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Abstract. We construct a deformation quantization with separation of variables of the
Grassmannian G2,4(C). A star product on G2,4(C) can be explicitly determined as the solu-
tion of the recurrence relations for G2,4(C) given by Hara and one of the authors (A. Sako).
To provide the solution to the recurrence relations, it is necessary to solve a system of linear
equations in each order. However, to give a concrete expression of the general term is not
simple because the variables increase with the order of the differentiation of the star prod-
uct. For this reason, there has been no formula to express the general term of the recurrence
relations. In this paper, we overcome this problem by transforming the recurrence relations
into simpler ones. We solve the recurrence relations using creation and annihilation oper-
ators on a Fock space. From this solution, we obtain an explicit formula of a star product
with separation of variables on G2,4(C).
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1 Introduction

In this paper, we construct a noncommutative complex Grassmannian G2,4(C) explicitly. In
gauge theories with background magnetic fields or in high-energy physics where gravity is quan-
tized, noncommutative manifolds or quantized spacetime appear naturally. G2,4(C) appears in
various situations in physics. As an example of the motivation for this paper, let us take the
twistor theory here.

The twistor theory proposed by Penrose was introduced in an attempt to quantize gravity
theories [41, 42, 43]. Although it does not directly correspond to the original purpose, Pen-
rose’s twistor theory is useful for constructing solutions of (anti-)self-dual Yang–Mills equations,
Einstein’s equations, etc. For example, it is known that solutions of (anti-)self-dual Yang–Mills
equations correspond to holomorphic vector bundles over the complex projective space CP 3

[41, 42, 43, 65, 66]. For more detailed discussions, see [30, 66]. This correspondence is under-
stood as the twistor (Klein) correspondence G2,4(C)

π2←− F1,2,4(C)
π1−→ CP 3. Noncommutative

deformation of the (anti-)self-dual Yang–Mills theory is known as a successful example of non-
commutative deformations of integrable systems. See, for example, [18, 19, 35] and references
therein. It is also expected that it makes sense to construct a noncommutative deformation of
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the twistor correspondence G2,4(C)
π2←− F1,2,4(C)

π1−→ CP 3, where F1,2,4(C) is the complex flag
manifold defined by F1,2,4(C) := {(V1, V2) | V1 ⊂ V2 ⊂ C4, dimC Vk = k, k = 1, 2}. To achieve
this, it is essential to construct a deformation quantization of G2,4(C). Noncommutative CP 3

was already constructed. However, their explicit ones have not yet been determined for general
complex Grassmannians. The quantizations of CP 3 and G2,4(C) may contribute not only to
the development of noncommutative twistor theory but also to the successful quantization of
gravity. For this reason, it is worth constructing noncommutative G2,4(C) explicitly in physics.

For a symplectic manifold, the quantization method called “deformation quantization” is one
of the construction methods of noncommutative differentiable manifolds. It is known as the
quantization method based on a deformation for a Poisson algebra. Two types of deformation
quantizations are known: “formal deformation quantization” proposed by Bayen et al. [1] and
“strict deformation quantization”, based on C⋆-algebra proposed by Rieffel [45, 46, 47]. In this
paper, we use “deformation quantization” in the sense of “formal deformation quantization”.

Definition 1.1. Let (M, {·, ·}) be a Poisson manifold and C∞(M)[[ℏ]] be the ring of formal
power series over C∞(M). Let ∗ be a star product denoted by f ∗ g =

∑
k Ck(f, g)ℏk satisfying

the following conditions:

(1) For any f, g, h ∈ C∞(M)[[ℏ]], f ∗ (g ∗ h) = (f ∗ g) ∗ h.
(2) For any f ∈ C∞(M)[[ℏ]], f ∗ 1 = 1 ∗ f = f.

(3) Each Ck(·, ·) is a bidifferential operator.

(4) C0(f, g) = fg, C1(f, g)− C1(g, f) = {f, g}.

A pair (C∞(M)[[ℏ]], ∗) is called “a deformation quantization” for the Poisson manifold M .

A well-known example of a star product is the Moyal product. It was constructed indepen-
dently by Groenewold [16] and Moyal [34], and is often called Groenewold-Moyal product. Since
it is a star product on R2N , it gives the noncommutative R2N as a deformation quantization.
A star product on CN , called Wick–Voros product, is also known as a star product that is
equivalent to the Moyal product [64]. For more detailed reviews of deformation quantization,
see for example [17, 33]. For any symplectic manifolds, a construction methods of deformation
quantization is given by de Wilde–Lecomte [11], Omori–Maeda–Yoshioka [40] and Fedosov [14].
More generally, a deformation quantization was constructed by Kontsevich for Poisson mani-
folds [28]. Recently, for any contact manifolds, its deformation quantization was constructed by
Elfimov–Sharapov [13].

On the other hand, construction method of a deformation quantization for any Kähler mani-
fold was studied by Karabegov [22, 23]. LetM be an N -dimensional Kähler manifold and (U, ϕ)
be a chart of M . For p ∈ M , we choose ϕ(p) =

(
z1p , . . . , z

N
p

)
as local coordinates at p ∈ M . To

use the Kähler potential of M , we assume that U is contractible in the following discussion. In
the following discussion, we omit p ∈ M when denoting local coordinates of U . For the Kähler
manifold M , the Kähler 2-form ω and the Kähler metric g can be locally expressed as

ω = igkl̄dz
k ∧ dz̄l, gkl̄ = ∂k∂l̄Φ

by using a Kähler potential Φ, where ∂k := ∂/∂zk and ∂l̄ := ∂/∂z l̄ = ∂/∂zl. Note that we use
the Einstein summation convention for index k and l̄ on the above. We also denote the inverse
matrix of (gkl) by

(
glk
)
. Karabegov proposed a construction method of deformation quantization

for Kähler manifolds such that the following conditions, called “separation of variables”, are
satisfied [22, 23].

Definition 1.2. Let M be an N -dimensional Kähler manifold. A star product ∗ on M is
“separation of variables” if the following two conditions are satisfied for any open set U ⊂ M
and f ∈ C∞(U):
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(1) For any holomorphic function a on U , a ∗ f = af .

(2) For any anti-holomorphic function b on U , f ∗ b = fb.

Here we introduce two local differential operators. The differential operators Dk and Dk are
defined by Dk := gkl∂l, D

k := gkl∂l, where we use the Einstein summation convention for index l
and l̄. Note that gkl = glk. We define the set of differential operators

S :=

{
A

∣∣∣∣A =
∑
β⃗∗

a
β⃗∗D

β⃗∗
, a

β⃗∗ ∈ C∞(U)

}
.

Here, D :=
(
D1̄, . . . , DN̄

)
and β⃗ = (β1, . . . , βN ) is a multi-index, i.e., Dβ⃗∗

is expressed as
Dβ⃗∗

=
(
D1̄
)β1 · · · (DN̄

)βN . We also define the differential operators Dα⃗n and Dβ⃗∗
n as

Dα⃗n := Dαn
1 · · ·Dαn

N , Dαn
k :=

(
Dk
)αn

k ,

Dβ⃗∗
n := Dβ⃗n = Dβn

1 · · ·Dβn
N , Dβn

k :=
(
Dk
)βn

k

for

α⃗n, β⃗n ∈

{(
γn1 , . . . , γ

n
N

)
∈ ZN

∣∣∣∣ N∑
k=1

γnk = n

}
.

The sum α⃗n + β⃗m is defined in ZN as usual.
We define Dα⃗n := 0 when there exists at least one negative αnk /∈ Z≥0 for k ∈ {1, . . . , N}.

Similarly, Dβ⃗∗
n := 0 if β⃗∗n has negative components. For f ∈ C∞(U), we can construct the left

∗-multiplication operator Lf with respect to f such that Lfg := f ∗ g. The following theorem
states that Lf is expressed by a formal power series with respect to the differential operators
in S.

Theorem 1.3 ([22, 23]). Let M be an N -dimensional Kähler manifold with the Kähler form ω.
There exists a unique star product ∗ on M such that for any contractible open neighborhood U
on M with a Kähler potential Φ of the form ω and any f ∈ C∞(U), the left ∗-multiplication
operator Lf satisfies the following three conditions:

(1) [Lf , R∂lΦ] = 0, where R∂lΦ = ∂lΦ + ℏ∂l is the right ∗-multiplication operator with respect
to ∂lΦ.

(2) Lf1 = f ∗ 1 = f .

(3) For any g, h ∈ C∞(U), the left ∗-multiplication operator is associative, i.e.,

Lf (Lgh) = f ∗ (g ∗ h) = (f ∗ g) ∗ h = LLfgh.

More generally, Karabegov constructed a unique separation of variables type star prod-
uct ∗ωℏ for the formal deformation ωℏ = ω + ℏω1 + h2ω2 + · · · for the Kähler form ω. ωℏ
is called a Karabegov form of ∗ωℏ , denoted by kf(∗ωℏ). The formal Kähler potential Φℏ is
given by Φℏ = Φ+ ℏΦ1 + ℏ2Φ2 + · · · using each Kähler potential Φ,Φ1,Φ2, . . . . Conversely,
given a star product ∗ for a Kähler manifold M and its Kähler form ω, there exists a unique
Karabegov form kf(∗) = ωℏ = ω + ℏω1 + h2ω2 + · · · such that ∗ = ∗ωℏ [24]. In particular, the
star product for a Karabegov form with no higher-order form terms, i.e., ωℏ = ω, is called the
standard product. We note that the aim in our study is to give an explicit standard product for
the Kähler form ω, which contains no higher-order formal terms.

The final goal of this study is to construct a deformation quantization with separation of vari-
ables for the complex Grassmannian Gp,p+q(C). Noncommutative complex Grassmannians have
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been studied from several viewpoints. From fuzzy physics, noncommutative Grassmannians as
fuzzy manifolds have been obtained by Dolan–Jahn [12] and Halima–Wurzbacher [2]. From the
viewpoint of deformation quantization, Karabegov has studied deformation quantization with
separation of variables as an example for pseudo-Kähler manifold [25]. In [25], however, in the
sense that each term of the expansion of the star product is written out explicitly, no explicit
expression is given for a star product with separation of variables for Gp,p+q(C). On the other
hand, it is known that there is a previous study that has obtained an explicit star product
on Gp,p+q(C) [55] using a phase space reduction proposed by Bordemann et al. [5]. As another
approach to the above background, there are known construction methods that explicitly give
a star product with separation of variables on locally symmetric Kähler manifolds. These meth-
ods were proposed by one of the authors of this paper (A. Sako), Suzuki, and Umetsu [49, 50] and
Hara and Sako [20, 21]. From these methods, explicit star products with separation of variables
on any locally symmetric Kähler manifolds were obtained for the 1- and 2-dimensional cases [20,
21, 37, 38]. Using these construction methods, we can determine a star product with separation of
variables by solving the recurrence relations. In previous works [20, 21], the recurrence relations
for G2,4(C) were obtained via the construction methods. In this work, we construct the explicit
star product with separation of variables by solving the recurrence relations given by [20, 21].

We now introduce the complex Grassmannian. The complex Grassmannian Gp,p+q(C) is
defined by

Gp,p+q(C) :=
{
V ⊂ Cp+q | V is p-dimensional complex vector subspace

}
.

In particular if p = 1, G1,1+q(C) is complex projective space CP q. The simplest complex Grass-
mannian which is not CPN is known to be G2,4(C), i.e., p = q = 2. We introduce the local coor-
dinates of Gp,p+q(C) using the following procedure [27]. Let

(
z1, z2, . . . , zp+q

)
be a natural local

coordinate of Cp+q, and S be the p-dimensional subspace of Cp+q such that zα1 , . . . , zαp are lin-
early independent. Here zα1 |S , . . . , zαp |S are the local coordinates restricted to S, and α1, . . . , αp
are the integers such that 1 ≤ α1 < · · · < αp ≤ p + q. We take the subset Uα ⊂ Gp,p+q(C)
defined by

Uα := {S ⊂ Cp+q | dimC S = p, zα1 |S , . . . , zαp |S are linearly independent}

for the set α := {α1, . . . , αp}. We can take
(
p+q
p

)
patterns of such Uα, and they give the open

coverings of Gp,p+q(C). In the following discussion, we consider the case α = {1, . . . , p}, and
denote Uα = U{1,...,p} simply as U .

Let us choose a local coordinate of Gp,p+q(C) using U ⊂ Gp,p+q(C) introduced above.
LetM∗(p+ q, p;C) be the set of (p+q)×pmatrices of rank p, and π : M∗(p+q, p;C)→ Gp,p+q(C)
be a smooth projection. GLp(C) acts freely and transitively on M∗(p+ q, p;C) from the right.
Therefore, M∗(p+ q, p;C) is a principal GLp(C)-bundle over Gp,p+q(C). We now take a set

π−1(U) :=

{
Y =

(
Y0
Y1

)
∈M∗(p+ q, p;C)

∣∣∣∣Y0 ∈ GLp(C), Y1 ∈M(q, p;C)
}

⊂M∗(p+ q, p;C).

We consider a map ϕ : π−1(U) → M(q, p;C) ∼= Cqp defined by Y 7→ ϕ(Y ) := Y1Y
−1
0 for Y ∈

π−1(U). ϕ is a GLp(C)-invariant, i.e., for any Y ∈ π−1(U) and A ∈ GLp(C), ϕ(Y A) = ϕ(Y ). By
using this ϕ, we can choose Z =

(
zI
)
=
(
zii

′)
= ϕ(Y ) as a local coordinate of U ⊂ Gp,p+q(C).

A more detailed discussion of the local coordinates of Gp,p+q(C) is given, for example, in [27].
Here I = ii′ is “the capital letter index”, which consists of two indices i and i′. In general,

I = ii′ = 11′, . . . , 1p′, . . . , q1′, . . . , qp′
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for i ∈ {1, . . . , q} and i′ ∈ {1′, . . . , p′}. For example, I = ii′ = 11′, 12′, 13′, 21′, 22′, 23′ for q = 2,
p = 3. If p = q = 2, then the other index which is not i (or not i′) is uniquely determined
when i (or i′) is fixed. We denote by �i (or �i′) the index such that it is not i (or not i′). For
example, if I = 12′, then i�i′ = 11′, �ii′ = 22′ and �I = 21′. By using this notation, we can
choose

(
zI
)
:=
(
zI , z�I , zi�i

′
, z�ii

′)
as the local coordinates of G2,4(C) up to their order. The set of

capital letter indices ({I = ii′ | 1 ≤ i ≤ q, 1′ ≤ i′ ≤ p′},≤C) can be identified with the set of
ordinary indices ({1, . . . , qp},≤) as a totally ordered set. By this identification, a capital letter
index can also be regarded as an ordinary index I = 1, . . . , qp. See Appendix A for more details.
For p = q = 2, the set I of capital letter indices is defined by I := {I, �I, i�i′, �ii′} for a fixed I.
Note that it can also be rewritten as I = {11′, 12′, 21′, 22′}. The Kähler potential of Gp,p+q(C)
is given by Φ = log detB, where B = Idp + Z†Z. When we express B = (bi′j′), in terms of its
element each entry bi′j′ is written as

bi′j′ = δi′j′ + zmi
′
zmj

′
= δi′j′ + zmi

′
zmj

′
. (1.1)

Since B is regular, its inverse matrix B−1 is given by B−1 =
(
bi

′j′
)
= 1

detB

(
B̃j′i′

)
, where B̃ is an

adjugate matrix of B, and
(
B̃j′i′

)
is the transpose matrix of

(
B̃i′j′

)
. By using the above Φ, the

Kähler metric gIJ can be expressed as gIJ = ∂I∂JΦ. Here ∂I = ∂ii′ and ∂J = ∂jj′ are defined
by ∂I := ∂/∂zI = ∂/∂zii

′
and ∂J := ∂/∂zJ = ∂/∂zjj

′
. Some useful properties of Gp,p+q(C) are

summarized in Appendix A.
In order to give an explicit star product with separation of variables on G2,4(C) by using

the construction method proposed by [20, 21], it is necessary to solve the recurrence relations.
However, if we attempt to solve the recurrence relations sequentially order by order, we need to
solve a system of linear equations for each order. In addition, the recurrence relations contain
variables given by the four partitions of order n. The number of variables increases combina-
torially with increasing n. Therefore, there has been no formula for the general term of the
recurrence relations. In this work, we derive a method that determines the general term of the
recurrence relations for G2,4(C) without solving the system of linear equations. Furthermore,
we explicitly determine a star product with separation of variables on G2,4(C). In other words,
we obtain a deformation quantization with separation of variables for G2,4(C) based on the
solution of the recurrence relations given by [20, 21]. The main theorem of this paper for an
explicit star product with separation of variables on G2,4(C) is as follows.

Theorem 1.4 (main result). For f, g ∈ C∞(G2,4(C)), a star product with separation of variables
on G2,4(C) is given by

f ∗ g =
∞∑
n=0

∑
Ji∈{Ji}n
Yi∈{Yi}n

2∑
ki=1

ki∈{ki}n

(
n∏
l=1

g
klj

′
l ,Yl

Υl,{Ji}n,{ki}n

τl

)(∏
S∈I

n∏
r=1

θ

(
r−1∑
m=1

dS,Jm,km

))

×
(
D

∑n
m=1 e⃗Ymf

)(
D

∑
X∈I

∑n
m=1 dX,Jm,km e⃗

∗
Xg
)
, (1.2)

where

Υl,{Ji}n,{ki}n :=
τlδjlkl + 1 +

∑l
m=1 dm,jl�jl′,Jm,km

l(τl + 1) + 2
{∑l

m=1(δIJm + δ
�ii′,Jm

)
}{∑l

m=1(δ�IJm
+ δi�i′,Jm

)
} ,

dS,Jm,km := δS,Jm + δ
��jmkm

(δS,��Jm − δS,jm��jm′)

for l, r = 1, . . . , n, τl := 1−l+ 1
ℏ ,
∑

Ji∈{Ji}n :=
∑

J1∈I · · ·
∑

Jn∈I ,
∑

Yi∈{Yi}n :=
∑

Y1∈I · · ·
∑

Yn∈I ,∑2
ki=1

ki∈{ki}n
:=
∑2

k1=1 · · ·
∑2

kn=1, and θ : R→ {0, 1} is the step function defined by

θ(x) :=

{
1, x ≥ 0,

0, x < 0.



6 T. Okuda and A. Sako

It may appear that Υl,{Ji}n,{ki}n depends on the capital letter index I ∈ I. Note, however,
that in fact, it does not depend on the choice of I ∈ I. Proposition B.1 stated in Appendix B
guarantees this I-independence. From this fact, the star product (1.2) is the expression which
is independent of I ∈ I.

This paper is organized mainly into four sections and three appendices. In Section 2, we re-
view the previous works by [20, 21] related to a deformation quantization with separation of
variables for a locally symmetric Kähler manifold. In Section 3, we give the solvable recur-
rence relations which gives a star product with separation of variables for general Gp,p+q(C).
We focus on the simplest complex Grassmannian G2,4(C) which is not CPN . We give the
solution of the recurrence relations for G2,4(C) by using a linear operator on a Fock space.
Furthermore, we construct an explicit star product with separation of variables on G2,4(C)
from the solution. In Section 4, we concretely give the explicit lower-order solutions of the
recurrence relations for confirmation. In Section 5, we summarize our work. In addition, we
present a future work for noncommutative deformation of twistor correspondence using an ex-
plicit star product on G2,4(C). In Appendix A, we summarize useful properties of Gp,p+q(C).
In Appendix B, we denote a property of symmetric functions whose variables are capital let-
ter indices. By using this property, we state that some functions and operators appearing in
this paper do not depend on the choice of a capital letter index I. Finally, we show that
the obtained star product on G2,4(C) is the expression which is independent of I. In Ap-
pendix C, we show that the explicit form of solutions is actually recovered from a linear oper-
ator.

2 Construction method of deformation quantization
for locally symmetric Kähler manifolds

A general definition of quantization was first proposed by Berezin [3, 4]. In particular, Berezin
also constructed the quantization of Kähler manifolds in the case of phase space by using sym-
bol algebras. Bordemann et al. also studied the quantization of Kähler manifolds via Toeplitz
quantization [6]. For the case of compact Kähler manifolds, its Berezin–Toeplitz quantization
was studied by Karabegov and Schlichenmaier [26, 56, 57, 58, 59, 60]. See the review [61, 62]
summarized by Schlichenmaier for their previous works related to Berezin–Toeplitz quanti-
zation of compact Kähler manifolds. From other perspectives of deformation quantization,
deformation quantizations for Kähler manifolds were provided by Moreno [31, 32], Omori–
Maeda–Miyazaki–Yoshioka [39] and Reshetikhin–Takhtajan [44]. It is also known that the
relations between Berezin quantization and deformation quantization were studied by Cahen–
Gutt–Rawnsley [7, 8, 9, 10]. As a different approach to Moreno, Omori–Maeda–Miyazaki–
Yoshioka and Reshetikhin–Takhtajan, a deformation quantization with separation of variables
for Kähler manifolds was proposed by Karabegov [22, 23]. The formula for Karabegov’s defor-
mation quantization given by interpreting the graph as a bidifferential operator was proposed
by Gammelgaard [15]. After that, a deformation quantization with separation of variables for
locally symmetric Kähler manifolds was studied by one of the authors of this paper (A. Sako),
Suzuki, and Umetsu [49, 50] and Hara and Sako [20, 21], inspired by the construction method by
Karabegov. Deformation quantization of Kähler manifolds is applied for modern physics. Using
Karabegov’s deformation quantization, Fock representations on noncommutative Kähler mani-
folds constructed by Sako, Suzuki and Umetsu as a recipe to construct gauge theories on non-
commutative Kähler manifolds [49, 50, 52, 53, 54]. For the case of complex Grassmannians, their
Fock representations are studied by authors [36]. Gauge theories on noncommutative Kähler
manifolds were studied by Maeda, Sako, Suzuki and Umetsu [29, 48]. In particular, for CPN ,
Sako, Suzuki and Umetsu analyzed exact solutions corresponding to Bogomol’ny equation [51].
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As an application to solitons, scalar noncommutative multi-solitons in noncommutative scalar
field theory on Kähler manifolds were constructed and analyzed their stability conditions for
homogeneous ones by Spradlin–Volovich [63].

In this section, we review the construction method of a deformation quantization with sepa-
ration of variables for locally symmetric Kähler manifolds proposed by Hara and Sako [20, 21].
A Kähler manifoldM is “locally symmetric” if its Riemann curvature tensor satisfies∇∂ERABCD
= 0 for A,B,C,D,E ∈

{
1, . . . , N, 1, . . . , N

}
. In this paper, we define the Riemann curvature

tensor R∇ : Γ(TM)× Γ(TM)× Γ(TM)→ Γ(TM) on M for vector fields X,Y ∈ Γ(TM) by

R∇(X,Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ].

We denote the component of R∇ by R∇(∂A, ∂B)∂C := RABC
D∂D as a local expression. Here,

we note that the notation RABC
D used in this paper can be expressed by the relation RABC

D =
RD

CAB using the notation

R∇(∂A, ∂B)∂C := RD
CAB∂D (2.1)

by Kobayashi–Nomizu [27]. Note that RABC
D = −RABC

D.

Let M be an N -dimensional locally symmetric Kähler manifold, and (U, ϕ) be a chart of M .
We now assume the following form for a star product with separation of variables on M for
any f, g ∈ C∞(U):

f ∗ g = Lfg :=
∞∑
n=0

∑
α⃗n,β⃗∗

n

Tn
α⃗n,β⃗∗

n

(
Dα⃗nf

)(
Dβ⃗∗

ng
)
. (2.2)

Here, recalling that Dα⃗n , Dβ⃗∗
n are differential operators defined by

Dα⃗n := Dαn
1 · · ·Dαn

N , Dαn
k := (Dk)α

n
k ,

Dβ⃗∗
n := Dβ⃗n = Dβn

1 · · ·Dβn
N , Dβn

k :=
(
Dk
)βn

k ,

α⃗n, β⃗n ∈

{
(γn1 , . . . , γ

n
N ) ∈ ZN

∣∣∣∣∣
N∑
k=1

γnk = n

}
,

respectively. Note that ℏ is included in the coefficient Tn
α⃗n,β⃗∗

n
for n ≥ 1. The coefficients Tn

α⃗n,β⃗∗
n

can be assumed to be covariantly constants by using the fact that M is a locally symmetric
space. Here, we define Tn

α⃗n,β⃗∗
n
:= 0 when α⃗n /∈ ZN≥0 or β⃗n /∈ ZN≥0. For n = 0, 1, it is known

that the coefficient Tn
α⃗n,β⃗∗

n

are explicitly given as follows.

Proposition 2.1 ([20, 21]). For a star product with separation of variables ∗ on U,

T 0
0⃗,⃗0∗

= 1, T 1
e⃗i,e⃗∗j

= ℏgij , (2.3)

where e⃗i = (δ1i, . . . , δNi).

Proposition 2.1 states that the coefficients for n = 0, 1 are completely determined for any
N -dimensional locally symmetric Kähler manifold. In particular, the fact “T 0

0⃗,⃗0∗
= 1” plays the

role of the initial condition for the recurrence relations which gives the star product to be shown
later. The following theorem proposed by [20, 21] describes the existence of a star product with
separation of variables such that it is given by (2.2).



8 T. Okuda and A. Sako

Theorem 2.2 ([20, 21]). Let M be an N -dimensional locally symmetric Kähler manifold.
For f, g ∈ C∞(M), there exists locally a star product with separation of variables ∗ such that

f ∗ g =

∞∑
n=0

∑
α⃗n,β⃗∗

n

Tn
α⃗n,β⃗∗

n

(
Dα⃗nf

)(
Dβ⃗∗

ng
)
,

where the coefficient Tn
α⃗n,β⃗∗

n

satisfies the following recurrence relations:

N∑
d=1

ℏgidT
n−1

α⃗n−e⃗d,β⃗∗
n−e⃗∗i

= βni T
n
α⃗n,β⃗∗

n
+

N∑
k=1

N∑
ρ=1

ℏ
(
βnk − δkρ − δik + 2

2

)
Rkk
ρi
Tn
α⃗n,β⃗∗

n−e⃗∗ρ+2e⃗∗k−e⃗
∗
i

+

N−1∑
k=1

N−k∑
l=1

N∑
ρ=1

ℏ(βnk − δkρ − δik + 1)(βnk+l − δk+l,ρ − δi,k+l + 1)

×Rk+lk
ρi

Tn
α⃗n,β⃗∗

n−e⃗∗ρ+e⃗∗k+e⃗
∗
k+l−e⃗

∗
i

. (2.4)

Here
(
a
b

)
is a binomial coefficient.

Note that these recurrence relations in Theorem 2.2 are equivalent to the [49, equations (6.9)].
To obtain an explicit star product with separation of variables on anyN -dimensional locally sym-
metric Kähler manifold, we have to solve the recurrence relations in Theorem 2.2 with the initial
condition T 0

0⃗,⃗0∗
= 1 (in (2.3) in Proposition 2.1). However, to determine the general term Tn

α⃗n,β⃗∗
n

satisfying this system of recurrence relations is not easy, except for the one-dimensional case.
For arbitrary N -dimensional locally symmetric Kähler manifold, explicit formulae have been
obtained by Hara and Sako [20, 21] for N = 1 and the authors of this paper [37, 38] for N = 2.

3 Deformation quantization with separation of variables
for G2,4(C)

In Section 3.1, we give the recurrence relations for general Gp,p+q(C) by using the recurrence
relations (2.4) given in [20, 21]. We also focus on the case of G2,4(C) in Sections 3.2 and 3.3. In
Section 3.2, we give another recurrence relations to solve more easily. Finally, we determine a star
product with separation of variables for G2,4(C) based on the general term of the recurrence
relations obtained in Section 3.3.

3.1 Recurrence relations for Gp,p+q(C)

For Gp,p+q(C), we obtain the recurrence relations that give a star product from Theorem 2.2.

Theorem 3.1. The recurrence relations which give a star product with separation of variables
on Gp,p+q(C) are given by

ℏ
qp∑
D=1

gIDT
n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

= βnI

{
1 + ℏ− ℏ

(
βnI +

∑
j′ ̸=i′

βnij′ +
∑
j ̸=i

βnji′

)}
Tn
α⃗n,β⃗∗

n

− ℏ
∑
j ̸=i
j′ ̸=i′

(βnij′ + 1)(βnji′ + 1)Tn
α⃗n,β⃗∗

n−e⃗∗J+e⃗
∗
ij′+e⃗

∗
ji′−e⃗

∗
I

, (3.1)

where I = ii′, J = jj′ and D = dd′ are capital letter indices.
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Proof. It is sufficient to calculate the right-hand side of (2.4). By Proposition A.4, we have
RM

KK
I = −2δmi′,Kδim′,K , where δIJ = δii′,jj′ := δijδi′j′ . Therefore, the second term on the

right-hand side of (2.4) is modified to

ℏ
qp∑
K=1

qp∑
M=1

(
βnI − δKM − δIK + 2

2

)
RM

KK
IT

n
α⃗n,β⃗∗

n−e⃗∗M+2e⃗∗K−e⃗∗I

= −2ℏ
qp∑
K=1

qp∑
M=1

(
βnI − δKM − δIK + 2

2

)
δmi′,Kδim′,KT

n
α⃗n,β⃗∗

n−e⃗∗M+2e⃗∗K−e⃗∗I
. (3.2)

Let us introduce ψ as a one-to-one correspondence between two sets, the set of pairs (i, i′) with
1 ≤ i ≤ q and 1 ≤ i′ ≤ p, and the set of positive integers less than or equal to pq by

ψ : {I = ii′ := (i, i′) | 1 ≤ i ≤ q, 1′ ≤ i′ ≤ p′}
→ {1, . . . , p, p+ 1, . . . , 2p, . . . , (q − 1)p+ 1, . . . , qp},

I = ii′ 7→ ψ(I) := p(i− 1) + i′N,

where i′N is a natural number that is mapped to i′ in a natural way. For example, if i′ = 3′,
then i′N = 3′N = 3. See also Appendix A. Therefore, we regard K and M as ordinary ordered
indices by such an identification, respectively. In addition, note that summation, additionK+L,
and Kronecker’s delta in (3.2) are defined by

qp∑
K=1

:=

qp∑
ψ(K)=1

, ψ(K + L) := ψ(K) + ψ(L), δKM := δψ(K),ψ(M),

respectively. Since δmi′,Kδim′,K = 1 if and only if K =M = I, (3.2) is expressed as

(3.2) = −ℏβnI (βnI − 1)Tn
α⃗n,β⃗∗

n
. (3.3)

We next calculate for the third term on the right-hand side of (2.4). Since the curvature
is RM

KK+L
I = −δim′,Kδmi′,K+L − δim′,K+Lδmi′,K from Proposition A.4, the third term can be

rewritten as

ℏ
qp−1∑
K=1

qp−K∑
L=1

qp∑
M=1

(βnK − δKM − δIK + 1)(βnK+L − δK+L,M − δI,K+L + 1)

×RM
KK+L

IT
n
α⃗n,β⃗∗

n−e⃗∗M+e⃗∗K+e⃗∗K+L−e⃗
∗
I

= −ℏ
qp−1∑
K=1

qp−K∑
L=1

qp∑
M=1

(βnK − δKM − δIK + 1)(βnK+L − δK+L,M − δI,K+L + 1)

× (δim′,Kδmi′,K+L + δim′,K+Lδmi′,K)Tn
α⃗n,β⃗∗

n−e⃗∗M+e⃗∗K+e⃗∗K+L−e⃗
∗
I

, (3.4)

where
∑qp−K

L=1 is defined by
∑qp−K

L=1 :=
∑qp−ψ(K)

ψ(L)=1 . To transform (3.4) in more detail, we divide
the summation

∑pq
M=1 into the following four cases:

(I) M = I, (II) M = ij′, j′ ̸= i′,

(III) M = ji′j ̸= i, (IV) M = J = jj′, j ̸= i, j′ ̸= i′.

Based on the above four cases, (3.4) can be rewritten as

(3.4) = γI +
∑
j′ ̸=i′

γij′ +
∑
j ̸=i

γji′ +
∑
j ̸=i
j′ ̸=i′

γJ ,



10 T. Okuda and A. Sako

where

γI = −2ℏ
qp−1∑
K=1

qp−K∑
L=1

(βnK − 2δIK + 1)(βnK+L − 2δI,K+L + 1)δii′,Kδii′,K+L

× Tn
α⃗n,β⃗∗

n−2e⃗∗I+e⃗
∗
K+e⃗∗K+L

,

γij′ = −ℏ
qp−1∑
K=1

qp−K∑
L=1

(βnK − δK,ij′ − δIK + 1)(βnK+L − δK+L,ij′ − δI,K+L + 1)

× (δij′,Kδii′,K+L + δij′,K+Lδii′,K)Tn
α⃗n,β⃗∗

n−e⃗∗ij′+e⃗
∗
K+e⃗∗K+L−e⃗

∗
I

,

γji′ = −ℏ
qp−1∑
K=1

qp−K∑
L=1

(βnK − δK,ji′ − δIK + 1)(βnK+L − δK+L,ji′ − δI,K+L + 1)

× (δii′,Kδji′,K+L + δii′,K+Lδji′,K)Tn
α⃗n,β⃗∗

n−e⃗∗ji′+e⃗
∗
K+e⃗∗K+L−e⃗

∗
I

,

γJ = −ℏ
qp−1∑
K=1

qp−K∑
L=1

(βnK − δKJ − δIK + 1)(βnK+L − δK+L,J − δI,K+L + 1)

× (δij′,Kδji′,K+L + δij′,K+Lδji′,K)Tn
α⃗n,β⃗∗

n−e⃗∗J+e⃗
∗
K+e⃗∗K+L−e⃗

∗
I

,

respectively.

(I) M = I: In this case, δI,KδI,K+L = δii′,Kδii′,K+L is equal to 0 since K ̸= K + L always
holds. Hence, γI = 0 when M = I.

(II) M = ij′ (j′ ̸= i′): Since γij′ is expressed as a summation over K = kk′, γij′ is written
as γij′ =

∑qp−1
K=1 γ

′
ij′,K , where

γ′ij′,K = −ℏ
qp−K∑
L=1

(βnK − δK,ij′ − δIK + 1)(βnK+L − δK+L,ij′ − δI,K+L + 1)

× (δij′,Kδii′,K+L + δij′,K+Lδii′,K)Tn
α⃗n,β⃗∗

n−e⃗∗ij′+e⃗
∗
K+e⃗∗K+L−e⃗

∗
I

. (3.5)

If k ̸= i, then γ′ij′,K = 0 from δii′K = δij′,K = 0. Thus we consider the case k = i as a non-zero
contribution.

For K = I = ii′, δij′,IδI,I+L + δij′,I+LδI,I = δij′,I+L from δI,I+L = 0, and δij′,I+L = 1 when

L = ij′ − I. Therefore, if K = I with j′ ̸= i′, then

γ′ij′,I = − ℏ(βnI − δI,ij′ − δII + 1)(βnI+ij′−I − δI+ij′−I,ij′ − δI,I+ij′−I + 1)

× (δij′IδI,I+ij′−I + δij′,I+ij′−IδII)T
n
α⃗n,β⃗∗

n−e⃗∗ij′+e⃗
∗
I+ij′−I

= − ℏβnI βnij′T
n
α⃗n,β⃗∗

n
.

For the other cases, i.e., K = ij′(j′ ̸= i′), (δij′,Kδii′,K+L + δij′,K+Lδii′,K) in (3.5) becomes

δij′,ij′δI,ij′+L + δij′,ij′+LδI,ij′ = δI,ij′+L since δI,ij′ = 0, and δI,ij′+L = 1 when L = I − ij′.

Therefore, if K = ij′ (j′ ̸= i′), then we have

γ′ij′,ij′ = −ℏ(βnij′ − δij′,ij′ − δI,ij′ + 1)(βnij′+I−ij′ − δij′+I−ij′,ij′ − δI,ij′+I−ij′ + 1)

× (δij′ij′δI,ij′+I−ij′ + δij′,ij′+I−ij′δIij′)T
n
α⃗n,β⃗∗

n−e⃗∗ij′+e⃗
∗
ij′+e⃗

∗
ij′+I−ij′−e⃗

∗
I

= −ℏβnij′βnI Tnα⃗n,β⃗∗
n
.
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Note that ψ(L) is positive and j′ (̸= i′) is fixed, L can take either I − ij′ or ij′ − I depending
on j. In fact, if j′ > i′, L cannot take I − ij′ because ψ(I) − ψ(ij′) < 0. Conversely, if j′ < i′,
it can be verified that L cannot take ij′ − I. Therefore,

γij′ =
∑
K

γ′ij′,K = −ℏβnI βnij′Tnα⃗n,β⃗∗
n

(3.6)

for any j′( ̸= i′). In a similar way, the cases (III) and (IV) are also calculated, and it can be
verified that

γji′ = −ℏβnI βnji′Tnα⃗n,β⃗∗
n

for j ̸= i, (3.7)

γJ = −ℏ(βnij′ + 1)(βnji′ + 1)Tn
α⃗n,β⃗∗

n−e⃗∗I−e⃗
∗
jj′+e⃗

∗
ji′+e⃗

∗
ij′

for j ̸= i, j′ ̸= i′. (3.8)

Substituting γI = 0 and (3.6)–(3.8) into (3.4), we obtain

(3.4) =
∑
j′ ̸=i′

(3.6) +
∑
j ̸=i

(3.7) +
∑
j ̸=i

∑
j′ ̸=i′

(3.8)

= − ℏβnI
(∑
j′ ̸=i′

βnij′ +
∑
j ̸=i

βnji′

)
Tn
α⃗n,β⃗∗

n

− ℏ
∑
j ̸=i

∑
j′ ̸=i′

(βnij′ + 1)(βnji′ + 1)Tn
α⃗n,β⃗∗

n−e⃗∗I−e⃗
∗
jj′+e⃗

∗
ji′+e⃗

∗
ij′
. (3.9)

Hence, the right-hand side of (2.4) for Gp,p+q(C) is obtained as follows:

βnI T
n
α⃗n,β⃗∗

n
+ (3.3) + (3.9)

= βnI T
n
α⃗n,β⃗∗

n
− ℏβnI (βnI − 1)Tn

α⃗n,β⃗∗
n
− ℏβnI

(∑
j′ ̸=i′

βnij′ +
∑
j ̸=i

βnji′

)
Tn
α⃗n,β⃗∗

n

− ℏ
∑
j ̸=i

∑
j′ ̸=i′

(βnij′ + 1)(βnji′ + 1)Tn
α⃗n,β⃗∗

n−e⃗∗I−e⃗
∗
jj′+e⃗

∗
ji′+e⃗

∗
ij′

= βnI

{
1 + ℏ− ℏ

(
βnI +

∑
j′ ̸=i′

βnij′ +
∑
j ̸=i

βnji′

)}
Tn
α⃗n,β⃗∗

n

− ℏ
∑
j ̸=i

∑
j′ ̸=i′

(βnij′ + 1)(βnji′ + 1)Tn
α⃗n,β⃗∗

n−e⃗∗I−e⃗
∗
jj′+e⃗

∗
ji′+e⃗

∗
ij′
. (3.10)

This means that we obtain (3.1). ■

Recalling that a capital letter index can be identified with an ordinary index, (3.1) can be
rewritten as

ℏ
q∑

d=1

p′∑
d′=1′

gIDT
n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

= βnI

{
1 + ℏ− ℏ

(
n−

∑
j ̸=i
j′ ̸=i′

βnjj′

)}
Tn
α⃗n,β⃗∗

n

− ℏ
∑
j ̸=i
j′ ̸=i′

(βnij′ + 1)(βnji′ + 1)Tn
α⃗n,β⃗∗

n−e⃗∗J+e⃗
∗
ij′+e⃗

∗
ji′−e⃗

∗
I

. (3.11)

Here, we use the fact that βnI +
∑

j′ ̸=i′ β
n
ij′ +

∑
j ̸=i β

n
ji′ +

∑
j ̸=i
∑

j′ ̸=i′ β
n
jj′ = n, since

∣∣β⃗∗n∣∣ =∑
K β

n
K =

∑
k

∑
k′ β

n
kk′ = n in the first term on the right-hand side of (3.10).
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3.2 Star product with separation of variables on G2,4(C)

If the solution of the recurrence relations for (3.1) (or equivalently (3.11)) is determined, we
can explicitly give a star product with separation of variables on Gp,p+q(C). However, it is
not simple to solve (3.1) (or equivalently (3.11)) in general. We need to solve the system of
linear equations for solutions of order n to determine Tn

α⃗n,β⃗∗
n

, even if solutions of order (n − 1)
are given. In addition, the number of variables in this system of linear equations increases
combinatorially with increasing n. In this subsection, we focus on G2,4(C) and give the general
term of the recurrence relations (3.1) for G2,4(C) by eliminating these problems. By using the
general terms, we give its explicit star product with separation of variables.

For G2,4(C), its recurrence relations can be obtained immediately by considering the case
p = q = 2.

Corollary 3.2. For any (fixed) capital letter index I ∈ I, the recurrence relations for G2,4(C)
are given by

ℏ
∑
D∈I

gIDT
n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

= ℏβnI (τn + βn
�I
)Tn
α⃗n,β⃗∗

n
− ℏ(βn

i�i′
+ 1)(βn

�ii′
+ 1)Tn

α⃗n,β⃗∗
n−e⃗∗I+e⃗

∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I
, (3.12)

where τn := 1− n+ 1
ℏ , I := {I, �I, i�i′, �ii′} = {11′, 12′, 21′, 22′}.

It is not a waste to note the notation of capital letter indices again. In G2,4(C) case, �i (or �i′)
is the other index which is not i (or not i′). �i (or �i′) is uniquely determined when i (or i′) is
fixed. For example, if I = 11′, then i�i′ = 12′, �ii′ = 21′, and �I = 22′. I = ii′ may take 12′, 21′

and 22′ as well as 11′.
To determine the explicit star product on G2,4(C), it is necessary to find the general term

T
n
α⃗n,β⃗∗

n
as the solution of the recurrence relations (3.12). It is not easy to find the solution T

n
α⃗n,β⃗∗

n

of (3.12) by direct calculation, because (3.12) contains another coefficient

Tn
α⃗n,β⃗∗

n−e⃗∗I+e⃗
∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I

on the right-hand side. On the other hand, by introducing another recurrence relation for
T
n
α⃗n,β⃗∗

n−e⃗∗I+e⃗
∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I
, we can obtain the recurrence relations equivalent to (3.12).

Proposition 3.3. The recurrence relations (3.12) are equivalent to the following recurrence
relations:

βnI T
n
α⃗n,β⃗∗

n
=

∑
D∈I

{
(τn + βn

i�i′
+ 1)gIDT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

+ (βn
i�i′

+ 1)g
�ii′,D

Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I−e⃗

∗

�I
+e⃗∗

i�i′

}
τn(τn + βn

�I
+ βn

i�i′
+ 1)

=

∑
D∈I

∑2
k=1(τnδik + βn

i�i′
+ 1)gki′,DT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I−δ�ik

(
e⃗∗

�I
−e⃗∗

i�i′

)
τn(τn + βn

�I
+ βn

i�i′
+ 1)

. (3.13)

Proof. To derive (3.13) from (3.12), we introduce another recurrence relation for a fixed index �ii′

as I in (3.12)

ℏ
∑
D∈I

g
�ii′,D

Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗

�ii′

= ℏβn
�ii′
(τn + βn

i�i′
)Tn
α⃗n,β⃗∗

n
− ℏ(βn

�I
+ 1)(βnI + 1)Tn

α⃗n,β⃗∗
n−e⃗∗

�ii′
+e⃗∗

�I
+e⃗∗I−e⃗

∗
i�i′
. (3.14)
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By considering the case of Tn
α⃗n,β⃗∗

n−e⃗∗I+e⃗
∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I
as the coefficient Tn

α⃗n,β⃗∗
n

in (3.14), we have

ℏ
∑
D∈I

g
�ii′,D

Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I−e⃗

∗

�I
+e⃗∗

i�i′

= ℏ(βn
�ii′

+ 1)(τn + βn
i�i′

+ 1)Tn
α⃗n,β⃗∗

n−e⃗∗I+e⃗
∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I
− ℏβn

�I
βnI T

n
α⃗n,β⃗∗

n
. (3.15)

We now consider the system of linear equations for (3.12) and (3.15)

ℏ

 ∑
D∈I gIDT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I∑

D∈I g�ii′,D
Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I−e⃗

∗

�I
+e⃗∗

i�i′


= ℏ

(
τn + βn

�I
−(βn

i�i′
+ 1)

−βn
�I

τn + βn
i�i′

+ 1

) βnI T
n
α⃗n,β⃗∗

n

(βn
�ii′

+ 1)Tn
α⃗n,β⃗∗

n−e⃗∗I+e⃗
∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I

 . (3.16)

Calculating the determinant of the coefficient matrix, we have

det

(
τn + βn

�I
−(βn

i�i′
+ 1)

−βn
�I

τn + βn
i�i′

+ 1

)
= τn(τn + βn

�I
+ βn

i�i′
+ 1).

Since

τ−1
n (τn + βn

�I
+ βn

i�i′
+ 1)−1 =

ℏ
1− ℏ(n− 1)

· ℏ
1− ℏ(n− βn

�I
− βn

i�i′
− 1)

= ℏ2
∞∑

k,m=0

(n− 1)k(n− βn
�I
− βn

i�i′
− 1)mℏk+m,

then τ−1
n (τn + βn

�I
+ βn

i�i′
+ 1)−1 exists. Thus, there is the inverse matrix(

τn + βn
�I
−(βn

i�i′
+ 1)

−βn
�I

τn + βn
i�i′

+ 1

)−1

= τ−1
n (τn + βn

�I
+ βn

i�i′
+ 1)−1

(
τn + βn

i�i′
+ 1 βn

i�i′
+ 1

βn
�I

τn + βn
�I

)
. (3.17)

Multiplying the both sides of (3.16) by (3.17) from the left, we get the solution of (3.16) βnI T
n
α⃗n,β⃗∗

n

(βn
�ii′

+ 1)Tn
α⃗n,β⃗∗

n−e⃗∗I+e⃗
∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I

 = τ−1
n (τn + βn

�I
+ βn

i�i′
+ 1)−1

×


∑

D∈I
{
(τn + βn

i�i′
+ 1)gIDT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

+(βn
i�i′

+ 1)g
�ii′,D

Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I−e⃗

∗

�I
+e⃗∗

i�i′

}
∑

D∈I
{
βn
�I
gIDT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

+ (τn + βn
�I
)g
�ii′,D

Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I−e⃗

∗

�I
+e⃗∗

i�i′

}
 . (3.18)

By focusing on the first component of both sides of (3.18), we obtain (3.13).
Conversely, we show that (3.12) is derived from (3.13). We introduce another recurrence

relation for �ii′ as I in (3.13)

βn
�ii′
Tn
α⃗n,β⃗∗

n

=

∑
D∈I
{
(τn+β

n

�I
+1)g

�ii′,D
Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗

�ii′
+(βn

�I
+1)gIDT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗

�ii′
−e⃗∗

i�i′
+e⃗∗

�I

}
τn(τn + βn

�I
+ βn

i�i′
+ 1)

. (3.19)
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Considering the case where β⃗∗n is β⃗∗n − e⃗∗I + e⃗∗
i�i′

+ e⃗∗
�ii′
− e⃗∗

�I
as Tn

α⃗n,β⃗∗
n

in (3.19), it satisfies the
recurrence relation

(βn
�ii′

+ 1)Tn
α⃗n,β⃗∗

n−e⃗∗I+e⃗
∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I

=

∑
D∈I

{
(τn + βn

�I
)g
�ii′,D

Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I+e⃗

∗
i�i′

−e⃗∗
�I
+ βn

�I
gIDT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

}
τn(τn + βn

�I
+ βn

i�i′
+ 1)

. (3.20)

Substituting (3.13) and (3.20) into the right hand side of (3.12), we have

ℏβnI (τn + βn
�I
)Tn
α⃗n,β⃗∗

n
− ℏ(βn

i�i′
+ 1)(βn

�ii′
+ 1)Tn

α⃗n,β⃗∗
n−e⃗∗I+e⃗

∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I

= ℏτ−1
n (τn + βn

�I
+ βn

i�i′
+ 1)−1

∑
D∈I

[
(τn + βn

�I
)
{
(τn + βn

i�i′
+ 1)gIDT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

+ (βn
i�i′

+ 1)g
�ii′,D

Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I−e⃗

∗

�I
+e⃗∗

i�i′

}
− (βn

i�i′
+ 1)

{
(τn + βn

�I
)g
�ii′D

Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I+e⃗

∗
i�i′

−e⃗∗
�I
+ βn

�I
gIDT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

}]
= ℏ

∑
D∈I

gIDT
n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I

.

This is the left-hand side of (3.12). ■

By using Proposition 3.3, we obtain the following.

Proposition 3.4. For n ≥ 1, the coefficient Tn
α⃗n,β⃗∗

n

of (2.2) for G2,4(C) is given by using the
coefficients of order (n− 1) as follows:

Tn
α⃗n,β⃗∗

n
=

∑
J,D∈I

{
(τn+β

n
j �j

′+1)gJDT
n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗J

+(βn
j �j

′+1)g
�jj

′,D
Tn−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗J−e⃗

∗

�J
+e⃗∗

j �j
′

}
τn
{
n(τn + 1) + 2(βnI + βn

�ii′
)(βn

�I
+ βn

i�i′
)
} ,

=

∑
J,D∈I

∑2
k=1

{
(τnδjk + βn

j �j
′ + 1)gkj′,DT

n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗J−δ�jk

(e⃗∗

�J
−e⃗∗

j �j
′ )

}
τn
{
n(τn + 1) + 2(βnI + βn

�ii′
)(βn

�I
+ βn

i�i′
)
} . (3.21)

That is, Tn
α⃗n,β⃗∗

n

given by (3.21) gives a star product with separation of variables on G2,4(C).

Proof. First, we derive (3.21) from (3.13) in Proposition 3.3. Multiplying both sides of (3.13)
by τn + βn

�I
+ βn

i�i′
+ 1, we have

βnI (τn + βn
�I
+ βn

i�i′
+ 1)Tn

α⃗n,β⃗∗
n

= τ−1
n

∑
D∈I

2∑
k=1

(τnδik + βn
i�i′

+ 1)gki′,DT
n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I−δ�ik

(e⃗∗

�I
−e⃗∗

i�i′
)
. (3.22)

Summing for I on both sides of (3.22), we obtain∑
I∈I

βnI (τn + βn
�I
+ βn

i�i′
+ 1)Tn

α⃗n,β⃗∗
n

= τ−1
n

∑
I,D∈I

2∑
k=1

(τnδik + βn
i�i′

+ 1)gki′,DT
n−1

α⃗n−e⃗D,β⃗∗
n−e⃗∗I−δ�ik

(e⃗∗

�I
−e⃗∗

i�i′
)
. (3.23)
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Here, we use the following identities:∑
J∈I

βnJ (τn + βn
�J
+ βn

j �j
′ + 1) = n(τn + 1) + 2(βn11′ + βn21′)(β

n
22′ + βn12′)

= n(τn + 1) + 2(βnI + βn
�ii′
)(βn

�I
+ βn

i�i′
). (3.24)

Note that

(βnI + βn
�ii′
)(βn

�I
+ βn

i�i′
) = (βn11′ + βn21′)(β

n
22′ + βn12′)

does not depend on how we choose fixed I from I = {11′, 12′, 21′, 22′}. See Appendix B for more
details. Substituting (3.24) into (3.23), (3.23) can be rewritten as (3.21).

According to the construction method proposed by [20, 21] (or equivalently [49, 50]), there is
the solution T

n
α⃗n,β⃗∗

n
of (3.12). Furthermore, the solution T

n
α⃗n,β⃗∗

n
of (3.12) is determined by (3.13),

which are equivalent to (3.12) in Proposition 3.3. The equivalence of (3.21) with (3.13) in Propo-
sition 3.3 is not clear for the moment. In other words, it is not clear whether the solution of (3.21)
is T

n
α⃗n,β⃗∗

n
of the star product with separation of variables. However, (3.21) are derived from (3.12)

in Proposition 3.3, so the general term T
n
α⃗n,β⃗∗

n
satisfying (3.12) satisfies (3.21). On the other

hand, (3.21) states that if the coefficients of order (n− 1) are given, then the coefficient T
n
α⃗n,β⃗∗

n

can be completely determined. In fact, since T
0
0⃗,⃗0∗ is given by (2.3) in Proposition 2.1, T

n
α⃗n,β⃗∗

n
can

be determined by solving (3.21) sequentially from the n = 1 case. By applying (3.21) sequen-
tially, the solution of (3.21), i.e., T

n
α⃗n,β⃗∗

n
, is explicitly and uniquely determined. Hence, T

n
α⃗n,β⃗∗

n

obtained as the solution of (3.21) is also the solution of (3.12), i.e., it gives a star product with
separation of variables. ■

3.3 Solution of the recurrence relations for G2,4(C)

We give the explicit expression of T
n
α⃗n,β⃗∗

n
as the solution of (3.12) in this subsection. T

n
α⃗n,β⃗∗

n

corresponds well to a Fock space representation, since T
n
α⃗n,β⃗∗

n
= 0 when α⃗n and β⃗∗n contain

negative components, and the possible α⃗n and β⃗∗n increase infinitely with increasing order n. To
carry out the calculations more simply, let us introduce a linear operator Tn realizing T

n
α⃗n,β⃗∗

n
as

the Fock space representation.
First, we also denote α⃗n by

α⃗n := αnI e⃗I + αn
�I
e⃗
�I
+ αn

i�i′
e⃗i�i′

+ αn
�ii′
e⃗
�ii′
.

To define a linear operator Tn, let us construct the Fock space. We introduce the vector space V
over C by using the basis

∣∣m⃗〉 := ∣∣∑J∈I mJ e⃗J
〉

V :=

{∑
m⃗

cm⃗|m⃗⟩
∣∣∣∣ cm⃗ ∈ C

}
,

where mJ ∈ Z≥0 and I := {I, �I, i�i′, �ii′}. |m⃗⟩ is called “ket” (of V ). In particular, the ket
whose each mJ is 0 is called “vacuum” and denoted by |⃗0⟩. Here, we introduce the creation and
annihilation operators. For any capital letter index I, the creation and annihilation operators aI
and a†I are defined as linear operators on V satisfying the following relations:

aI |m⃗⟩ =
√
mI |m⃗− e⃗I⟩, aI |⃗0⟩ = 0, a†I |m⃗⟩ =

√
mI + 1|m⃗+ e⃗I⟩.

By using the above aI and a
†
I , a number operator is defined by NI := a†IaI . NI plays the role of

multiplying by the I-th component of |m⃗⟩ , i.e., NI |m⃗⟩ = mI |m⃗⟩. By definition of aI , a
†
I and NI ,

the following relations:

[aI , aJ ] = 0,
[
a†I , a

†
J

]
= 0,

[
aI , a

†
J

]
= δIJ ,

[aI , NJ ] = δIJaJ = δIJaI ,
[
a†I , NJ

]
= −δIJa†J = −δIJa†I , [NI , NJ ] = 0,



16 T. Okuda and A. Sako

holds between them for any ket |m⃗⟩ and any capital letter indices I, J . For a ket |m⃗⟩ such
that mI > 0, the operator 1√

NI
can be defined by

1√
NI
|m⃗⟩ := 1

√
mI
|m⃗⟩.

We next consider the dual vector space V ∗ of V . We denote the dual basis of V ∗ by ⟨n⃗|. ⟨n⃗|
satisfies ⟨n⃗|m⃗⟩ := δn⃗,m⃗. ⟨n⃗| is called “bra”. By taking the Hermitian conjugate of ⟨n⃗|, a bra ⟨n⃗|
becomes a ket |n⃗⟩, i.e., |n⃗⟩ = (⟨n⃗|)†. Let us now consider an operator aI

1√
NI

. Note that since

⟨m⃗|aI
1√
NI

=

(
1√
NI

a†I |m⃗⟩
)†

for any bra ⟨m⃗|, aI 1√
NI

can always be defined for any ket |n⃗⟩ if there exists a bra ⟨m⃗| on the
left. For such an operator aI

1√
NI

, the following commutation relations hold[
aI

1√
NI

, aJ
1√
NJ

]
|m⃗⟩ = 0, mI ,mJ > δIJ ,[

aI
1√
NI

, a†J
1√

NJ + 1

]
|m⃗⟩ = 0, mI > 0,

[
a†I

1√
NI + 1

, a†J
1√

NJ + 1

]
|m⃗⟩ = 0.

Moreover, let f
(
N⃗
)
be an arbitrary operator that depends on N⃗ , where N⃗ is defined by

N⃗ := NI e⃗I +N
�I
e⃗
�I
+Ni�i′

e⃗i�i′
+N

�ii′
e⃗
�ii′
.

Then, f
(
N⃗
)
holds the following relations:

f
(
N⃗
)
aI

1√
NI
|m⃗⟩ = aI

1√
NI

f
(
N⃗ − e⃗I

)
|m⃗⟩, mI > 0, (3.25)

f
(
N⃗
)
a†I

1√
NI + 1

|m⃗⟩ = a†I
1√

NI + 1
f
(
N⃗ + e⃗I

)
|m⃗⟩. (3.26)

Note that for any m⃗ = mI e⃗I +m
�I
e⃗
�I
+mi�i′

e⃗i�i′
+m

�ii′
e⃗
�ii′
, aJ |m⃗⟩ can also be expressed as

aJ |m⃗⟩ =
√
mJ |m⃗− e⃗J⟩ =

(∏
L∈I

θ(mL − δLJ)
)
√
mJ |m⃗− e⃗J⟩, J ∈ I, (3.27)

where θ : R→ {0, 1} is the step function such that

θ(x) :=

{
1, x ≥ 0,

0, x < 0.

The above expression using the step function θ is used in calculations in Appendix C.
We are now ready to define a linear operator Tn. We define a linear operator Tn on V by

Tn :=
∑
α⃗n,β⃗∗

n

Tn
α⃗n,β⃗∗

n
|α⃗∗
n⟩⟨β⃗n|. (3.28)

T
n
α⃗n,β⃗∗

n
is a matrix representation of Tn using a Fock space V . T0 = |⃗0⟩⟨⃗0| is given from (2.3)

in Proposition 2.1. By Proposition 3.4, Tn can be expressed by using a linear operator Tn−1 of
order (n− 1) as follows:

Tn =
∑
J,D∈I

a†D
1√

ND + 1
Tn−1
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×

aJ 1√
NJ

(τn +Nj �j
′ + 1)gJD + aJa�J

a†
j �j

′

Nj �j
′ + 1√

NJN�J
(Nj �j

′ + 1)
g
�jj

′,D


× τ−1

n

{
n(τn + 1) + 2(NI +N

�ii′
)(N

�I
+Ni�i′

)
}−1

. (3.29)

By applying (3.29) (n− 1) times, the following theorem is obtained.

Theorem 3.5. A linear operator Tn is explicitly given by

Tn =
∑

Ji∈{Ji}n
Di∈{Di}n

2∑
ki=1

ki∈{ki}n

a†Dn

1√
NDn + 1

· · · a†D1

1√
ND1 + 1

T0B1,J1,k1 · · · Bn,Jn,kn ,

where T0 = |⃗0⟩⟨⃗0|,

Bl,Jl,kl := aJl
1√
NJl

(
a
�Jl

1√
N
�Jl
a†
jl�jl

′
1√

Njl�jl
′ + 1

)δ
�jlkl

(τlδjlkl +Njl�jl
′ + 1)

g
kljl

′,Dl

τl

×
{
l(τl + 1) + 2(NI +N

�ii′
)(N

�I
+Ni�i′

)
}−1

for l = 1, . . . , n, and summations
∑

Ji∈{Ji}n
Di∈{Di}n

and
∑2

ki=1
ki∈{ki}n

are defined as

∑
Ji∈{Ji}n
Di∈{Di}n

:=
∑
J1∈I
· · ·
∑
Jn∈I

∑
D1∈I

· · ·
∑
Dn∈I

,

2∑
ki=1

ki∈{ki}n

:=

2∑
k1=1

· · ·
2∑

kn=1

,

respectively.

Note that

aJa�J
a†
j �j

′
1√

NJN�J
(Nj �j

′ + 1)
= aJ

1√
NJ

a
�J

1√
N
�J
a†
j �j

′
1√

Nj �j
′ + 1

for any J ∈ I, since j��j′ ̸= J(= jj′), �J ̸= J(= jj′), and j��j
′ ̸= �J . By using the relations (3.25)

and (3.26), we obtain

(τlδjlkl +Njl�jl
′ + 1)aJl+1

1√
NJl+1

a
��Jl+1

1√
N
��Jl+1

a†jl+1��jl+1
′

1√
Njl+1��jl+1

′ + 1

δ
��jl+1kl+1

= aJl+1

1√
NJl+1

a
��Jl+1

1√
N
��Jl+1

a†jl+1��jl+1
′

1√
Njl+1��jl+1

′ + 1

δ
��jl+1kl+1

× [τlδjlkl +Njl�jl
′ − {δjl�jl′,Jl+1

+ δ
��jl+1kl+1

(δjl�jl′,��Jl+1
− δjl�jl,jl+1��jl+1

′)}+ 1],

and

{l(τl + 1) + 2(NI +N
�ii′
)(N

�I
+Ni�i′

)}−1aJl+1

× 1√
NJl+1

a
��Jl+1

1√
N
��Jl+1

a†jl+1��jl+1
′

1√
Njl+1��jl+1

′ + 1

δ
��jl+1kl+1
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= aJl+1

1√
NJl+1

a
��Jl+1

1√
N
��Jl+1

a†jl+1��jl+1
′

1√
Njl+1��jl+1

′ + 1

δ
��jl+1kl+1

× [l(τl + 1) + 2{NI +N
�ii′
− (δIJl+1

+ δ
�ii′,Jl+1

)}

× {N
�I
+Ni�i′

− (δ
�IJl+1

+ δi�i′,Jl+1
)}]−1.

Here we use

δJl+1I + δ
��jl+1kl+1

(δ
��Jl+1,I − δjl+1��jl+1

′,I) + δJl+1,�ii′
+ δ

��jl+1kl+1
(δ
��Jl+1,�ii′

− δjl+1��jl+1
′,�ii′

)

= δJl+1I + δJl+1,�ii′
,

δJl+1�I
+ δ

��jl+1kl+1
(δ
��Jl+1,�I

− δjl+1��jl+1
′,�I
) + δJl+1,i�i′

+ δ
��jl+1kl+1

(δ
��Jl+1,i�i′

− δjl+1��jl+1
′,i�i′

)

= δJl+1�I
+ δJl+1,i�i′

implied from the following identities

δ
��Jl+1,I + δ

��Jl+1,�ii′
− δjl+1��jl+1

′,I − δjl+1��jl+1
′,�ii′

= 0,

δ
��Jl+1,�I

+ δ
��Jl+1,i�i′

− δjl+1��jl+1
′,�I
− δjl+1��jl+1

′,i�i′
= 0.

Thus, B1,J1,k1 · · · Bn,Jn,kn can be rewritten as

B1,J1,k1 · · · Bn,Jn,kn =
g
k1j1′,D1

· · · g
knjn′,Dn

τ1 · · · τn
AJ1,k1 · · · AJn,knC1,{Ji}n,{ki}n

· · · Cn,{Ji}n,{ki}nF1,{Ji}n,{ki}n · · · Fn,{Ji}n,{ki}n .

Here AJl,kl , Cl,{Ji}n,{ki}n and Fl,{Ji}n,{ki}n are defined as

AJl,kl := aJl
1√
NJl

(
a
�Jl

1√
N
�Jl
a†
jl�jl

′
1√

Njl�jl
′ + 1

)δ
�jlkl

,

Cl,{Ji}n,{ki}n := (τlδjlkl +Njl�jl
′ − Λl,jl�jl′,{Ji}n,{ki}n

+ 1),

Fl,{Ji}n,{ki}n := {l(τl + 1) + 2(NI +N
�ii′
−∆I,�ii′,l,{Ji}n

)(N
�I
+Ni�i′

−∆
�I,i�i′,l,{Ji}n

)}−1,

where

Λl,S,{Ji}n,{ki}n :=

n∑
m=1

dS,Jm,km −
l∑

m=1

dS,Jm,km =

n∑
m=l+1

dS,Jm,km , (3.30)

dS,Jm,km := δS,Jm + δ
��jmkm

(δS,��Jm − δS,jm��jm′), (3.31)

∆I,�ii′,l,{Ji}n
:=

n∑
m=1

(δIJm + δ
�ii′,Jm

)−
l∑

m=1

(δIJm + δ
�ii′,Jm

) =
n∑

m=l+1

(δIJm + δ
�ii′,Jm

), (3.32)

∆
�I,i�i′,l,{Ji}n

:=

n∑
m=1

(δ
�IJm

+ δi�i′,Jm
)−

l∑
m=1

(δ
�IJm

+ δi�i′,Jm
) =

n∑
m=l+1

(δ
�IJm

+ δi�i′,Jm
) (3.33)

for l = 1, . . . , n, S ∈ I, {Ji}n := {J1, . . . , Jn} and {ki}n := {k1, . . . , kn}. Note that Fl,{Ji}n,{ki}n
does not depend on the fixed index I because of Proposition B.2. Hence, we obtain the explicit
expression for Tn as the solution of Proposition 3.4.
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Theorem 3.6. A linear operator Tn is explicitly given by

Tn =
∑

Ji∈{Ji}n
Di∈{Di}n

2∑
ki=1

ki∈{ki}n

a†Dn

1√
NDn + 1

· · · a†D1

1√
ND1 + 1

T0

×AJ1,k1 · · · AJn,kn
n∏
l=1

(g
kljl

′,Dl

τl
Cl,{Ji}n,{ki}nFl,{Ji}n,{ki}n

)
, (3.34)

where T0 = |⃗0⟩⟨⃗0|.

The coefficient Tn
α⃗n,β⃗∗

n

is recovered from (3.28) as

Tn
α⃗n,β⃗∗

n
= ⟨α⃗n|Tn|β⃗∗n⟩. (3.35)

By Theorem 3.6, we can explicitly give Tn
α⃗n,β⃗∗

n

.

Theorem 3.7. The coefficient Tn
α⃗n,β⃗∗

n

which determines a star product with separation of vari-
ables on G2,4(C) is given by

Tn
α⃗n,β⃗∗

n
=

∑
Ji∈{Ji}n
Di∈{Di}n

2∑
ki=1

ki∈{ki}n

δα⃗n,
∑n

m=1 e⃗Dm
δ
β⃗∗
n,
∑

X∈I
∑n

m=1 dX,Jm,km e⃗
∗
X

×

(∏
S∈I

n∏
r=1

θ

(
βnS −

n∑
m=r

dS,Jm,km

))(
n∏
l=1

g
klj

′
l ,Dl

τl

)

×

{
n∏
l=1

τlδjlkl + βn
jl�jl

′ + 1− Λl,jl�jl′,{Ji}n,{ki}n

l(τl + 1) + 2(βnI + βn
�ii′
−∆I,�ii′,l,{Ji}n

)(βn
�I
+ βn

i�i′
−∆

�I,i�i′,l,{Ji}n
)

}
. (3.36)

See Appendix C for detailed calculations to obtain Theorem 3.7. Note that (3.36) does not
depend on the capital letter index I.

Now that we are ready, let us begin the proof of the main theorem, Theorem 1.4. Substituting
(3.36) into (2.2), we can obtain the explicit star product with separation of variables on G2,4(C).
Recalling that the right-hand side of (3.36) includes Kronecker’s delta

δα⃗n,
∑n

m=1 e⃗Dm
and δ

β⃗∗
n,
∑

P∈I
∑n

m=1 dX,Jm,km e⃗
∗
X
,

then α⃗n, and β⃗
∗
n that contribute to

∑
α⃗n,β⃗∗

n
in (2.2) as non-zero are as follows:

α⃗n =
n∑

m=1

e⃗Dm , β⃗∗n =
∑
X∈I

n∑
m=1

dX,Jm,km e⃗
∗
X .

In more detail, components of β⃗∗n are also rewritten as follows:

βnI =
n∑

m=1

dI,Jm,km , βn
�I
=

n∑
m=1

d
�I,Jm,km

, βn
i�i′

=
n∑

m=1

di�i′,Jm,km
,

βn
�ii′

=

n∑
m=1

d
�ii′,Jm,km

, (3.37)

respectively. From (3.30) and (3.37), then we have

βn
jl�jl

′ − Λl,jl�jl′,{Ji}n,{ki}n
=

l∑
m=1

djl�jl′,Jm,km
.
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From (3.31), (3.32), (3.37), and using δI��Jm − δI,jm��jm′ + δ
�ii′,��Jm

− δ
�ii′,jm��jm

′ = 0,

(βnI + βn
�ii′
−∆I,�ii′,l,{Ji}n

)(βn
�I
+ βn

i�i′
−∆

�I,i�i′,l,{Ji}n
)

=

{
l∑

m=1

(δIJm + δ
�ii′,Jm

)

}{
l∑

m=1

(δ
�IJm

+ δi�i′,Jm
)

}

for l = 1, . . . , n. In this case, the step function θ
(
βnS −

∑n
m=r dS,Jm,km

)
in (3.36) can be rewrit-

ten as

θ

(
βnS −

n∑
m=r

dS,Jm,km

)
= θ

(
r−1∑
m=1

dS,Jm,km

)

from (3.31) and (3.37). The derivations are also rewritten as

Dα⃗n = D
∑n

m=1 e⃗Dm , Dβ⃗∗
n = D

∑
X∈I

∑n
m=1 dX,Jm,km e⃗

∗
X

from (3.37). Hence, we obtain Theorem 1.4 (our main theorem).

4 Solution Tn for n = 0, 1, 2

In this section, we give the linear operators T1, T2 that are n = 1, 2 cases of (3.34). By using
the obtained linear operators, we calculate

T 1
α⃗1,β⃗∗

1

= ⟨α⃗1|T1|β⃗∗1⟩ and T 2
α⃗2,β⃗∗

2

= ⟨α⃗2|T2|β⃗∗2⟩

from Theorem 3.6. We also calculate T
n
α⃗n,β⃗∗

n
for n = 1, 2 straightforwardly from (3.36). We

then compare the obtained ⟨α⃗n|Tn|β⃗∗n⟩ and T
n
α⃗n,β⃗∗

n
from (3.36) for n = 1, 2 and check that

they are equal to each other. Finally, we show that the obtained T
2
α⃗2,β⃗∗

2
actually satisfies the

recurrence relations (3.12) in Proposition 3.2.
T0 is immediately given as

T0 = |⃗0⟩⟨⃗0| (4.1)

by Proposition 2.1. We first check that T1 recovers the coefficient for n = 1. Let ⟨e⃗M | and |e⃗∗L⟩
be some n = 1 bra and ket, respectively. By Theorem 3.6, T1 is given by

T1 =
∑
J,D∈I

a†D
1√

ND + 1
|⃗0⟩⟨⃗0|

×

{
aJ

1√
NJ

(τ1 +Nj �j
′ + 1)gJD + aJ

1√
NJ

a
�J

1√
N
�J
a†
j �j

′
1√

Nj �j
′ + 1

(Nj �j
′ + 1)g

�jj
′,D

}
× τ−1

1 {1 · (τ1 + 1) + 2(NI +N
�ii′
)(N

�I
+Ni�i′

)}−1,

=
∑
J,D∈I

∣∣e⃗∗D〉
{〈
e⃗J
∣∣(τ1 +Nj �j

′ + 1)gJD +
〈
e⃗J + e⃗

�J

∣∣a†
j �j

′
1√

Nj �j
′ + 1

(Nj �j
′ + 1)g

�jj
′,D

}
× ℏ{(τ1 + 1) + 2(NI +N

�ii′
)(N

�I
+Ni�i′

)}−1, (4.2)

where we use (4.1) and τ−1
1 = ℏ. Since j��j

′ ̸= J (= jj′), j��j
′ ̸= �J (= ��j��j

′), then ⟨e⃗J + e⃗
�J
|a†
j �j

′ = 0,
and we obtain

(4.2) =
∑
J,D∈I

ℏgJD|e⃗
∗
D⟩⟨e⃗J |. (4.3)
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Here we use (NI +N
�ii′
)(N

�I
+Ni�i′

)|e⃗∗L⟩ = 0. Hence, ⟨e⃗M |T1|e⃗∗L⟩ can be calculated as

⟨e⃗M |T1|e⃗∗L⟩ = ℏgML = T 1
e⃗M ,e⃗∗L

.

This result coincides with Tn
α⃗n,β⃗∗

n

for n = 1 in (2.3) in Proposition 2.1. Next, we consider the
case n = 2. For n = 2, a linear operator T2 is given by

T2 =
∑

D1,D2∈I

∑
J1,J2∈I

ℏgJ1D1
|e⃗∗D1

+ e⃗∗D2
⟩⟨e⃗J1 |

×

{
aJ2

1√
NJ2

(τ2 +Nj2�j2
′ + 1)gJ2D

+ aJ2
1√
NJ2

a��J2
1√
N��J2

a†
j2�j2

′
1√

Nj2�j2
′ + 1

(Nj2�j2
′ + 1)g

�j2j
′
2,D

}
× 1

2
τ−1
2 {τ1 + 1 + (NI +N

�ii′
)(N

�I
+Ni�i′

)}−1, (4.4)

from (3.29) and (4.3). Here we use

a†D1

1√
ND1 + 1

a†D2

1√
ND2 + 1

|⃗0⟩ = |e⃗∗D1
+ e⃗∗D2

⟩.

We now check that T2 recovers T
2
α⃗2,β⃗∗

2
, that is, the solution for n = 2. There are 10 possible β⃗∗2

patterns. They can be classified into the following four patterns for a fixed P ∈ I:

(I) β⃗∗2 = 2e⃗∗P , (II) β⃗∗2 = e⃗∗P + e⃗∗p�p
′ , (III) β⃗∗2 = e⃗∗P + e⃗∗

�pp
′ , (IV) β⃗∗2 = e⃗∗P + e⃗∗�P .

Therefore, we only need to check the above four patterns. For the case β⃗∗2 = 2e⃗∗P , T2|2e⃗∗P ⟩ is
non-zero only for J2 = P in (4.4), and (δIP + δ

�ii′,P
)(δ

�IP
+ δi�i′,P

) = 0 for a fixed P ∈ I. T2|2e⃗∗P ⟩
can be rewritten as

T2|2e⃗∗P ⟩ =
ℏ
2

∑
J1,D1,D2∈I

gJ1D1
|e⃗∗D1

+ e⃗∗D2
⟩
〈
e⃗J1 |e⃗∗P ⟩ · gPD2

τ−1
2 (τ2 + 1)(τ2 + 1)−1

=
ℏ
2

(
−1 + 1

ℏ

)−1 ∑
D1,D2∈I

gPD1
gPD2

|e⃗∗D1
+ e⃗∗D2

⟩. (4.5)

Here we use ⟨e⃗J1 |e⃗∗P ⟩ = δJ1P and τ2 = −1 + 1
ℏ . By using (4.5), we obtain

T 2
α⃗2,2e⃗∗P

= ⟨α⃗2|T2|2e⃗∗P ⟩ =
ℏ
2

(
−1 + 1

ℏ

)−1 ∑
D1,D2∈I

gPD1
gPD2

δα⃗2,e⃗D1
+e⃗D2

. (4.6)

We also calculate directly T 2
α⃗2,2e⃗∗P

by using (3.36) in Theorem 3.7 for confirmation. Since β⃗∗2 =
2e⃗∗P and n = 2, the step function in (3.36) is

∏
S∈I

2∏
r=1

θ

(
β2S −

2∑
m=r

dS,Jm,km

)
=
∏
S∈I

2∏
r=1

θ

(
2δSP −

2∑
m=r

dS,Jm,km

)
.

Recalling that

dS,Jm,km = δS,Jm + δ
��jmkm

(δS,��Jm − δS,jm��jm′),
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the step function
∏
S∈I

∏2
r=1 θ

(
2δSP −

∑2
m=r dS,Jm,km

)
is 1 if and only if J1 = J2 = P , k1 = j1

and k2 = j2. If J1 = J2 = P = pp′ and k1 = j1 = k2 = j2 = p, T 2
α⃗2,2e⃗∗P

can be expressed as

T 2
α⃗2,2e⃗∗P

=
∑

D1,D2∈I

gPD1
gPD2

τ1τ2
δα⃗2,e⃗D1

+e⃗D2
δ2e⃗∗P ,

∑
X∈I 2dX,P,pe⃗

∗
X

×
τ1 + 2δp�p

′,P + 1− Λ1,j1�j1
′,{Ji}2,{ji}2

∣∣
J1=J2=P

τ1 + 1 + 2(2δIP + 2δ
�ii′,P
−∆I,�ii′,1,{Ji}2

∣∣
J1=J2=P

)

× 1

(2δ
�IP

+ 2δi�i′,P
−∆

�I,i�i′,1,{Ji}2

∣∣
J1=J2=P

)

×
τ2 + 2δp�p

′,P + 1− Λ2,j2�j2
′,{Ji}2,{ji}2

∣∣
J1=J2=P

2(τ2 + 1) + 2(2δIP + 2δ
�ii′,P
−∆I,�ii′,2,{Ji}2

∣∣
J1=J2=P

)

× 1

(2δ
�IP

+ 2δi�i′,P
−∆

�I,i�i′,2,{Ji}2

∣∣
J1=J2=P

)
(4.7)

for a fixed P = pp′, where β2M = 2δMP for M ∈ I. Note that

dX,P,p = δX,P , (4.8)

Λ1,j1�j1
′,{Ji}2,{ji}2 |J1=J2=P = δp�p

′,P = 0, Λ2,j2�j2
′,{Ji}2,{ji}2 |J1=J2=P = 0, (4.9)

∆I,�ii′,1,{Ji}2
|J1=J2=P = δIP + δ

�ii′,P
, ∆

�I,i�i′,1,{Ji}2
|J1=J2=P = δ

�IP
+ δi�i′,P

, (4.10)

∆I,�ii′,2,{Ji}2
|J1=J2=P = 0, ∆

�I,i�i′,2,{Ji}2
|J1=J2=P = 0 (4.11)

from (3.30)–(3.33). Since
∑

X∈I δX,P e⃗
∗
X = e⃗∗P , then Kronecker’s delta is calculated as

δ2e⃗∗P ,2
∑

X∈I dX,P,pe⃗
∗
X
= δ2e⃗∗P ,2e⃗

∗
P
= 1 (4.12)

by using (4.8). The denominators and numerators in (4.7) can be calculated by using (4.9)–
(4.11). The numerators in (4.7) are expressed as

τ1 + 2δp�p
′,P + 1− Λ1,j1�j1

′,{Ji}2,{ji}2 |J1=J2=P = τ1 + 1,

τ2 + 2δp�p
′,P + 1− Λ2,j2�j2

′,{Ji}2,{ji}2 |J1=J2=P = τ2 + 1

from (4.9), respectively. Here, we use δP,p�p
′ = 0 since P ̸= p�p

′ for any P = pp′. By using (4.10)
and (4.11), for l = 1, 2, the denominators in (4.7) are also calculated as

τ1 + 1 + 2{2(δIP + δ
�ii′,P

)−∆I,�ii′,1,{Ji}2
}{2(δ

�IP
+ δi�i′,P

)−∆
�I,i�i′,1,{Ji}2

}

= τ1 + 1 + 2(δIP + δ
�ii′,P

)(δ
�IP

+ δi�i′,P
) = τ1 + 1,

and

2(τ2 + 1) + 2{2(δIP + δ
�ii′,P

)−∆I,�ii′,2,{Ji}2
}{2(δ

�IP
+ δi�i′,P

)−∆
�I,i�i′,2,{Ji}2

}

= 2(τ2 + 1) + 8(δIP + δ
�ii′,P

)(δ
�IP

+ δi�i′,P
) = 2(τ2 + 1). (4.13)

Here, we use (δIP + δ
�ii′,P

)(δ
�IP

+ δi�i′,P
) = 0 for any indices P, I ∈ I. Substituting (4.12)–(4.13)

into (4.7), we eventually obtain

T 2
α⃗2,2e⃗∗P

=
∑

D1,D2∈I

1

2
gPD1

gPD2
τ−1
1 τ−1

2 (τ1 + 1)(τ2 + 1)(τ1 + 1)−1(τ2 + 1)−1δα⃗2,e⃗D1
+e⃗D2
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=
ℏ
2

(
−1 + 1

ℏ

)−1 ∑
D1,D2∈I

gPD1
gPD2

δα⃗2,e⃗D1
+e⃗D2

. (4.14)

(4.14) coincides with (4.6).

Similarly, we can calculate for the cases β⃗∗2 = e⃗∗P + e⃗∗p�p
′ , β⃗∗2 = e⃗∗P + e⃗∗

�pp
′ and β⃗∗2 = e⃗∗P + e⃗∗

�P
as

follows:

T 2
α⃗2,e⃗∗P+e⃗∗

p�p
′
= ⟨α⃗2|T2|e⃗∗P + e⃗∗p�p

′⟩ = ℏ
(
−1 + 1

ℏ

)−1 ∑
D1,D2∈I

gPD1
gp�p

′,D2
δα⃗2,e⃗D1

+e⃗D2
. (4.15)

T 2
α⃗2,e⃗∗P+e⃗∗

�pp
′
= ⟨α⃗2|T2|e⃗∗P + e⃗∗

�pp
′⟩ = ℏ

(
−1 + 1

ℏ

)−1 ∑
D1,D2∈I

gPD1
g
�pp

′,D2
δα⃗2,e⃗D1

+e⃗D2
, (4.16)

T 2
α⃗2,e⃗∗P+e⃗∗

�P
= ⟨α⃗2|T2|e⃗∗P + e⃗∗�P ⟩ =

(
−1 + 1

ℏ

)−1(
1 +

1

ℏ

)−1

×
∑

D1,D2∈I
(gPD1

g
�PD2

+ ℏgp�p′,D1
g
�pp

′,D2
)δα⃗2,e⃗D1

+e⃗D2
. (4.17)

By long but straightforward calculations, we can also check that (4.15), (4.16) and (4.17) coincide
with T 2

α⃗2,e⃗∗P+e⃗∗
p�p

′
, T 2

α⃗2,e⃗∗P+e⃗∗

�pp
′
and T 2

α⃗2,e⃗∗P+e⃗∗

�P
, calculated from (3.36), respectively.

Lastly, we check that T 2
α⃗2,β⃗∗

2

satisfies the recurrence relations (3.12) for n = 2 in Proposi-
tion 3.2. In this discussion, we give detailed calculations only for the case β⃗∗2 = 2e⃗∗P to avoid the
repetition of boring discussions. In this case, the right-hand side of (3.12) is

2ℏδPI(τ2 + 2δP�I
)T 2
α⃗2,2e⃗∗P

− ℏ(2δP,i�i′ + 1)(2δP,�ii′
+ 1)T 2

α⃗2,2e⃗∗P−e⃗∗I+e⃗
∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I
. (4.18)

Here, we have δPIδP�I
= 0 since I ̸= �I, and

T 2
α⃗2,2e⃗∗P−e⃗∗I+e⃗

∗
i�i′

+e⃗∗

�ii′
−e⃗∗

�I
= 0

since 2e⃗∗P − e⃗∗I + e⃗∗
i�i′

+ e⃗∗
�ii′
− e⃗∗

�I
has negative components in the e⃗∗I -direction or e⃗∗

�I
-direction.

Therefore, after substituting (4.14), the right-hand side is rewritten as

(4.18) = 2ℏδPI
(
−1 + 1

ℏ

)
ℏ
2

(
−1 + 1

ℏ

)−1 ∑
D1,D2∈I

gPD1
gPD2

δα⃗2,e⃗D1
+e⃗D2

= ℏ2
∑

D1,D2∈I
gPD1

gPD2
δα⃗2,e⃗D1

+e⃗D2
δPI . (4.19)

We next calculate the left-hand side of (3.12) for n = 2. Note that the following equation holds:

T 1
α⃗2−e⃗D1

,β⃗∗
2−e⃗∗I

= ℏ
∑

J,D2∈I
gJD2

δα⃗2,e⃗D1
+e⃗D2

δ
β⃗∗
2 ,e⃗

∗
I+e⃗

∗
J

from (2.3) for n = 1 in Proposition 2.1. Then, the left-hand side of (3.12) can be calculated as

ℏ
∑
D1∈I

gID1
T 1
α⃗2−e⃗D1

,2e⃗∗P−e⃗∗I
= ℏ

∑
D1∈I

gID1
· ℏ

∑
J,D2∈I

gJD2
δα⃗2,e⃗D1

+e⃗D2
δ2e⃗∗P ,e⃗

∗
I+e⃗

∗
J

= ℏ2
∑

D1,D2∈I
gID1

gID2
δα⃗2,e⃗D1

+e⃗D2
δ2e⃗∗P ,2e⃗

∗
I
. (4.20)
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Since δ2e⃗∗P ,2e⃗
∗
I
= δPI and then gID1

gID2
δPI = gPD1

gPD2
δPI , we obtain

(4.20) =ℏ2
∑

D1,D2∈I
gPD1

gPD2
δα⃗2,e⃗D1

+e⃗D2
δPI . (4.21)

Therefore, the right-hand side (4.19) coincides with the left-hand side (4.21). Hence, it is
checked that the solution T 2

α⃗2,2e⃗∗P
satisfies the recurrence relations (3.12) in Proposition 3.2

for n = 2. In the same way, we can also verify by straightforward calculations that the other
solutions T 2

α⃗2,e⃗∗P+e⃗∗

�pp
′
, T 2

α⃗2,e⃗∗P+e⃗∗

�pp
′
and T 2

α⃗2,e⃗∗P+e⃗∗

�P
satisfy the recurrence relations (3.12) in Propo-

sition 3.2.

5 Summary

We gave the recurrence relations (3.1) in Theorem 3.1 whose solutions are coefficients of a star
product with separation of variables on Gp,p+q(C), based on the construction method proposed
by [20, 21]. In particular, we focused on the case p = q = 2 to give the explicit star prod-
uct with separation of variables on G2,4(C). Considering the case p = q = 2, we can obtain
the recurrence relations (3.12) for G2,4(C) from Theorem 3.1. To give the solution of (3.12)
for G2,4(C), it was necessary to solve a system of linear equations. The process of solving this
system of linear equations prevented obtaining the explicit general term expression. To resolve
this problem, we derived (3.13) in Proposition 3.3 that is equivalent to (3.12), in which the
general term T

n
α⃗n,β⃗∗

n
of order n are expressed by coefficients of order (n− 1). By using (3.13),

we derived the formula (3.21) in Proposition 3.4, which uniquely determines T
n
α⃗n,β⃗∗

n
from co-

efficients of order (n− 1) without solving a system of linear equations. To solve (3.21), we
introduced a linear operator Tn on a Fock space V that recovers T

n
α⃗n,β⃗∗

n
as a matrix representa-

tion. Furthermore, by substituting T
n
α⃗n,β⃗∗

n
into the equation (2.2) given by [20, 21], we succeeded

in constructing the explicit star product with separation of variables on G2,4(C). For confirma-
tion, we checked that for n = 1, 2, T

1
α⃗1,β⃗∗

1
, T

2
α⃗2,β⃗∗

2
recovered from T1, T2 coincides with T

1
α⃗1,β⃗∗

1
,

T
2
α⃗2,β⃗∗

2
obtained straightforwardly from (3.36) in Theorem 3.7, respectively. We also verified

that the obtained T
2
α⃗2,β⃗∗

2
actually satisfies the recurrence relations (3.12).

Here we discuss an outlook for our work toward Penrose’s twistor theory. Penrose’s twistor
theory can generally be formulated via twister correspondences [41, 42, 43, 65, 66]. The twistor
(Klein) correspondence G2,4(C)

π2←− F1,2,4(C)
π1−→ CP 3 is defined by two fibrations π1 : F1,2,4(C)

→ CP 3 and π2 : F1,2,4(C) → G2,4(C) such that π1(V1, V2) := V1, π2(V1, V2) := V2. Here the
complex flag manifold F1,2,4(C) is defined by

F1,2,4(C) :=
{
(V1, V2) | V1 ⊂ V2 ⊂ C4, dimC Vk = k, k = 1, 2

}
.

As an application of the star product on G2,4(C) obtained in our work, we expect to realize
a noncommutative deformation of the twistor correspondence

(C∞(G2,4(C))[[ℏ]], ∗G2,4(C))
π2,∗←−− (C∞(F1,2,4(C))[[ℏ]], ∗F1,2,4(C))

π1,∗−−→
(
C∞(CP 3

)
[[ℏ]], ∗CP 3

)
defined by two fibrations

π1,∗ : (C∞(F1,2,4(C))[[ℏ]], ∗F1,2,4(C))→
(
C∞(CP 3

)
[[ℏ]], ∗CP 3

)
,

π2,∗ : (C∞(F1,2,4(C))[[ℏ]], ∗F1,2,4(C))→ (C∞(G2,4(C))[[ℏ]], ∗G2,4(C)).

Toward this goal, it must be useful to construct an explicit star product with separation of
variables on F1,2,4(C). We expect that the key to define π1,∗ and π2,∗ is the relations between an
explicit star product on F1,2,4(C) and one on CP 3 orG2,4(C). By constructing a noncommutative
deformation of twistor correspondence, the development of noncommutative twistor theory and
the finding of new relations in noncommutative integrable systems are expected.
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A Properties of Gp,p+q(C)

We denote some useful properties with respect to Gp,p+q(C) in this appendix. The set of
capital letter indices {I = ii′ | 1 ≤ i ≤ q, 1′ ≤ i′ ≤ p′} introduced in Section 1 and
{1, . . . , qp} are ordered isomorphic. We now define the isomorphism ψ : {I = ii′ | 1 ≤ i ≤ q,
1′ ≤ i′ ≤ p′} → {1, . . . , qp} ⊂ N by ψ(I) = ψ(ii′) := p(i− 1)+ i′N, where i

′
N denotes the natural

number corresponding to i′ in a natural way. For example, if i′ = 1′, then i′N = 1′N = 1. Us-
ing this ψ, for any I = ii′, J = jj′, we define the binary relation ≤C by I ≤C J

def⇐⇒ ψ(I) ≤ ψ(J)
on {I = ii′ | 1 ≤ i ≤ q, 1′ ≤ i′ ≤ p′}. Then ≤C is the total order on {I = ii′ | 1 ≤ i ≤ q,
1′ ≤ i′ ≤ p′}. Hence, ψ is an ordered isomorphism, i.e.,

({I = ii′|1 ≤ i ≤ q, 1′ ≤ i′ ≤ p′},≤C) ∼= ({1, . . . , qp},≤).

Using the above ordered isomorphism ψ, we can identify ({I = ii′ | 1 ≤ i ≤ q, 1′ ≤ i′ ≤ p′},
≤C) and ({1, . . . , qp},≤) as ordered sets, and we can regard capital letter indices as ordinary
indices I = 1, . . . , qp.

We next discuss the properties of the Kähler potential and the Kähler metric. Since the first
derivative of Φ often appears in this paper, we now introduce the following proposition related
to the first derivative of Φ.

Proposition A.1. Let Φ := log detB be the Kähler potential of Gp,p+q(C). Let B, zij
′
, bi

′j′ be
them defined in Section 1. Then, the first derivatives of Φ are

∂JΦ = ∂jj′(log detB) = zjl
′
bj

′l′ , ∂JΦ = ∂jj′(log detB) = zjl
′
bl

′j′ , (A.1)

respectively.

Proof. We shall show ∂JΦ = zjl
′
bl

′j′ in this proof . The derivative of detB with respect
to bk′l′ is obtained

∂
∂b

k′l′
detB = B̃k′l′ = detB · bl′k′ by cofactor expansion, where bl

′k′ is the entry

of B−1. By the chain rule, the derivative of detB with respect to zjj
′
is

∂jj′(detB) = detB · ∂jj′bk′l′ · b
l′k′ = detB · zjl′bl′j′ . (A.2)

Here we use the fact that ∂jj′bk′l′ = δj′k′z
jl′ from (1.1). Using (A.2), the first derivative of Φ is

∂JΦ = ∂J log detB = (detB)−1∂J(detB) = (detB)−1 detB · zjl′bl′j′ = zjl
′
bl

′j′ .

In a similar way, ∂JΦ = zjl
′
bj

′l′ is also shown. ■

The Kähler metric on Gp,p+q(C) can be expressed by using the entries of matrices B−1

and A−1. Here we introduce the matrix A ∈ GLq(C) and its inverse matrix A−1 as follows:

A = (aij) := Idq + ZZ†, A−1 =
(
aij
)
.

Proposition A.2. Let gIJ be the Kähler metric on Gp,p+q(C). Then, Kähler metric gIJ = gii′,jj′
can be written as gIJ = gii′,jj′ = ajibi

′j′, where aij and bi
′j′ are the entries of A−1 and B−1,

respectively.

Proof. Since ∂ii′
(
B−1

)
= −B−1(∂ii′B)B−1, the derivative of bl

′k′ with respect to zii
′
is calcu-

lated as

∂ii′b
l′k′ = −bl′m′

(∂ii′bm′n′)b
n′k′ = −zim′

bl
′m′
bi

′k′ . (A.3)
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Hence, from (A.1) in Proposition A.1 and (A.3), we have

gIJ = ∂ii′∂jj′(log detB) = ∂I
(
zjl

′
bl

′j′
)
= bi

′j′
(
δji − zjl

′
bl

′m′
zim

′)
. (A.4)

On the other hand, recalling that Idp = BB−1 =
(
Idp + Z†Z

)
B−1, Idq can be written as

Idq = Idq + ZZ† − ZZ† = Idq + ZZ† − Z
(
Idp + Z†Z

)
B−1Z†. (A.5)

Note that

Z
(
Idp + Z†Z

)
B−1Z† = ZB−1Z† + ZZ†ZB−1Z† =

(
Idq + ZZ†)ZB−1Z†

and A = Idq + ZZ†, (A.5) can also be rewritten as

(A.5) = A−AZB−1Z† = A
(
Idq − ZB−1Z†).

This means that Idq − ZB−1Z† is the inverse matrix of A, i.e.,

aji = δji − zjl
′
bl

′m′
zim

′
. (A.6)

Hence, substituting (A.6) into (A.4), we obtain gIJ = gii′,jj′ = ajibi
′j′ . ■

In addition, the second derivative of Φ with respect to zI (or z̄I) can be expressed as a product
of the first derivative of Φ with respect to zI (or z̄I).

Proposition A.3. For Gp,p+q(C), the second derivative of the Kähler potential Φ satisfies

∂I∂JΦ = −∂ij′Φ∂ji′Φ, ∂I∂JΦ = −∂ij′Φ∂ji′Φ.

Proof. By using (A.1) and (A.3), we obtain

∂I∂JΦ = ∂I
(
zjl

′
bj

′l′
)
= −zin′

bj
′n′
zjl

′
bi

′l′ = −∂ij′Φ∂ji′Φ.

In a similar way, we can also prove ∂I∂JΦ = −∂ij′Φ∂ji′Φ. ■

In general, to explicitly determine the curvature RI
JK

L = gJP gKQRIPQL of Kähler mani-
folds, it is necessary to calculate the higher-order derivatives of Φ. Fortunately, the curvature
of Gp,p+q(C) can be obtained easily by Proposition A.3.

Proposition A.4. For Gp,p+q(C), the curvature RI
JK

L is given by

RI
JK

L = −δil′,Jδli′,K − δli′,Jδil′,K = −δijδklδi′k′δj′l′ − δikδjlδi′j′δk′l′ ,

where δIJ = δii′,jj′ := δijδi′j′.

Proof. Recalling that for any Kähler manifold,

RIPLQ = RPIQL = −∂P∂I∂Q∂LΦ+ gAB(∂P∂B∂QΦ)(∂A∂I∂LΦ)

(see [38, Appendix A]), we get

RIPLQ = −∂P∂Q(∂I∂LΦ) + gAB{∂B(∂P∂QΦ)}{∂A(∂I∂LΦ)}

= −∂P∂Q(−∂il′Φ∂li′Φ) + gAB{∂B(−∂pq′Φ∂qp′Φ)}{∂A(−∂il′Φ∂li′Φ)} (A.7)
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by Proposition A.3. By calculating the derivative in (A.7), it can be rewritten as

∂il′(∂P∂QΦ)∂li′Φ+ gQ,il′gP,li′ + gP,il′gQ,li′ + ∂il′Φ∂li′(∂P∂QΦ) + gAB
(
gB,pq′gA,il′∂qp′Φ∂li′Φ

+ gB,pq′gA,li′∂qp′Φ∂il′Φ+ gB,qp′gA,il′∂pq′Φ∂li′Φ+ gB,qp′gA,li′∂pq′Φ∂il′Φ
)

= ∂il′(−∂pq′Φ∂qp′Φ)∂li′Φ+ gQ,il′gP,li′ + gP,il′gQ,li′ + ∂il′Φ∂li′(−∂pq′Φ∂qp′Φ)

+ δApq′gA,il′∂qp′Φ∂li′Φ+ δApq′gA,li′∂qp′Φ∂il′Φ+ δAqp′gA,il′∂pq′Φ∂li′Φ

+ δAqp′gA,li′∂pq′Φ∂il′Φ. (A.8)

Here we use Proposition A.3 and gIJ = ∂I∂JΦ, then (A.8) becomes

−gil′,pq′∂qp′Φ∂li′Φ− gil′,qp′∂pq′Φ∂li′Φ+ gQ,il′gP,li′ + gP,il′gQ,li′ − gli′,pq′∂qp′Φ∂il′Φ

− gli′,qp′∂pq′Φ∂il′Φ+ gil′,pq′∂qp′Φ∂li′Φ+ gli′,pq′∂qp′Φ∂il′Φ+ gil′,qp′∂pq′Φ∂li′Φ

+ gli′,qp′∂pq′Φ∂il′Φ

= gP,il′gQ,li′ + gQ,il′gP,li′ . (A.9)

Substituting (A.9) into RI
JK

L = gJP gKQRIPQL = −gJP gKQRIPLQ, we obtain

RI
JK

L = −gJP gKQ(gP,il′gQ,li′ + gQ,il′gP,li′) = −δil′,Jδli′,K − δli′,Jδil′,K
= −δijδklδi′k′δj′l′ − δikδjlδi′j′δk′l′ .

This proof is completed. ■

Note that, due to the difference with the notation (2.1) for the Riemann curvature tensor,
RI

JK
L has opposite sign to RI

JK
L in the notation by Kobayashi–Nomizu, i.e.,

RI
JK

L = −RI
JK

L.

In addition, this curvature has the symmetry

RI
JK

L = RL
JK

I = RI
KJ

L = RL
KJ

I

with respect to capital letter indices I, J , K and L. See [20, 38] for more details.

B A property of symmetric functions of capital letter indices

We denote a property of symmetric functions whose variables are capital letter indices in this
appendix. By using this property, we state that some functions and operators appearing in this
paper do not depend on the choice of a capital letter index I. Finally, we show from this fact
that the star product (1.2) in our main theorem (see Theorem 1.4) which is independent of I.

We now introduce the following proposition related to the functions which depends on capital
letter indices.

Proposition B.1. Let f : I × I → R be a function satisfying f(I, J) = f(J, I) for I, J ∈ I =
{I, �I, i�i′, �ii′}. Then, f(I, �ii′)f(�I, i�i′) does not depend on I = ii′ ∈ I.

Proof. From the assumption of f , the following relations hold f(I, �ii′) = f(�ii′, I), f(�I, i�i′) =
f(i�i′, �I). Since the product of f(I, �ii′) and f(�I, i�i′) is commutative, we eventually obtain

f(I, �ii
′)f(�I, i�i

′) = f(�I, i�i
′)f(I, �ii

′) = f(�ii
′, I)f(i�i

′, �I) = f(i�i
′, �I)f(�ii

′, I).

This shows that f(I, �ii′)f(�I, i�i′) does not depend on the choice of a capital letter index I ∈ I. ■
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This property can be extended to commutative operators on the Fock space V as well as
symmetric functions on R.

Proposition B.2. Let f : I × I → L(V ) be an operator satisfying f(I, J) = f(J, I) for I, J ∈ I,
where L(V ) is the set of operators on the Fock space V . If f is commutative, i.e., f(I, J) ◦
f(K,L) = f(K,L) ◦ f(I, J) for I, J,K,L ∈ I, then f(I, �ii′)f(�I, i�i′) does not depend on I = ii′ ∈ I.

By Proposition B.2, the operators

(NI +N
�ii′
)(N

�I
+Ni�i′

), (NI +N
�ii′
−∆I,�ii′,l,{Ji}n

)(N
�I
+Ni�i′

−∆
�I,i�i′,l,{Ji}n

)

do not depend on the choice of I ∈ I, where ∆I,�ii′,l,{Ji}n
, ∆

�I,i�i′,l,{Ji}n
are given by (3.32), (3.33).

Then, it is shown that Fl,{Ji}n,{ki}n in Section 3.3 is independent of I ∈ I. Furthermore, by
Proposition B.1, the following functions do not depend on I ∈ I:

(βnI + βn
�ii′
)(βn

�I
+ βn

i�i′
), (βnI + βn

�ii′
−∆I,�ii′,l,{Ji}n

)(βn
�I
+ βn

i�i′
−∆

�I,i�i′,l,{Ji}n
),{

l∑
m=1

(δIJm + δ
�ii′,Jm

)

}{
l∑

m=1

(δ
�IJm

+ δi�i′,Jm
)

}
.

From this fact, Υl,{Ji}n,{ki}n in Theorem 1.4 (our main theorem) and (3.36) do not depend on
the choice of I ∈ I. Hence, the star product with separation of variables (1.2) on G2,4(C) in
Theorem 1.4 (our main theorem) does not depend on a capital letter index I.

C Calculations of T n
α⃗n,β⃗∗

n

in Section 3.3

In this appendix, we denote the calculation of T
n
α⃗n,β⃗∗

n
using T

n
α⃗n,β⃗∗

n
= ⟨α⃗n|Tn|β⃗∗n⟩ in Theorem 3.6.

Since Cl,{Ji}n,{ki}n and Fl,{Ji}n,{ki}n depend on only number operators, then Cl,{Ji}n,{ki}n |β⃗∗n⟩
and Fl,{Ji}n,{ki}n |β⃗∗n⟩ are immediately calculated as

Cl,{Ji}n,{ki}n |β⃗
∗
n⟩ = (τlδjlkl + βn

jl�jl
′ − Λl,jl�jl′,{Ji}n,{ki}n

+ 1)|β⃗∗n⟩, (C.1)

Fl,{Ji}n,{ki}n |β⃗
∗
n⟩

= {l(τl + 1) + 2(βnI + βn
�ii′
−∆I,�ii′,l,{Ji}n

)(βn
�I
+ βn

i�i′
−∆

�I,i�i′,l,{Ji}n
)}−1|β⃗∗n⟩, (C.2)

respectively. Here we use (3.30), (3.32) and (3.33). By using (C.1) and (C.2), we obtain

C1,{Ji}n,{ki}n · · · Cn,{Ji}n,{ki}nF1,{Ji}n,{ki}n · · · Fn,{Ji}n,{ki}n |β⃗
∗
n⟩

=

{
n∏
l=1

τlδjlkl + βn
jl�jl

′ + 1− Λl,jl�jl′,{Ji}n,{ki}n

l(τl + 1) + 2(βnI + βn
�ii′
−∆I,�ii′,l,{Ji}n

)(βn
�I
+ βn

i�i′
−∆

�I,i�i′,l,{Ji}n
)

}
|β⃗∗n⟩. (C.3)

Next, we calculate AJ1,k1 · · · AJn,kn acting on |β⃗∗n⟩. Recalling (3.27), we have

AJn,kn |β⃗∗n⟩ = aJn
1√
NJn

(
a
��Jn

1√
N
��Jn
a†jn��jn′

1√
Njn��jn′ + 1

)δ��jnkn

|β⃗∗n⟩

=

(∏
S∈I

θ(βnS − δSJn − δ��jnkn(δS��Jn − δS,jn��jn′))

)
×
∣∣β⃗∗n − e⃗∗Jn − δ��jnkn(e⃗∗��Jn − e⃗∗jn��jn′

)〉
.

Doing a similar calculation (n− 1) times, A1,J1,k1 · · · An,Jn,kn |β⃗∗n⟩ is calculated as

A1,J1,k1 · · · An,Jn,kn |β⃗∗n⟩
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=

(∏
S∈I

n∏
r=1

θ

(
βnS −

n∑
m=r

dS,Jm,km

))∣∣∣∣∣ β⃗∗n −∑
X∈I

n∑
m=1

dX,Jm,km e⃗
∗
X

〉
, (C.4)

where we use (3.31), i.e., dS,Jm,km = δS,Jm + δ
��jmkm

(δS,��Jm − δS,jm��jm′). From (C.3) and (C.4), we
obtain

g
k1j1′,D1

· · · g
knjn′,Dn

τ1 · · · τn
A1,J1,k1 · · · An,Jn,knC1,{Ji}n,{ki}n · · · Cn,{Ji}n,{ki}nF1,{Ji}n,{ki}n

· · · Fn,{Ji}n,{ki}n |β⃗
∗
n⟩

=

(∏
S∈I

n∏
r=1

θ

(
βnS −

n∑
m=r

dS,Jm,km

))(
n∏
l=1

g
klj

′
l ,Dl

τl

)

×

{
n∏
l=1

τlδjlkl + βn
jl�jl

′ + 1− Λl,jl�jl′,{Ji}n,{ki}n

l(τl + 1) + 2(βnI + βn
�ii′
−∆I,�ii′,l,{Ji}n

)(βn
�I
+ βn

i�i′
−∆

�I,i�i′,l,{Ji}n
)

}

×

∣∣∣∣∣β⃗∗n −∑
X∈I

n∑
m=1

dX,Jm,km e⃗
∗
X

〉
, (C.5)

where we use (3.30)–(3.33). Recalling that Proposition 2.1 and (3.28), T0 is immediately obtained
as T0 = |⃗0⟩⟨⃗0|. Thus ⟨α⃗n|a†Dn

1√
NDn+1

· · · a†D1

1√
ND1

+1
T0 is easily calculated as

⟨α⃗n|a†Dn

1√
NDn + 1

· · · a†D1

1√
ND1 + 1

T0 =
〈
α⃗n|

n∑
m=1

e⃗Dm

〉
⟨⃗0| = δα⃗n,

∑n
m=1 e⃗Dm

⟨⃗0|. (C.6)

Hence, substituting (C.5) and (C.6) into (3.35), we eventually obtain the explicit expression
of Tn

α⃗n,β⃗∗
n

Tn
α⃗n,β⃗∗

n
= ⟨α⃗n|Tn|β⃗∗n⟩ =

∑
Ji∈{Ji}n
Di∈{Di}n

2∑
ki=1

ki∈{ki}n

δα⃗n,
∑n

m=1 e⃗Dm
δ
β⃗∗
n,
∑

X∈I
∑n

m=1 dX,Jm,km e⃗
∗
X

×

(∏
S∈I

n∏
r=1

θ

(
βnS −

n∑
m=r

dS,Jm,km

))(
n∏
l=1

g
klj

′
l ,Dl

τl

)

×

{
n∏
l=1

τlδjlkl + βn
jl�jl

′ + 1− Λl,jl�jl′,{Ji}n,{ki}n

l(τl + 1) + 2(βnI + βn
�ii′
−∆I,�ii′,l,{Ji}n

)(βn
�I
+ βn

i�i′
−∆

�I,i�i′,l,{Ji}n
)

}
.
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tion, in Conférence Moshé Flato 1999, Math. Phys. Stud., Vol. 22, Springer, Dordrecht, 2000, 289–306,
arXiv:math.QA/9910137.

[60] Schlichenmaier M., Berezin–Toeplitz quantization and Berezin transform, in Long Time Behaviour of Clas-
sical and Quantum Systems (Bologna, 1999), Ser. Concr. Appl. Math., Vol. 1, World Scientific Publishing,
River Edge, NJ, 2001, 271–287, arXiv:math.QA/0009219.

[61] Schlichenmaier M., Berezin–Toeplitz quantization for compact Kähler manifolds. A review of results, Adv.
Math. Phys. 2010 (2010), 927280, 38 pages, arXiv:1003.2523.

[62] Schlichenmaier M., Berezin–Toeplitz quantization and star products for compact Kähler manifolds, in Math-
ematical Aspects of Quantization, Contemp. Math., Vol. 583, American Mathematical Society, Providence,
RI, 2012, 257–294, arXiv:1202.5927.

[63] Spradlin M., Volovich A., Noncommutative solitons on Kähler manifolds, J. High Energy Phys. 2002 (2002),
no. 3, 011, 23 pages, arXiv:hep-th/0106180.

[64] Voros A., Wentzel–Kramers–Brillouin method in the Bargmann representation, Phys. Rev. A 40 (1989),
6814–6825.

[65] Ward R.S., On self-dual gauge fields, Phys. Lett. A 61 (1977), 81–82.

[66] Ward R.S., Wells Jr. R.O., Twistor geometry and field theory, Cambridge Monogr. Math. Phys., Cambridge
University Press, Cambridge, 1990.

https://doi.org/10.1007/s00006-016-0753-z
https://doi.org/10.1007/s00006-016-0753-z
http://arxiv.org/abs/q-alg/9709021
http://arxiv.org/abs/q-alg/9611022
http://arxiv.org/abs/math.QA/9902066
http://arxiv.org/abs/q-alg/9601016
https://doi.org/10.1007/978-94-015-1276-3_22
http://arxiv.org/abs/math.QA/9910137
https://doi.org/10.1142/9789812794598_0015
http://arxiv.org/abs/math.QA/0009219
https://doi.org/10.1155/2010/927280
https://doi.org/10.1155/2010/927280
http://arxiv.org/abs/1003.2523
https://doi.org/10.1090/conm/583/11573
http://arxiv.org/abs/1202.5927
https://doi.org/10.1088/1126-6708/2002/03/011
http://arxiv.org/abs/hep-th/0106180
https://doi.org/10.1103/PhysRevA.40.6814
https://doi.org/10.1016/0375-9601(77)90842-8
https://doi.org/10.1017/CBO9780511524493
https://doi.org/10.1017/CBO9780511524493

	1 Introduction
	2 Construction method of deformation quantization for locally symmetric Kahler manifolds
	3 Deformation quantization with separation of variables for G_{2,4}(C)
	3.1 Recurrence relations for G_{p,p+q}(C)
	3.2 Star product with separation of variables on G_{2,4}(C)
	3.3 Solution of the recurrence relations for G_{2,4}(C)

	4 Solution T_n for n=0,1,2
	5 Summary
	A Properties of G_{p,p+q}(C)
	B A property of symmetric functions of capital letter indices
	C Calculations of T^n in Section 3.3
	References

