|
SIGMA 21 (2025), 061, 32 pages arXiv:2401.00500
https://doi.org/10.3842/SIGMA.2025.061
Deformation Quantization with Separation of Variables of $G_{2,4}(\mathbb{C})$
Taika Okuda a and Akifumi Sako b
a) Graduate School of Science, Department of Mathematics and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
b) Faculty of Science Division II, Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
Received December 10, 2024, in final form July 14, 2025; Published online July 23, 2025
Abstract
We construct a deformation quantization with separation of variables of the Grassmannian $G_{2,4}(\mathbb{C})$. A star product on $G_{2,4}(\mathbb{C})$ can be explicitly determined as the solution of the recurrence relations for $G_{2,4}(\mathbb{C})$ given by Hara and one of the authors (A. Sako). To provide the solution to the recurrence relations, it is necessary to solve a system of linear equations in each order. However, to give a concrete expression of the general term is not simple because the variables increase with the order of the differentiation of the star product. For this reason, there has been no formula to express the general term of the recurrence relations. In this paper, we overcome this problem by transforming the recurrence relations into simpler ones. We solve the recurrence relations using creation and annihilation operators on a Fock space. From this solution, we obtain an explicit formula of a star product with separation of variables on $G_{2,4}(\mathbb{C})$.
Key words: noncommutative differential geometry; deformation quantization; complex Grassmannians; Kähler manifolds; locally symmetric spaces.
pdf (689 kb)
tex (44 kb)
References
- Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Physics 111 (1978), 61-110.
- Ben Halima M., Wurzbacher T., Fuzzy complex Grassmannians and quantization of line bundles, Abh. Math. Semin. Univ. Hambg. 80 (2010), 59-70.
- Berezin F.A., Quantization, Math. USSR Izv. 8 (1974), 1109-1165.
- Berezin F.A., General concept of quantization, Comm. Math. Phys. 40 (1975), 153-174.
- Bordemann M., Brischle M., Emmrich C., Waldmann S., Phase space reduction for star-products: An explicit construction for ${\mathbb C}{\rm P}^n$, Lett. Math. Phys. 36 (1996), 357-371, arXiv:q-alg/9503004.
- Bordemann M., Meinrenken E., Schlichenmaier M., Toeplitz quantization of Kähler manifolds and ${\rm gl}(N)$, $N\to\infty$ limits, Comm. Math. Phys. 165 (1994), 281-296, arXiv:hep-th/9309134.
- Cahen M., Gutt S., Rawnsley J., Quantization of Kähler manifolds. I. Geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990), 45-62.
- Cahen M., Gutt S., Rawnsley J., Quantization of Kähler manifolds. II, Trans. Amer. Math. Soc. 337 (1993), 73-98.
- Cahen M., Gutt S., Rawnsley J., Quantization of Kähler manifolds. III, Lett. Math. Phys. 30 (1994), 291-305.
- Cahen M., Gutt S., Rawnsley J., Quantization of Kähler manifolds. IV, Lett. Math. Phys. 34 (1995), 159-168.
- De Wilde M., Lecomte P.B.A., Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487-496.
- Dolan B.P., Jahn O., Fuzzy complex Grassmannian spaces and their star products, Internat. J. Modern Phys. A 18 (2003), 1935-1958, arXiv:hep-th/0111020.
- Elfimov B.M., Sharapov A.A., Deformation quantization of contact manifolds, Lett. Math. Phys. 112 (2022), 124, 21 pages, arXiv:2206.13111.
- Fedosov B.V., A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994), 213-238.
- Gammelgaard N.L., A universal formula for deformation quantization on Kähler manifolds, Adv. Math. 259 (2014), 766-783, arXiv:1005.2094.
- Groenewold H.J., On the principles of elementary quantum mechanics, Physica 12 (1946), 405-460.
- Gutt S., Deformation quantisation of Poisson manifolds, in Lectures on Poisson Geometry, Geom. Topol. Monogr., Vol. 17, Geometry and Topology Publishing, Coventry, 2011, 171-220, available at https://msp.org/gtm/2011/17/p003.xhtml.
- Hamanaka M., Noncommutative solitons and integrable systems, in Noncommutative Geometry and Physics, World Scientific Publishing, Hackensack, NJ, 2005, 175-198, arXiv:hep-th/0504001.
- Hamanaka M., Nakatsu T., ADHM construction of noncommutative instantons, arXiv:1311.5227.
- Hara K., Sako A., Noncommutative deformations of locally symmetric Kähler manifolds, J. Geom. Phys. 114 (2017), 554-569, arXiv:1608.08146.
- Hara K., Sako A., Quantization of locally symmetric Kähler manifolds, in Geometry, Integrability and Quantization, Geom. Integrability Quantization, Vol. 19, Bulgarian Academy of Sciences, Sofia, 2018, 122-131.
- Karabegov A., Deformation quantizations with separation of variables on a Kähler manifold, Comm. Math. Phys. 180 (1996), 745-755, arXiv:hep-th/9508013.
- Karabegov A., On the deformation quantization, on a Kähler manifold, associated with a Berezin quantization, Funct. Anal. Appl. 30 (1996), 87-89.
- Karabegov A., An explicit formula for a star product with separation of variables, Trav. Math., Vol. 20, Faculty of Science, Technology and Medicine (FSTM), Luxembourg, 2012, 145-152, arXiv:1106.4112.
- Karabegov A., Star products with separation of variables admitting a smooth extension, Lett. Math. Phys. 101 (2012), 125-142, arXiv:1012.5495.
- Karabegov A., Schlichenmaier M., Identification of Berezin-Toeplitz deformation quantization, J. Reine Angew. Math. 540 (2001), 49-76, arXiv:math.QA/0006063.
- Kobayashi S., Nomizu K., Foundations of differential geometry. Vol. II, Intersci. Tracts Pure Appl. Math., Vol. 15, Interscience Publishers John Wiley & Sons, Inc., New York, 1969.
- Kontsevich M., Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157-216, arXiv:q-alg/9709040.
- Maeda Y., Sako A., Suzuki T., Umetsu H., Gauge theories in noncommutative homogeneous Kähler manifolds, J. Math. Phys. 55 (2014), 092301, 17 pages, arXiv:1403.5727.
- Mason L.J., Woodhouse N.M., Integrability, self-duality, and twistor theory, Oxford University Press, Oxford, 1990.
- Moreno C., $\ast$-products on some Kähler manifolds, Lett. Math. Phys. 11 (1986), 361-372.
- Moreno C., Invariant star products and representations of compact semisimple Lie groups, Lett. Math. Phys. 12 (1986), 217-229.
- Moshayedi N., Kontsevich's deformation quantization and quantum field theory, Lecture Notes in Math., Vol. 2311, Springer, Cham, 2022.
- Moyal J.E., Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949), 99-124.
- Nekrasov N., Schwarz A., Instantons on noncommutative $\mathbb{R}^4$, and $(2,0)$ superconformal six-dimensional theory, Comm. Math. Phys. 198 (1998), 689-703, arXiv:hep-th/9802068.
- Okuda T., Sako A., Twisted fock representation and derivations of noncommutative complex Grassmannians, in preparation.
- Okuda T., Sako A., Deformaion quantization with separation of variables for complex two-dimensional locally symmetric Kähler manifold, J. Geom. Symmetry Phys. 64 (2022), 39-49.
- Okuda T., Sako A., Explicit formula of deformation quantization with separation of variables for complex two-dimensional locally symmetric Kähler manifold, Int. J. Geom. Methods Mod. Phys. 20 (2023), 2350109, 39 pages, arXiv:2206.15266.
- Omori H., Maeda Y., Miyazaki N., Yoshioka A., Poincaré-Cartan class and deformation quantization of Kähler manifolds, Comm. Math. Phys. 194 (1998), 207-230.
- Omori H., Maeda Y., Yoshioka A., Weyl manifolds and deformation quantization, Adv. Math. 85 (1991), 224-255.
- Penrose R., Twistor algebra, J. Math. Phys. 8 (1967), 345-366.
- Penrose R., Twistor quantisation and curved space-time, Internat. J. Theoret. Phys. 1 (1968), 61-99.
- Penrose R., Solitons of the zero-rest-mass equations, J. Math. Phys. 10 (1969), 38-39.
- Reshetikhin N., Takhtajan L.A., Deformation quantization of Kähler manifolds, in L.D. Faddeev's Seminar on Mathematical Physics, American Mathematical Society Transl. Ser. 2, Vol. 201, American Mathematical Society, Providence, RI, 2000, 257-276, arXiv:math.QA/9907171.
- Rieffel M.A., Deformation quantization of Heisenberg manifolds, Comm. Math. Phys. 122 (1989), 531-562.
- Rieffel M.A., Deformation quantization for actions of $\mathbb{R}^d$, Mem. Amer. Math. Soc. 106 (1993), x+93 pages.
- Rieffel M.A., Quantization and $C^\ast$-algebras, in $C^\ast$-algebras: 1943-1993 (San Antonio, TX, 1993), Contemp. Math., Vol. 167, American Mathematical Society, Providence, RI, 1994, 66-97.
- Sako A., A recipe to construct a gauge theory on a noncommutative Kähler manifold, in Noncommutative Geometry and Physics. 4, World Scientific Publishing, Hackensack, NJ, 2017, 361-404.
- Sako A., Suzuki T., Umetsu H., Explicit formulas for noncommutative deformations of $\mathbb CP^N$ and $\mathbb CH^N$, J. Math. Phys. 53 (2012), 073502, 16 pages, arXiv:1204.4030.
- Sako A., Suzuki T., Umetsu H., Noncommutative $\mathbb{C}P^{N}$ and $\mathbb{C}H^{N}$ and their physics, J. Phys. Conf. Ser. 442 (2013), 012052, 10 pages.
- Sako A., Suzuki T., Umetsu H., Gauge theories on noncommutative $\mathbb{C}P^N$ and Bogomol'nyi-Prasad-Sommerfield-like equations, J. Math. Phys. 56 (2015), 113506, 12 pages, arXiv:1506.06957.
- Sako A., Umetsu H., Twisted Fock representations of noncommutative Kähler manifolds, J. Math. Phys. 57 (2016), 093501, 20 pages, arXiv:1605.02600.
- Sako A., Umetsu H., Deformation quantization of Kähler manifolds and their twisted Fock representation, in Geometry, Integrability and Quantization, Geom. Integrability Quantization, Vol. 18, Bulgarian Academy of Sciences, Sofia, 2017, 225-240.
- Sako A., Umetsu H., Fock representations and deformation quantization of Kähler manifolds, Adv. Appl. Clifford Algebr. 27 (2017), 2769-2794.
- Schirmer J., A star product for complex Grasmann manifolds, arXiv:q-alg/9709021.
- Schlichenmaier M., Deformation quantization of compact Kähler manifolds via Berezin-Toeplitz operators, in Group 21: Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras, World Scientific, 1996, 396-400, arXiv:q-alg/9611022.
- Schlichenmaier M., Berezin-Toeplitz quantization and Berezin symbols for arbitrary compact Kähler manifolds, in Coherent States, Quantization and Gravity, Polish Scientific Publishers, Warsaw, 1998, 45-46, arXiv:math.QA/9902066.
- Schlichenmaier M., Berezin-Toeplitz quantization of compact Kähler manifolds, in Quantization, Coherent States, and Poisson Structures, Polish Scientific Publishers, Warsaw, 1998, 101-115, arXiv:q-alg/9601016.
- Schlichenmaier M., Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, in Conférence Moshé Flato 1999, Math. Phys. Stud., Vol. 22, Springer, Dordrecht, 2000, 289-306, arXiv:math.QA/9910137.
- Schlichenmaier M., Berezin-Toeplitz quantization and Berezin transform, in Long Time Behaviour of Classical and Quantum Systems (Bologna, 1999), Ser. Concr. Appl. Math., Vol. 1, World Scientific Publishing, River Edge, NJ, 2001, 271-287, arXiv:math.QA/0009219.
- Schlichenmaier M., Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results, Adv. Math. Phys. 2010 (2010), 927280, 38 pages, arXiv:1003.2523.
- Schlichenmaier M., Berezin-Toeplitz quantization and star products for compact Kähler manifolds, in Mathematical Aspects of Quantization, Contemp. Math., Vol. 583, American Mathematical Society, Providence, RI, 2012, 257-294, arXiv:1202.5927.
- Spradlin M., Volovich A., Noncommutative solitons on Kähler manifolds, J. High Energy Phys. 2002 (2002), no. 3, 011, 23 pages, arXiv:hep-th/0106180.
- Voros A., Wentzel-Kramers-Brillouin method in the Bargmann representation, Phys. Rev. A 40 (1989), 6814-6825.
- Ward R.S., On self-dual gauge fields, Phys. Lett. A 61 (1977), 81-82.
- Ward R.S., Wells Jr. R.O., Twistor geometry and field theory, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1990.
|
|