z—leD ,3*—6

d=1d'=1'
_ n
_51{1+h—h( > 5 >} L
g7
j/¢i/
TL n n
— B> (B + 1B + 1)Tamﬁ*_eﬁé?jl+€;i/_é?. (3.11)
J#i
31!

Here, we use the fact that g7 + Ej,#/ ﬁ?j, + Z#i B]T»LZ-/ + Z#i Zj,#/ 5;}]»/ = n, since ‘B:ﬂ =
Yok Bl ="k >k B = m in the first term on the right-hand side of (3.10).
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3.2 Star product with separation of variables on G2 4(C)

If the solution of the recurrence relations for (3.1) (or equivalently (3.11)) is determined, we
can explicitly give a star product with separation of variables on G) +4(C). However, it is
not simple to solve (3.1) (or equivalently (3.11)) in general. We need to solve the system of
linear equations for solutions of order n to determine T” -, even if solutions of order (n — 1)
are given. In addition, the number of variables in this' system of linear equations increases
combinatorially with increasing n. In this subsection, we focus on G 4(C) and give the general
term of the recurrence relations (3.1) for G2 4(C) by eliminating these problems. By using the
general terms, we give its explicit star product with separation of variables.

For G24(C), its recurrence relations can be obtained immediately by considering the case

p=q=2.

Corollary 3.2. For any (fized) capital letter index I € I, the recurrence relations for G 4(C)
are given by

9Ty s
DeT
_hBI(Tn+B/) nﬁ* _h( Z’;/_Fl)(ﬂ;[ +1)Tnnﬁ*_é»*+é** k%)

1,2 (3.12)

where 7, == 1—n+ 3, T:={I,1,if ,{i'} = {11',12/,21',22'}.

It is not a waste to note the notation of capital letter indices again. In G2 4(C) case, { (or {')
is the other index which is not ¢ (or not ). { (or {') is uniquely determined when i (or i) is
fixed. For example, if I = 11/, then if/ = 12/, {i’ = 21, and [/ = 22'. I = ii’ may take 12/, 21
and 22" as well as 11’.

To determine the explicit star product on G2 4(C), it is necessary to find the general term
T zn - as the solution of the recurrence relations (3.12). It is not easy to find the solution 7", w2

(3 12 ) by direct calculation, because (3.12) contains another coefficient

" -
&nyﬁ?z*é?+ejt//+€;z/*€;
on the right-hand side. On the other hand, by introducing another recurrence relation for

G i +6./, +67 5}, we can obtain the recurrence relations equivalent to (3.12).

Proposition 3.3. The recurrence relations (3.12) are equivalent to the following recurrence
relations:

Y per{ (T + 5;;, + )gIDTn 16D7g*_€7
ol + B + B + 1)
> pez X1 (Tadik + B + Dgrz DTZ ' ( . )
'L//

,eD“B 76 _
I /k
B Tn(Tn + /3/7 + ﬂ;“;, +1) (3.13)

(ﬂ%‘i‘l)l Tt w—*éwl}

i'\D ap— eD,,B;‘L—eI—ef—i-

n mn _
51Tan,ﬁ*;; -

Proof. To derive (3.13) from (3.12), we introduce another recurrence relation for a fixed index /i’
as [ in (3.12)

hzg/z’D Qi — eD,Bn—e

Dez fir

= 18, (7 + B)TE 5 — BB} + (BF + DT, (3.1
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By considering the case of T" as the coefficient 7" _ in (3.14), we have
an,ﬁn—e +é’*//+é?_l—é’; Gn,B;
hDZe:ngz’D an—€p, B*felfé?+€f//
_ n n m nm
= h(,@’/i, +1)(mn + ﬂﬂ' +1)T7 N 1//“71-/767 hB/,B T" o (3.15)
We now consider the system of linear equations for (3.12) and (3.15)
n—1
" > Dez gIDT1 —ep. B
n
2pet g%z' D dn—ép.B; ey,
nrn
ot B (B + ) oIt
(3.16)
B/ Tn + 5;;, +1 (ﬁ}/ nTY

Ocn»ﬁ* _é’;‘f’-}*}[ +€/le é;

Calculating the determinant of the coefficient matrix, we have

det( 5// Tn—i—é’z,-l-l) (Tn+ﬂ/+5% 1).

Since
B h h
_1—h(n—1)'1—h(n—5;—,3;,—1)

7o (T + 87+ Bl + )7

=1 fj (n =D (n— B} = By — "R,

k,m=0

then 7,1 (7, + 8% + 8% + 1)~! exists. Thus, there is the inverse matrix
7

™t 5 gL+ n o+ B 1 B+
( Tn+é%+1> 7o (Tt 87 + By +1)7 ( 4 >.(3.17)

Tn + 6/
Multiplying the both sides of (3.16) by (3.17) from the left, we get the solution of (3.16)
7L n
i,
_|_1Tn s (Tn+/8/+/8/ )~

G F—E 4+ =)

> pert(mn + 52(, + 1)£FDTn '

) —&p.B; —e}
n n—
X +(BZ¢/ - 1)%,DT& eD,,B*—eI—é?-i- % } . (318)
T 1 n—1
ZDGI{IB/QI &n—p,Br—2 T (Tn+ﬂ/)9¢fDTa —&p, By —&;— }

T
By focusing on the first component of both sides of (3.18), we obtain (3.13).

Conversely, we show that (3.12) is derived from (3.13)

. We introduce another recurrence
relation for 4’ as I in (3.13)

BZ'Tgnﬁz
ZDGI{ (Tn+ﬁ}}+1)gﬁyDTg 13D Bn_e% . (ﬁ/[ +1) Tg ) 7Bn_e/ /_éj//+é;‘}
= (T + By + B+ 1) - 1)
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Considering the case where 5* is 6* —ée;+ é*%, + é;kz, é; as T ~ in (3.19), it satisfies the

Qn 76n
recurrence relation

(5/1 ) an,ﬁn—el+e%+e% - f »
ZDEI{ Tn +B/ / ,D a —eD,ﬁ;;—é‘*+e/ —e +B/¢ an 5 —é”;}
3.20
Tn (10 + BY -l-B.n,-f-l) ( )
7+ 0y
Substituting (3.13) and (3.20) into the right hand side of (3.12), we have
h’BI (Tn + B/) 5 ﬁ* - h’( i%l + 1)(5;[ + 1)Tan ﬂn_e]-"_e% _;'_e% é’;
n—1
= ht, (Tn‘i‘ﬁ/“‘/@% 1)~ Z [(Tn‘f‘ﬁ/){(Tn‘i‘Bi%/ )QIDT A s
Del
n—1
+ (5 i T Vg I, DTan—eD 5*_61_ef+é://}
(AN . n—1 ™ 1
(52‘/' +D{(m + B/)gﬁ/DTan—eD,E;—e*He*j/ =& * B/gm ay —e“Dﬁ;i—?}‘}]
n—1
=h Z grDToa —€p B*—eI
DeTl
This is the left-hand side of (3.12). n

By using Proposition 3.3, we obtain the following.

Proposition 3.4. For n > 1, the coefficient T" Fe of (2.2) for G24(C) is given by using the
coefficients of order (n — 1) as follows: e

(5Jf+1)gj7DT - e )

n—1
2.pet T’“LB/H)QJDT —&p,fr— W€D, ﬁn—eJ—e/JreJ/

Tn — )
G 7o {n(m +1) + 2(61 +B1,)(87 +6;;,>}
ZJDEIZk 1 (7 Jk+'8nj + 1)QHDT; 1eD,5" —8,, (&%~ }

mo{n(m + 1) +2(87 + B},) (57 + B;;,)} : (3.21)

That is, T” B given by (3.21) gives a star product with separation of variables on G2 4(C).

Hn

Proof. First, we derive (3.21) from (3.13) in Proposition 3.3. Multiplying both sides of (3.13)
by 7, + ﬁ; + B;;, + 1, we have

1 (Tn+ﬁ/+ﬁ7}+ DT 5
,122% i+ B+ Do p oI Fr_ @) (3.22)
DeT k=1 - /’Cf

Summing for I on both sides of (3.22), we obtain

n

D81+ B} + By, + DT7

IeT

DY Z ik + B+ Vo nTy o 5 oy ooy (3.23)

1,D€eT k=1 ~O4 ‘/ Z//
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Here, we use the following identities:

D B3+ By + By +1) = nlr +1) + 2081y + B50) (B3 + Biy)

JeT
=n(ra +1) + 2067 + B, ) (87 + 5). (3.24)
Note that

(B + B (B) + B1)) = (Bis + B31) (B + Bly)

does not depend on how we choose fixed I from Z = {11,12/,21’,22'}. See Appendix B for more
details. Substituting (3.24) into (3.23), (3.23) can be rewritten as (3.21).

According to the construction method proposed by [20 21] (or equivalently [49, 50]), there is
the solution T, g of (3.12). Furthermore, the solution 77 g of (3.12) is determined by (3.13),
which are equlvalent to (3.12) in Proposition 3.3. The equlvalence of (3.21) with (3.13) in Propo-
sition 3.3 is not clear for the moment. In other words, it is not clear whether the solution of (3.21)
is Tﬂ 3. of the star product with separatlon of variables. However, (3.21) are derived from (3.12)
in Proposmon 3.3, so the general term T B satisfying (3.12) satisfies (3.21). On the other
hand, (3.21) states that if the coefficients of order (n — 1) are given, then the coefficient 77, w2
can be completely determined. In fact, since To g+ is given by (2.3) in Proposition 2.1, T# 3. can
be determined by solving (3.21) sequentlally from the n = 1 case. By applying (3. 21) sequen—
tially, the solution of (3.21), i.e., T T, is explicitly and unlquely determined. Hence, T T, G
obtained as the solution of (3. 21) is also the solution of (3.12), i.e., it gives a star product With
separation of variables. |

3.3 Solution of the recurrence relations for G2 4(C)

We give the explicit expression of T i, Gr 2 the solution of (3.12) in this subsection. T B
corresponds well to a Fock space representatlon since T o G = =0 when &, and B* contaln
negative components, and the possible &, and 6* increase 1nﬁn1tely with increasing order n. To
carry out the calculations more simply, let us introduce a linear operator T}, realizing 1"~ G Fr B9
the Fock space representation.

First, we also denote &, by

aly, = afer + a;%?/ + oz:;,éi%, + ozz.,éﬁ,.

To define a linear operator T}, let us construct the Fock space. We introduce the vector space V'
over C by using the basis ‘ﬁi> = ’ZEI myéy)

V.= {Zcm]ﬁi> cm € (C},

where my € Zso and Z := {I,1,if',{i'}. |m) is called “ket” (of V). In particular, the ket
whose each m is 0 is called “vacuum” and denoted by |6> Here, we introduce the creation and
annihilation operators. For any capital letter index I, the creation and annihilation operators a;
and a} are defined as linear operators on V satisfying the following relations:

ar|m) = /mg|m — ), ar|0) = 0, al|m) = vmr + 1| + &7).

By using the above ay and a}, a number operator is defined by Ny := a}a]. Ny plays the role of
multiplying by the I-th component of |m) , i.e., Ny|m) = m|m). By definition of ay, aJ} and N,
the following relations:

[afvaJ] = Oa [a;aa(]} - O [alaa-l:]] = 6[]7

lar, Nj| = d15a5 = d15071, [a}, Ny| = —51Ja3 = —dryal, [N1,Ns] =0,
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holds between them for any ket |/7) and any capital letter indices I, J. For a ket |m) such

1
that m; > 0, the operator U, can be defined by
1 1

i) = ).

E

We next consider the dual vector space V* of V. We denote the dual basis of V* by (7|. (7]
satisfies (7|m) := 05 5. (71| is called “bra”. By taking the Hermitian conjugate of (7|, a bra (7|
becomes a ket |71), i.e., |i7) = ((7i])T. Let us now consider an operator a[ﬁ. Note that since

ar

e = (i)
mlar—— m
v Ny VN
for any bra (m|, aj—= F can always be defined for any ket |77) if there exists a bra (| on the
left. For such an operator aj—— F the following commutation relations hold

1
:||7’?L>:0, m[amJ>51J7

1
|:Cl] /7NI y AJ N]

1,1 3 A
b :07 >O7 b
[‘”m “ NJ—l—J ) m TN Y YN, 1

Moreover, let f (]\7 ) be an arbitrary operator that depends on N , where N is defined by

I171) = 0.

N = Nfé} +N/é:/+ Nﬂlé;%/ +N%z’é;{7,’

Then, f (N ) holds the following relations:

f(ﬁ)a;\/%lrﬁ) = aI\/%f(N —ér)|m),  my >0, (3.25)
f(N)a}NjH|m> _ a}\/ﬁf(ﬁ+éf)|m>. (3.26)

Note that for any m = mjér + m/é'/ + mi%,éi%, + m/i,é;l.,, ay|m) can also be expressed as
QJ‘ﬁl)ZQ/mJ’m—é:]>: <H9(mL—5LJ)>\/mJ\ﬁ”Z—é’J>, JeT, (327)
LeT
where 6: R — {0,1} is the step function such that

0(x) := {1’ 220,

0, z<0.

The above expression using the step function 6 is used in calculations in Appendix C.
We are now ready to define a linear operator T,,. We define a linear operator T}, on V by

Too= Y T2 5160 (Bl (3.28)
Gn\ B

Tgn g+ is a matrix representation of T}, using a Fock space V. Ty = |0Y(0| is given from (2.3)
in Proposition 2.1. By Proposition 3.4, T;, can be expressed by using a linear operator 7,1 of
order (n — 1) as follows:

1
L= Y a1,
J,DET Np +1
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x da;— (T + Njp + 1)g5p + agajal Nip 1
J Tn i 7 J
VN, i P Al \/N NNy +1) 5o
X T {4 1) + 2(N7 + Njy ) (N + Ny )} (3.29)

By applying (3.29) (n — 1) times, the following theorem is obtained.

Theorem 3.5. A linear operator T, is explicitly given by

2

g § 1
T, = . T - T B . B ks
! J’LG{Jz}n \/ﬁ Dl ND1 + 1 021, J1,k1 n,Jn,k

where Ty = |0)(0],

B 1 1 T 1 6%kl (6 4 1) Ik’ Dy
=a a al . 710
lleykl Jl m }]l/\/]vi)]l/ Jl){/ le%/ + 1 l ]lkl ’}{ l
—1
x {Um + 1)+ 2(N7 + Njy) ) (N7 + Ny ) }
forl=1,...,n, and summations ) j.c¢s,), and 22 k=1 are defined as
D;e{Di}n ki€{ki}n
2 2 2
Jie{J; }n J1EL Jn€Z D1€T DneI k;=1 k1=1 kn=1

Dle{DZ}n kle{k‘z}n

respectively.
Note that

1

aya al =a L a L al L
S \/NJN/(ij/+1) VN, J\/Nij /Ny +1

for any J € Z, since jj' # J(= jj'), 4 # J(= jj'), and jj’ # J. By using the relations (3.25)
and (3.26), we obtain

6Mkl+1
(10,5, + Nj]]-{/ + 1)ajl+1 71 a%il a}l G !
- \V4 NJ[+1 A /N% . ! V le+1M + 1
1 1 1 B

— aJZHTJHl a%\/@ajlﬂw \/W
X M8k, + Nygpr =05, 50 100+ Oty Ot ger = Ot i) 105
and
{U(m +1) + 2(Ny + Njp ) (N + Ny ag,,,
1 1 1 EA

X———=|ay ————a; .
Vi Tt ﬁNM i1 it /Niogeet T 1
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1 1 Al
—AQ

1
_ T
l+11/NJl+1 JiT NM Jir 11 ‘/le+1M+1
X [l(Tl + 1) + Q{N] + N/i’ - ((5[Jl+1 + 5/1",Jz+1)}
-1
X {N/—I— Nd' — (5/Jl+1 + 62'%’,Jz+1)}]

Here we use
6Jz+1[ + 5%"31-&-1 (5J I~ 5jl+1MvI) + 5Jl+17ﬁl T 5Mkl+1 (5%/i/ B 5jl+1Mv?'(i')
= 6Jl+11 + 5Jl+1,%i”
6Jl+1/ etk (6%/ - 511+1M7/) + 5Jl+1,i%' + Oty (5%2'// B 5jz+1M7i?f')
- 5JL+1/ + 5Jl+17i/’

implied from the following identities

Qg F O gt fit = Odnsiet ™ Oy fr = O
5%,/ H0tit ~ gt~ et = O
Thus, Bi j, k, -+ Bn,J, k. can be rewritten as

_ Jk151",D1
BLJLkI T Bny']'nvk;n -

.. g‘knjn/’Dn A
J1,k1
7‘1 PEEEEY Tn

“ Cn Uy kit LT ki e F i (ki b

e AJn7k7Lcl7{Ji}n7{ki}n

Here Aj, ks Ciivn, tkite @04 F (53, (ki) are defined as

1 1 1 s
AJl,k‘l =ay a‘)}{ N a;l’j{/ N 1 )
VN, VVx \/ g +
Cotgindbitn = MGk + Ny s = Ay jij0 (53, iy + 1)
Frgaipmthitn = {0+ 1)+ 2(Nr + Npy = By gy 50 YN+ N = Dy 0 03

where
n l n
A1LS (T n (hidn = Z dS, o m — Z ds, Jp km = Z dS, T o s (3.30)
m=1 m=1 m=Il+1
dS’Jm7km = 5S7Jm + 5%1%1 (55% — 6S,jm}4’)7 (3.31)
n l n
AI,ﬁ/,l,{Ji}n = Z Or, + %'/Jm) - Z(5IJm + %’/,Jm) = Z (01, + %’/,Jm)’ (3.32)
m=1 m=1 m=I+1
n l n
Apipaan = 22 G+ 0y 0,0 = DOy, F0y 5 )= D gy 40y ,)  (333)
m=1 m=1 m=Il+1

forl=1,...,n, S €L, {Ji}n :={J1,...,Jn} and {ki}, := {k1,...,kn}. Note that F; (71, tk:}.
does not depend on the fixed index I because of Proposition B.2. Hence, we obtain the explicit
expression for T}, as the solution of Proposition 3.4.
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Theorem 3.6. A linear operator T, is explicitly given by

1
I = (S SN S S
n JE{ZJ@}” k:z_l "VNp,+1  P'\/Np, +1

D;e{D;}n ki G{k In

97
X Ag ks Ak H < k”;_l’Dl ClLi Ty n Tks b F LT b (i }n) (3.34)
=1

-,

where Ty = [0)(0].

The coefficient T" G is recovered from (3.28) as

nsPn

T7 = (@lTl ). (3.35)
By Theorem 3.6, we can explicitly give T " e
Theorem 3.7. The coefficient T” F which determines a star product with separation of vari-
ables on G,4(C) is given by "

Tn == E E 50—2 Z” e 5“* n d e
an’ﬁn n:2 m=1%Dm Bn:ZXGI Zm:l X, Jm km€Xx
D G{D }n k; E{k }n

(H 11 <ﬁs— > ds m)) (Hg’“ZD>

SeZr=1 =1

) H najlkl 8050 1= Nt e (3.36)
I + 1) +2 |

(/8? + 52, - A[Jiql,{Ji}n)(B; + /817;, - A/,if/,l,{Ji}n) } .

See Appendix C for detailed calculations to obtain Theorem 3.7. Note that (3.36) does not
depend on the capital letter index 1.

Now that we are ready, let us begin the proof of the main theorem, Theorem 1.4. Substituting
(3.36) into (2.2), we can obtain the explicit star product with separation of variables on G2 4(C).
Recalling that the right-hand side of (3.36) includes Kronecker’s delta

0~

n -
Qn 72’)‘)1:1 eD’"L

and 0z

6:1,72PEI Z?n:l dX,mekm%( ’
then @,, and 3 that contribute to > g, 5. in (2.2) as non-zero are as follows:

n

n
— _’* —>k
= z eDm’ BTL = z : Z : dX7J77L7kmeX'

m=1 XeIm=1

QL
3

In more detail, components of 5_;’; are also rewritten as follows:

n n n
B? = Z dI,Jm,km7 B;L = Z d/,Jm,km’ /317}/ = Z di%’,Jm,km’
m=1 m=1 m=1

*BZ/ - Z Dt g e (3.37)
m=1

respectively. From (3.30) and (3.37), then we have

!
BZ;‘{’ N Al»jl}l/lv{Ji}ny{k‘i}n - Z djlj/’,Jm,km'
m=1
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From (3.31), (3.32), (3.37), and using 67z — (5ijw + 5#./%— 6#, Sl = 0,

(ﬁ? + B’Z/ - A]7/i/7l,{Ji}n)(ﬁ; + /8:;/ - A/,i;[’,l,{Ji}n)
l l
m=1 m=1

for {=1,...,n. In this case, the step function 6(8% — """ _ dg J,. k) in (3.36) can be rewrit-
ten as

n r—1
0 (5@ -> ds,Jm,km> =0 (Z ds,Jm,km>
m=r m=1

from (3.31) and (3.37). The derivations are also rewritten as
D = DXm=1Dm DB — DXxer Zome1 A%, ki €

from (3.37). Hence, we obtain Theorem 1.4 (our main theorem).

4 Solution T, for n = 0,1, 2

In this section, we give the linear operators T3, T, that are n = 1,2 cases of (3.34). By using
the obtained linear operators, we calculate

leﬁ,ﬁf = (a1|T1|B7)  and Td?»%g; = (02|T3|53)

from Theorem 3.6. We also calculate Td. N for n = 1,2 straightforwardly from (3.36). We
then compare the obtained (a,|T,|5*) and T~ " from (3.36) for JU= = 1,2 and check that
they are equal to each other. Finally, we show that the obtained Tﬂ 255 actually satisfies the
recurrence relations (3.12) in Proposition 3.2.

Ty is immediately given as

(0] (4.1)

by Proposition 2.1. We first check that T recovers the coefficient for n = 1. Let (€| and |€7 )
be some n = 1 bra and ket, respectively. By Theorem 3.6, T} is given by

1 oo
Ti= Y af,———[0)(0]
J,DeT Np +1

Ty =

=1

X

1
{aJm(T1+ij,+l)ng+aJ a/\/i jf \/.Nji-i- / +1) D}

< {1 (71 + 1) + 2(N7 + Njyp )(Ny+ Ny )}

- Z ‘%>{<€J‘(71+ij’+1)TJD+<€J+€/‘“”’\/Nfi_i_ j+1gj'D}

J,Del
x B{(11+ 1) + 2(Ng + Npyo)(Ny + Ny )} (4.2)

where we use (4.1) and 7, ! = h. Since j7' # J (= jj"), if/ # J (= jf'), then (&) + é’/]a;j, =0,
and we obtain

(42)= Y hgzplen)(esl. (4.3)

J,DET
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Here we use (Ny + Nﬁ/)(N/ + Ni%,)]éj"ﬁ = 0. Hence, (eas|T1]€]) can be calculated as
(EITLIEE) = hgyg = Thy oy

This result coincides with T7! - for n =1 in (2.3) in Proposition 2.1. Next, we consider the
casen=2. Forn=2, a linear operator T is given by

L= ZE: jg: hgﬁjh|€g1+_é?b><é&J

D1,D2€T Jy,J2€X

1
X {% \/N—Jz(Ta + Ny + D97

+ay,

1 1 1
» N, g+ 1)g—
/N7, a){w/N%aJw/’,/NjQ}{, + T (Nt + )%,D}
1
X 5751{71 + 14 (Np + N ) (N + Ni%,)}_l, (4.4)
from (3.29) and (4.3). Here we use

T 1 T 1 A\ 5% %
a a 0)=lep +€n.).
Dl\/Nlerl D2\/ND2+1’ )= 1D, +eby)

We now check that T5 recovers T~2 Ao that is, the solution for n = 2. There are 10 possible ﬁQ
patterns. They can be classified into “the following four patterns for a fixed P € Z:

) fs=28p, () B5=cp+&y, () F=cp+&y, (V) B =+
Therefore, we only need to check the above four patterns. For the case 5; = 2¢}, T»|2€%) is

non-zero only for Jy = P in (4.4), and (drp + 5%1./ P)((s/P + 51‘// p) =0 for a fixed P € T. T»[2¢}p)
can be rewritten as

o h —ak —ak = | % — —
T»|2ep) = 5 Z 97 p,1€D; + €p,)(€nlep) "9PD,T2 Y+ (2 + 1)

J1,D1,D2€7
h 1\ Y
=5 (-1+5 > 9Pp,9PD, €D, +Eh,)- (4.5)
D1,D2€1
Here we use (€,|€p) = 05, p and 5 = —1 + }. By using (4.5), we obtain
2 = —k h 1 -
T3, 0, = (G| T2f28p) = 5 (—1+ - > 95D, 9FD, 00, 40, (4.6)
D1,D2€T

We also calculate directly TO%Q 2%, by using (3.36) in Theorem 3.7 for confirmation. Since 6; =
2¢} and n = 2, the step function in (3.36) is

T1¢ <Bs _ Z s Jm,km) 1 (zasp _ Z dss s ) |

SeZr=1 SeZr=1

Recalling that

A8, 3k = 081+ 0501, (05 07 = 05, 57
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the step function [Jgcr [121 0(205p — Yooney dS.Jm k) i8 1 if and only if J; = Jo = P, k1 = ji
and kg = jo. If J1 = Jo =P =pp and k1 = j1 = ko = jo = p, TO%Q 2, Can be expressed as

2 Z gﬁDygﬁDzé

_ N -
1T a2,6D1+6D2 26P’ZX€IQanP7PeX

dg,2e%,
: Dq1,D2eT
% T+ 251’}5/713 +1- Alvjlj’(lv{Ji}Qv{ji}Q ‘J1:J2:P
1

X
(25/13 + 25i;l',P - A/,i/’,l,{Ji}g ‘J1:J2:P)

L 20 L Moo e i P
202 +1) +2(2017 + 204 p = A i o 1113, ‘J1:J2:P)
1

X (4.7)
(25/13 + 25i¢/,P - A/,i/',z{Ji}g ’J1:JQ:P)
for a fixed P = pp/, where 82, = 20pp for M € I. Note that
dx.pp = 0x,P; (4.8)
Al,jl,?'{'v{Ji}m{jz'}z|J1:J2:P - 61”7""13 =0, A2J2}'{/7{Ji}27{ji}2|J1:J2:P =0, (4.9)
AI7;[Z-/717{J1.}2|J1:J2:P = 5IP + 5/{7;/7137 A/,i;”,l,{Ji}z ’J1:J2:P = 5/13 + 51‘/{/7]37 (410)
AI,%@",Q,{J¢}2|J1:J2:P =0, A/,i/’,?,{Ji}2|J1:J2:P =0 (4.11)
from (3.30)—(3.33). Since ) y.70x,p€y = €p, then Kronecker’s delta is calculated as
09852 5 ez dx pply = 026p285 = 1 (4.12)

by using (4.8). The denominators and numerators in (4.7) can be calculated by using (4.9)—
(4.11). The numerators in (4.7) are expressed as

i+ 200y p 1= Ny (g gl h=n=P = 1+ 1,

T2t 261’]/’1:) +1- A2,j2){',{Ji}2,{j¢}2|J1:J2:P =n+1
from (4.9), respectively. Here, we use 5p7p}5/ = 0 since P # pp for any P = pp’. By using (4.10)
and (4.11), for [ = 1,2, the denominators in (4.7) are also calculated as

T L 202008 + 0 p) = Bp g1 0, H2 e + 0y p) = B .}

=71+ 1+2001p + 04 p)(Oyp + 0y p) =71 + 1,

and

2(72 + 1) + 2{2((5[13 + (5%1.,713) — AI,%’Z‘/72,{JZ'}2}{2(6/P + 51‘/’,P> — A/,’L'/’Z/,Z,{Ji}z}
=2(rp+ 1)+ 8(0rp + 5%1»,713)(5/13 + 5#,713) =2(rp + 1). (4.13)

Here, we use (31p + 8y, p)(dyp + 0,y p) = 0 for any indices P, I € Z. Substituting (4.12)(4.13)
into (4.7), we eventually obtain

1 1 - _ _
Thoen = D 597D, 9D, 1 "l D+ D)(n+ 1) (e + 1) a6, +en,
D1,D2€1
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h 1\
"2 <_1 * ﬁ) D 9PD,IPD,0%: 7, +en, (4.14)
D1,D2eT

(4.14) coincides with (4.6).
Similarly, we can calculate for the cases 55 = €} + é’;; .y B = €p + C and 35 = €p + € as
follows:

. 1\
§2,é7>+é;;p = (G| T2lep + é*p’> =h <_1 + h) Z %D1%,D250_Z’27_’Dl+_’027 (4.16)

D1,D2€T
-1 1
2 1 1
&34y = = (da| To|ép + &) = (—1 + h) (1 + h)
x Z (Q?Dlgjfm + hW,DI%,Dz)%%éDﬁgDQ- (4.17)

D1,D2eT

By long but straightforward calculations, we can also check that (4.15), (4.16) and (4.17) coincide

with Tag Eptar TC%Q Zptey, and T&2 T calculated from (3.36), respectively.
Lastly, we check that T 2 3 satisfies the recurrence relations (3.12) for n = 2 in Proposi-

tion 3.2. In this discussion, e give detailed calculations only for the case 62 = 2¢€p to avoid the
repetition of boring discussions. In this case, the right-hand side of (3.12) is

200p1 (s + 20 p ) T2, 9y, — W20 p g0 + 1) (205 4y + VT2, o o4 et (4.18)

Here, we have 5p]5P/ = 0 since I # I, and

2
T&Q,Qé"kp—é”;—l-e_//—&—e/./_g; =0
since 2€p — €7 +é”" +e€, é; has negative components in the e}-direction or é;,—direction.
Therefore, after subs‘mtutmg (4.14), the right-hand side is rewritten as
1\ & -
(4.18) = 2hépr | —1 + Ak Z 9B D, 9P D,0s,2p, +e,
Dy,D2€T
Z 9P D, 9P D, 082 ,6p, +Ep, OPI- (4.19)
D1,D2€Z

We next calculate the left-hand side of (3.12) for n = 2. Note that the following equation holds:

; =h .
Go— eDl’ﬁ2 & hJD 6I.gJDQdOmeDl-i-eDQ(SBQ er+ey
2

from (2.3) for n = 1 in Proposition 2.1. Then, the left-hand side of (3.12) can be calculated as
1
h Z 910, Lar—ep, 2ep—er = It Z 91p, "I Z 97D,%>,2p, +ep, 0285 &5 +25
DieT DieT J,D2€T

Z 910,910,062, +&p, 0285285 - (4.20)
D1,D2€T
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Since 525}72&7 = dps and then 97D197D25P1 = gﬁDlgﬁD25PI’ we obtain

(4.20) =h* " 9pp,9pp,0anip, +en, OPI- (4.21)
D1,D2€T

Therefore, the right-hand side (4.19) coincides with the left-hand side (4.21). Hence, it is
checked that the solution T~ 2,285 satisfies the recurrence relations (3.12) in Proposition 3.2
for n = 2. In the same way, We can also verify by straightforward calculations that the other

solutions T2 _. T2 ..~ and T2 .. +_} satisfy the recurrence relations (3.12) in Propo-

Qa2,€p +e* )0 ag,eP—i-e , Qaz,ep
sition 3.2. pr pr

5 Summary

We gave the recurrence relations (3.1) in Theorem 3.1 whose solutions are coefficients of a star
product with separation of variables on G ,14(C), based on the construction method proposed
by [20, 21]. In particular, we focused on the case p = ¢ = 2 to give the explicit star prod-
uct with separation of variables on Gg4(C). Considering the case p = ¢ = 2, we can obtain
the recurrence relations (3.12) for G 4(C) from Theorem 3.1. To give the solution of (3.12)
for G2 4(C), it was necessary to solve a system of linear equations. The process of solving this
system of linear equations prevented obtaining the explicit general term expression. To resolve
this problem, we derived (3.13) in Proposition 3.3 that is equivalent to (3.12), in which the
general term T o of order n are expressed by coefficients of order (n —1). By usmg (3.13),
we derived the formula (3.21) in Proposition 3.4, which uniquely determines Tﬂ . from co-
efficients of order (n — 1) without solving a system of linear equatlons To solve (3 21), w
introduced a linear operator 7T,, on a Fock space V' that recovers T 3 f A5 A matrix representa—
tion. Furthermore, by substituting 7', ,j- into the equation (2.2) glven by [20, 21], we succeeded
in constructing the explicit star product "with separatlon of variables on G24(C). For conﬁrma—
tlon we checked that for n = 1,2, Tﬁ LA T? o, s recovered from T, Ty coincides with T i G
T o, obtained stralghtforwardly from tS 36) in Theorem 3.7, respectively. We also verlﬁed
that the obtained Tq 255 actually satisfies the recurrence relations (3.12).

Here we discuss an outlook for our work toward Penrose’s twistor theory. Penrose’s twistor
theory can generally be formulated via twister correspondences [41, 42, 43, 65, 66]. The twistor
(Klein) correspondence G 4(C) UL Fi124(C) Il CP? is defined by two fibrations 7 : F124(C)
— CP? and my: F124(C) — G24(C) such that 7 (V1,V2) := Vi, ma(Vi, V2) := V5. Here the
complex flag manifold Fi 24(C) is defined by

Fi24(C):={(Vi,Va) | Vi C Vo C C*, dimc V}, = k, k = 1,2}.

As an application of the star product on G2 4(C) obtained in our work, we expect to realize
a noncommutative deformation of the twistor correspondence

(C®(Goa(C)[A], *Gy () — (CF(F124(C))[A], *F, 4 4() —
defined by two fibrations

Tt (C(FLoa(O)Al, #5, , 40)) = (C*(CP?)[A], *cps),
mot (CF(Fi24(C)[A]s #F, 5 4(c) = (CF(G2,4(C))[A]: %, 4 (c))-

Toward this goal, it must be useful to construct an explicit star product with separation of
variables on F 2 4(C). We expect that the key to define 7 , and g , is the relations between an
explicit star product on F  4(C) and one on CP3or G'2,4(C). By constructing a noncommutative
deformation of twistor correspondence, the development of noncommutative twistor theory and
the finding of new relations in noncommutative integrable systems are expected.

71'2* 7"'1*

(C=(CP?)[R], *cps)
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A Properties of G p44(C)

We denote some useful properties with respect to Gj,14(C) in this appendix. The set of
capital letter indices {I = ' | 1 < i < ¢q,1' < ¢ < p'} introduced in Section 1 and
{1,...,qp} are ordered isomorphic. We now define the isomorphism ¢: {I = i’ | 1 <i <g,
U<d<p}—={1,...,qp} CNby () =¢@ii') :=p(i —1) +i’N, where i’y denotes the natural

number corresponding to 7’ in a natural way. For example, if ¢/ = 1/, then ¢’ N = 'y = 1. Us-
ing this v, for any I = 7i’, J = jj’, we define the binary relation <¢c by I < J <:> Y(I) <p(J)
on {I=i'|1<i<gq,1"<i <p'}. Then <¢ is the total order on {I = i’ | 1 < i < g,

1" < i’ < p'}. Hence, 1 is an ordered isomorphism, i.e.,
{I=di'l<i<ql <i<p}<c)=({L....a} %)

Using the above ordered isomorphism 1, we can identify ({I =i’ |1 <i < ¢, 1" < i < p'},
<¢) and ({1,...,qp}, <) as ordered sets, and we can regard capital letter indices as ordinary
indices I =1,...,¢qp.

We next discuss the properties of the Kahler potential and the Kéhler metric. Since the first
derivative of ® often appears in this paper, we now introduce the following proposition related
to the first derivative of ®.

Proposition A.1. Let ® := logdet B be the Kdihler potential of Gpptq(C). Let B, 2% b” be
them defined in Section 1. Then, the first derivatives of ® are

;% = dj;(logdet B) =207, 950 = 0 (logdet B) = 217, (A.1)

respectively.

Proof. We shall show 0P = zﬂ b'7 in this proof . The derivative of det B with respect
to bz, is obtained 8% det B = Bk,l, = det B - b"* by cofactor expansmn where b''¥ is the entry
of B~!. By the chain rule the derivative of det B with respect to 247" is

O5(det B) = det B - O57bp, - b = det B- 27", (A.2)
Here we use the fact that 9;57b5, = 827" from (1.1). Using (A.2), the first derivative of ® is
07® = 07logdet B = (det B)'05(det B) = (det B) ' det B - L L

In a similar way, 9;® = 75" is also shown. |

The Kihler metric on Gy p14(C) can be expressed by using the entries of matrices B!
and A~!. Here we introduce the matrix 4 € GL,(C) and its inverse matrix A~! as follows:

A=(az):=1dy+ 22", A" =(a").

Proposition A.2. Let g;5 be the Kdhler metric on Gp p+q((@ Then, Kahler metric g;7 = g = 57
can be written as g;5 = S = gJiptd’ . where a¥ and b'7 are the entries of A™* and B~
respectively.

G 577 37
Proof. Since 9;; (B_l) = —B7Y(0,#B)B~!, the derivative of b'* with respect to 2% is calcu-
lated as

@yblly _ _bl’W(a /bf )bn’P _ _zim/bllﬁbi/F‘ (A3)

1" Ym!'n!
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Hence, from (A.1) in Proposition A.1 and (A.3), we have

977 = OOz (log det B) = 0y (23"0"7") = b7 (8;; — 22"b!™ 2. (A.4)
On the other hand, recalling that Id, = BB~ = (Id,, + ZTZ)Bfl, Id, can be written as

d, =1d,+ 22" - 22" =1d,+ 22" — Z2(1d, + Z'Z) B~ ' Z". (A.5)
Note that

Z(dy+ 212)B1 2" = 2B~ 2" + 227 2B~ Z" = (1d, + 22" 2B~ ' Z"
and A =1d, + ZZ, (A.5) can also be rewritten as

(A5)=A—AZB™'Z1 = A(1d, — ZB~'Z").
This means that Id, — ZB~'Z1 is the inverse matrix of A, i.e.,

alt = dji — L plm im (A.6)
Hence, substituting (A.6) into (A.4), we obtain g;57 = g, = = al'bi'd [

7=

In addition, the second derivative of ® with respect to 2! (or 2/ ) can be expressed as a product
of the first derivative of ® with respect to z! (or 7).

Proposition A.3. For Gy, ,14(C), the second derivative of the Kdihler potential ® satisfies
010;® = —0;P0;; @, 07050 = —817,@8].7@.

Proof. By using (A.1) and (A.3), we obtain
0100 = 0; (FVY'T) = —Z YT = —5,;,90;,®.

In a similar way, we can also prove 0;07® = —%@%@. |

In general, to explicitly determine the curvature RTJT(Z = ng gFQRTPQZ of Kahler mani-
folds, it is necessary to calculate the higher-order derivatives of ®. Fortunately, the curvature
of Gpp+q(C) can be obtained easily by Proposition A.3.

Proposition A.4. For G, ,14(C), the curvature Rjﬁf is given by
Re"N = 8 300 & — S 30 1 = —0ui0mdine S0 — Siwdjnduy o,
where 677 = 01 jj := 050 .
Proof. Recalling that for any Kéhler manifold,
Ripro = Rpror = —0p0r000r® + g* 7 (9p0506®)(040;079)
(see [38, Appendix A]), we get

Riprq = —0r00(01079) + g"P{05(0p00®) HOA(9;0;0)}
= —0p0g(—07PI®) + g P{05(—0py POy @) H{OA(— 0 PO )} (A7)
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by Proposition A.3. By calculating the derivative in (A.7), it can be rewritten as

077 (0p0Q®) 0 ® + 9o w9pi7 + Ipm9gim + O PO (0p0g®) + g"B (95 pgr 94,770 PO ®
+ gﬁ,pq'gAﬁaqp’(baW@ + gﬁ,qpng,Wapq’q)%q) + gﬁ,qp/gA,Wapq’@an))
= O7(—Opg POy @) 057 ® + 9o79p57 T 9piw90 1w T 7P O7(—Opgy POy )
+ G e 9 77 0ap PO ® + 6709 4 170 PO ® + 5419 4 70pg PO ®
+ 5 w9477 0pg P07 ®- (A.8)

Here we use Proposition A.3 and g7, = 0;0;®, then (A.8) becomes
~ 97 pgr O PO ® = G377 43y O O ® + 9 w9piw + 979 17 — 97 pyr O PO ®
B %,qp’apq/¢%® + gﬁ,pq’aqp/(bal?(b + gﬁ,pq’aqpl(bai?q) + gﬁgp’apqlq)amq)
+ gﬁ,qp’ apq’q)aﬁq)
= 9pioir T 9o w9piv (4.9)
Substituting (A.9) into R*JK =g’/ KQRTPQZ = —nggFQRTPZQ, we obtain
JK JP K
Ry = """ 9p w90 + dow9pmw) = ~Ow 70w & — O 70w
= —0ij0ki0ik Oty — 0ik010s1 s Opryr -
This proof is completed. |

Note that, due to the difference with the notation (2.1) for the Riemann curvature tensor,
RTJ K_ has opposite sign to 9%7‘] K 7 in the notation by Kobayashi-Nomizu, i.e.,

R[JK _ 9{7]](
In addition, this curvature has the symmetry

RIJK — RfJK,_ R*KJ — RﬁKJI

with respect to capital letter indices I, J, K and L. See [20, 38] for more details.

B A property of symmetric functions of capital letter indices

We denote a property of symmetric functions whose variables are capital letter indices in this
appendix. By using this property, we state that some functions and operators appearing in this
paper do not depend on the choice of a capital letter index I. Finally, we show from this fact
that the star product (1.2) in our main theorem (see Theorem 1.4) which is independent of I.

We now introduce the following proposition related to the functions which depends on capital
letter indices.

Proposition B.1. Let f: Z x T — R be a function satisfying f(I,J) = f(J,I) for I,J € T =
{I,1,if',#i"}y. Then, f(1,{i")f(1,il") does not depend on I =ii' € .

Proof. From the assumption of f, the following relations hold f(I,#i") = f({i', 1), f(I,il) =
f(it', ). Since the product of f(I,{i') and f(Z,if’) is commutative, we eventually obtain

FA (L il") = fOLal) f(L 1) = fO7 D f il 1) = fGE D f(T).

This shows that f(I,4i') f(Z,i{") does not depend on the choice of a capital letter index I € Z. M
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This property can be extended to commutative operators on the Fock space V' as well as
symmetric functions on R.

Proposition B.2. Let f: Z x T — L(V') be an operator satisfying f(I,J) = §(J,I) for I,J € T,
where L(V') is the set of operators on the Fock space V. If § is commutative, i.e., f(I,J) o
f(K,L) =§f(K,L)of(I,J) for I,J,K,L €T, then f(I,1i")§(1,4{') does not depend on I =ii' € L.

By Proposition B.2, the operators
(N1 + N%z/)(N/ + Nif/)’ (N7 + N%i’ — AI,{i’,l,{Ji}n)(‘N/ + Ni/’ — A/’i;[,’L{Ji}n)

do not depend on the choice of I € Z, where A, Ji L (b A/i%, L}, ATe given by (3.32), (3.33).
Then, it is shown that (71, 1, in Section 3.3 is independent of I € Z. Furthermore, by
Proposition B.1, the following functions do not depend on I € Z:

(ﬁ? + ﬁZ’)(IB; + /B;;/)? (ﬁ? + /BZ/ - A[7%7j/7l’{Ji}n)(/B; + /B:;/ - A/,i’[/’l’{‘]i}n%

l !
m=1 m=1
From this fact, T (.}, {k;}, in Theorem 1.4 (our main theorem) and (3.36) do not depend on

the choice of I € Z. Hence, the star product with separation of variables (1.2) on G 4(C) in
Theorem 1.4 (our main theorem) does not depend on a capital letter index I.

C Calculations of T 5 in Section 3.3

n

In this appendix, we denote the calculation of Tgn 5+ using Tgn G = (@n|T|5%) in Theorem 3.6.
Since Cp 7,1n,{kitn. a0 Fi (1), {k;}, depend on only number operators, then C; gy, (ki1nl6n)
and Fy {71, {ki}n|Bn) ave immediately calculated as

Co ikt Bn) = (M + Bl = Mgt (3o (hide T 1|35, (C.1)
= {Z(Tl + 1) + 2(6711 + BZ/ - A],ﬁ/,h{t]i}n)(ﬁ;b + BZ// - A/7i%/717{Ji}n)}_1’ﬁ:>a (C-Q)

respectively. Here we use (3.30), (3.32) and (3.33). By using (C.1) and (C.2), we obtain

CLdibndbitn * Cnfdibmtkibn T L bno kit " F it (st Bn)

— f[ Tl&jlkl + 5;,71// +1- Alvjl%/v{Ji}nv{ki}n |B’*> (C 3)
I—1 Z(Tl + 1) + 2(5? + /BZ/ - AI,/i’,l,{Ji}n)(ﬁ;L -+ BZ;/ - A/,i%’,l,{Ji}n) "

Next, we calculate Ay, 1, --- Ay, k, acting on |5%). Recalling (3.27), we have
5.
Al i) = a3, L e ) i
Inskn|Pn) = QJp 1 Qs i o7 n
Vs VR 79 N 1
— (L0058 ~ 351, — Sy, G~ G

SeT
X | B = €5, = O (€ — €50))-
Doing a similar calculation (n — 1) times, Ay, %, - - An,Jn,knﬁ;;) is calculated as

Atk A k| Bn)
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(H IT¢ (65 - Z dSJm,km>> -3 zn: dX,Jm,kméf;(> : (C.4)

SeZr=1 XeZIm=1

where we use (3.31), i.e., ds j,, kb = 05,4, + 5%,%(55%— 55‘,ij)' From (C.3) and (C.4), we
obtain
gszl ) k

n]n 7Dn
T T 'A]- lekl An7Jn7knC17{Ji}n7{ki}n T Cnv{Ji}n7{ki}nflv{Ji}nv{ki}n
n

 F bk} |55)

(s £ (%)

Selr=1 =1

gt

where we use (3.30)—(3.33). Recalling that Proposition 2.1 and (3.28), T is immediately obtained
as To = |0)(0]. Thus <o7n\a;)n+ cval, ——L__Ty is easily calculated as

V/Np, +1 D1 /Np,+1

T10jiky + ’szjl/' +1- Al,jl’j{/,{Ji}'rLy{ki}n
U+ 1) +2(87 + 52/ - AI,{i’,l,{Ji}n)(B; + 5;?, REAVZAREAN

-2 dXJm,kmé'fSc>7 (C.5)

XeZm=1

[ L

1 1 . - -
(dnlaly, -al, Ty = (Gal Y- @0, )01 = b5, 50, 2, 0. (C6)
VNp, +1  Pry/Np, +1 < m; 2=t o

Hence, substituting (C.5) and (C.6) into (3.35), we eventually obtain the explicit expression
of T"

anaﬁ*

n /= DH\ . R .
T&n,ﬁfl - <a"|Tn|Bn> Z Z 50‘%2%:1 €D, 55,’272)(61 S o1 AX, I ke B
Ji€{Ji}n  ki=1
Die{D;}n ki€{ki}n

(0 (s £ ) (75

SeZr=1 =1

y H Tl&jzkz + 5jl,jl// +1- Al,jlj{’,{Ji}n,{ki}n
W+ 1)+ 2057 + B, = A0, ) B 85, = Dyigiy) |
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