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1 Introduction

In this paper we will give new combinatorial formulae for vector-valued weight functions for
evaluation modules over the Yangian Y (gl,,). The weight functions, also known as (off-shell)
nested Bethe vectors, play an important role in the theory of quantum integrable models and
representation theory of Lie algebras and quantum groups. Initially, they appeared in the
framework of the nested algebraic Bethe ansatz as a tool to find eigenvectors and eigenvalues
of transfer matrices of lattice integrable models associated with higher rank Lie algebras [6, 7],
see [21, 22] for a review of the algebraic Bethe ansatz. The results of [6] has been extended to
higher transfer matrices in [11].

Furthermore, the vector-valued weight functions were used to construct hypergeometric so-
lutions of the quantized (difference) Knizhnik—Zamolodchikov equations [10, 28]. They also
showed up in several related problems [3, 12, 24, 26]. In a more recent development, the weight
functions were connected to the stable envelopes for particular Nakajima quiver varieties, the
cotangent bundles of partial flag varieties [15, 16, 17, 18, 27].

For various applications, it is important to have expressions for vector-valued weight functions
for tensor products of evaluation modules over Y (gl,,). Such expressions can be obtained in two
steps. The first step is to consider weight functions for a single evaluation module, and the
second step is to combine expressions for individual evaluation modules into an expression for
the whole tensor product. In this paper, we will focus on the first step. The second step is fairly
standard and is not specifically discussed here.

By definition, an evaluation Y (gl,,)-module is a gl,,-module equipped with the action of Y (gl,,)
via the evaluation homomorphism Y (gl,,) — U(gl,), see Section 2. The goal is to expand
the vector-valued weight function for the evaluation Y'(gl,)-module in a basis coming from
the representation theory of gl,, and find expressions for the coordinates. For Verma modules
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over gl,,, such kind of expressions are given in [25]. In this paper, we give a generalization of

formulae from [25].

Combinatorial formulae for the vector-valued weight functions associated with the differential
Knizhnik—Zamolodchikov equations were developed in [1, 8, 9, 14, 19, 20].

The expressions for weight functions in [25] are based on recursions induced by the standard
embeddings of Lie algebras, gly @ gl,_; C gl, and gl,_; @ gl; C gl,,. The recursions allow
one to write down weight functions for Y (gl,,) via weight functions for Y (gl,,_;). This results
in formulae for coordinates of weight functions in bases of Verma gl,,-modules of the form

{H 6;?”1), m;; € Zzo}, (1.1)

>7

where e;; are the standard generators of gl,,, see (2.7), v is the highest weight vector, and some
ordering of noncommuting factors is imposed. The ordering is determined by the in-between
part of the involved chain of embeddings gl; & --- @ gl; C --- C gl,,. For instance, the chain

gl ®---dglhy C---Cgl, o®glydgly Cgl,_;Pgly Cgl,
yields the ordering

e?j is to the left of e% ifi>kori==k, j>I, (1.2)
while the chain

ghe---pglhC---Cglypglyegl,_ 5 CglyPgl,_; Cagl,
yields the ordering

el@j is to the left of e} if j <lor j=1,i<k. (1.3)
For example for n = 4, the product egzesoeq1e32€e31€21 obeys ordering (1.2), while the product
€91€31€41€32€42€43 obeys ordering (1.3).

However, some natural orderings of noncommuting factors in (1.1) important for applications
do not show up in the formulae established in [25], see, for instance, [8]. The first nontrivial
example occurs at n = 4 and is given by the basis

M32 ,M31 ,M42 ,M41 1121 1143 .
{efs”en™ el eni eny ey v, mij € Lo} (1.4)

To make the set of covered orderings wider, one can consider recursions based on more general
embeddings

al,, ®al,_,, Cal, withl<m<n—1. (1.5)

For instance, the embedding gl, @ gl, C gl yields example (1.4). In this paper, we will work
out example (1.4) in detail with the main result given by Theorem 5.7. We consider the general
case in [5].

We would like to present the gl, case separately in order to explain calculations more clearly
without introducing too cumbersome notation and to make the exposition paper more accessible.
For the same purpose, we show explicitly intermediate steps in the proofs that commonly might
be tacit for the sake of making a paper shorter. In particular, we give in Appendix A a proof
of Proposition 5.1. Although this statement has a long history, going back to [4], numerous
applications, and is explained in several lecture courses, see [22], its straightforward proof is not

easily available in the literature.
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At the same time we point out that the proof of Theorem 5.7 in this paper extends almost
in a straightforward way to the proof of [5, Theorem 5.5] in the general gl,, case. In particular,
the proof of the key Proposition 6.3 in [5] is literally the same as the proof of Proposition 5.6
in this paper.

Unlike [25], we will consider only the case of weight functions for Yangian modules (the
rational case). It turns out that dealing with weight functions for modules over the quantum
loop algebra U, (g[n), the trigonometric case, hits an obstacle of essential noncommutativity of
g-analogues of the generators e;;, ¢ > j. This obstacle does not show up for the embeddings
gly ®gl,_; Cgl, and gl,_; @ gl; C gl,, explored in [25], but reveals itself for embeddings (1.5).
For instance, the obstacle in example (1.4) comes from the relation

-1
€42€31 — €31€42 = (q —q )632641

that holds in the trigonometric case.

There is an alternative approach to get explicit expressions for the vector-valued weight
functions in the trigonometric case, see [2, 3, 13], based on considering composed currents and
half-currents in the quantum affine algebra and their projections on two Borel subalgebras
of different kind. This approach allows one to recover combinatorial expression for vector-
valued weight functions in evaluation modules in the trigonometric case obtained in [25]. It is
an interesting open question whether the composed currents approach can be helpful to obtain
trigonometric analogues of new combinatorial expressions for vector-valued weight functions
developed in this paper.

2 Notations

We will be using the standard superscript notation for embeddings of tensor factors into tensor
products. For a tensor product of vector spaces Vi @ Vo ® - - - ® V}, and an operator A € End(V;),
denote

AW = 180-1) & 4 5 18Fk—1) ¢ End(Vi @ Va®--- @ V).

Also, if B € End(V}), i # j, denote (A ® B)W) = ADBU) etc.

Fix a positive integer n. All over the paper we identify elements of End C” with n xn matrices
using the standard basis of C". That is, for L € End C* we have L = (Lg')zb:l, where L7 are
the entries of L. Entries of matrices acting in the tensor products (C")®¥ are naturally labeled
by multiindices. For instance, if M € End(C" ® C"), then M = (Mg;’)zjb’c’dzl.

The rational R-matrix is R(u) € End(C" ® C"),

1 n
R(u) =1+ - ;1 Eup @ Epy, (2.1)
a,b=

where E,, € End (C") is the matrix with the only nonzero entry equal to 1 at the intersection
of the a-th row and b-th column. The entries of R(u) are

1
Rgg(“) = 5ac(5bd + E(Sad(sbc-

The R-matrix satisfies the Yang—Baxter equation

R (4, — v) R () R®3) (v) = R () RI3) (u) R (0, — v). (2.2)
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The Yangian Y(gl,,) is a unital associative algebra with generators (T“){s} a,b=1,...,n,

and s = 1,2,.... Organize them into generating series
o0
To(u) = 6+ Y (T9) ™, ab=1,....n. (2.3)
s=1

The defining relations in Y (gl,,) are

(u =) [Ty (u), T5(v)] = Tg () Ty (v) — Tg (v) Ty (u) (2.4)

for all a,b,c,d=1,...,n
Combine series (2.3) into a matrix T'(u) = > 7, Eap @ Ty (u) with entries in Y'(gl,,). Then
relations (2.4) amount to the following equality:

R (4, — )T (u)T® (v) = TP ()T () R (1, — v),
where TM (u) = > ap=1 Eab ® 1@ Ty (u) and T (v) = Yap=1 1 ® Eap @ T3 (v).

(
The Yangian Y (gl,,) is a Hopf algebra. In terms of generating series (2.3), the coproduct
A:Y(gl,) — Y(gl,) ® Y(gl,) reads as follows:

ZTb )@ T u),  a,b=1,...,n. (2.5)
Denote by A: Y (gl,) — Y(gl,) ® Y(gl,) the opposite coproduct
ZT“ )T (w),  a,b=1,...,n. (2.6)

There is a one-parameter family of automorphisms p,: Y(gl,) — Y (gl,,) defined in terms of
the series T'(u) by the rule p,T(u) = T'(u — z), where in the right-hand side, each expression
(u — x)~* has to be expanded as a power series in u "

Denote by eg, a,b=1,...,n, the standard generators of the Lie algebra gl,,,

[eab) ecd] = €adObe — €chdad- (27)
A vector v in a gl,-module is called singular of weight (Al, .. .,A”) if epv =0 for all a < b
and e = A%v foralla=1,...,n.

The Yangian Y (gl,,) contains the universal envelopmg algebra U(gl,) as a Hopf subalgebra.
The embedding is given by the rule ey, — (Tb){ Y for all a,b =1,...,n. We identify U(gl,)
with its image in Y (gl,,) under this embedding.

The evaluation homomorphism e: Y'(gl,,) — U(gl,) is given by the rule e: (T)(u) — dqp +
epou” ! for all a,b = 1,...,n. Both the automorphisms p, and the homomorphism ¢ restricted
to the subalgebra U(gl,,) are the identity maps.

For a gl,-module V, denote by V(z) the Y (gl,)-module induced from V by the homomor-
phism € o p,. The module V(z) is called an evaluation module over Y (gl,,).

A vector v in a Y(gl,)-module is called singular with respect to the action of Y(gl,) if
T¢(u)v =0 for all 1 < b < a < n. A singular vector v that is an eigenvector for the action of
Tl(w),...,T"(u) is called a weight singular vector, and the respective eigenvalues are denoted

by (T} (w)v), ..., (T (u)v).

Example. Let V be a gl,,-module and v € V be a gl,-singular vector of weight (Al, R A”).
Then v is a weight singular vector with respect to the action of Y (gl,,) in the evaluation mod-
ule V(z) and (T (u)v) =1+ A%(u—2z)"H a=1,...,n.
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For k < n, we consider two embeddings of the algebra Y (gl;,) into Y'(gl,), called ¢5 and t:
(TN ()2 = (TP @)E, (TN ()2 = (T @) " w), (2.8)
with a,b = 1,..., k. Here (TU€> (u))g and (T<”> (u))g are series Tj'(u) for the algebras Y (gl},)
and Y (gl,,), respectively.
3 Combinatorial formulae for rational weight functions
Fix a collection of nonnegative integers &1,&2,...,&u—1. Set € = (&1,&2,...,&n—1) and &% =

§&1+--+&,a=1,...,n—1. Consider the variables t{,a =1,...,n—1,i=1,...,§. We will
also write

= (t1,..,18), =t ).

We will use the ordered product notation for any noncommuting factors Xy, ..., Xk,
— —
[[ Xi=xixe X, [ Xi=XeXpos-- X
1<i<k 1<i<k

Consider the vector space (C")®¢""" and define

[.ﬂ . - =14k ]
T(t) = [] 7¢ 9 (5).
1<k<&;
(%.4] b i — . (R4 601 [k j
R ()= [ [ ] BRE 0@ 1)),
1<i<y \1<ISE;

where we consider T~ +#) (tfg) as a matrix with noncommuting entries belonging to Y (gl,,).
For the expression

- b -1 < lig]

Te)=T() - T ") ] [ [] RE#.¥)), (3.1)
1<i<n—1 \1<;j<i

denote by Bg(t) the following entry

~ 161,282, n—1%n—1
Bg(t) = (Tﬁ(t))2€1,352,...,n5"—1 ’

where
19,22 . (n—=1)'=1,1,...,1,2,2,...,2,....n—1,n—1,...,n—1,
—_— —— ~
&1 &2 En—1
200,382 . pS1 =22 ...,2.33....3,....,n,n,...,n.
51 62 £n—1

To indicate the dependence on n, if necessary, we will write Bém (t).

Example. Let n = 2 and & = (£1). Then B

13
. . 2) gy 2
will farther write IB%§1> (t) instead of ]B%é >(t).

) =T5(t) ... Ty (tél). Abusing notation, we
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Example. Let n =4 and £ = (1,1,1). Then
4
By (t) = T3 (1) 73 (13) 75 ()
1
-1

1

+
3 2
tl_tl

T (1) T3 (1) T4 (1) +

1
TE-m@E-)
(B —t)(H—1) +1
(5 — 1) (5 — 1) (1 - 1)
For a weight singular vector v with respect to the action of Y(gl,), we call the expression
Be(t)v the (rational) vector-valued weight function of weight (§1,§2—&1,. .., &n—1 —&n—2, —&n—1)
associated with v.

From now on, we will consider only the case n = 4. We are interested in writing down the
following expansion for a weight function in a evaluation module over the Y (gly):

Ty (01) T (41) T3 (11)

(Ta () T3 () T3 (81) + T3 (1) T2 (1) T3 (1))

Ty (81) T35 (1) T3 (1)

Bg(t)’u = Z Fm(t) . 63%326?{3162%42621141631121623431} (3.2)
mezl,,

with the functions Fy(t) given by explicit formulae. Various similar expansions for Bg(t)v were
obtained in [25], however, expansion (3.2) is not covered there.

4 Splitting property of the weight functions

Let Ta(,?) (u) be series (2.3) for the algebra Y (gl,), and R{® (u) be the corresponding rational
R-matrix, see (2.1). Consider two Y (gly)-module structures on the vector space C2. The first
one, called L(x), is given by the rule

m(z): T (u) = R? (u— ),
and the second one, called L(x), is given by the rule
w(z): TP (u) — (R (z —u)) V)",

where the superscript to stands for the matrix transposition in the second tensor factor.

Let w1, wo be the standard basis of the space C2. The module L(x) is a highest weight eval-
uation module with gl, highest weight (1,0) and highest weight vector w;. The module L(z) is
a highest weight evaluation module with gl, highest weight (0, —1) and highest weight vector wo.
For any X € End(C?), set v(X) = Xw and 7(X) = Xw».

Recall the coproducts A and A, see (2.5) and (2.6), and the embeddings ¥2: Y (gly) — Y (gly)
and ¢2: Y (gly) — Y (gly) given by (2.8). For any k, denote by

AR Y (gly) = (Y(gl))? ™) and AW Y(gly) = (Y(gly))* Y
the iterated coproduct and opposite coproduct. Consider the maps

Yoz, ap): Y(gh) = (C2)%F @ Y(gly),

Yo(x1,. .., 2) = (1/®k ® id) o(m(z1) ® - @7(xk) ®1h2) 0 A(k),
and

Ga(1,... a): Y(gh) = (C)F @ Y(aly),
(252(.%1, - ,a:k) = (P®k (= id) o (w(wﬂ K- wg(:z:k) (= (252) o ﬁ(’“)
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For any element g € (C2)®k ® Y (gly), we define its components g%, @ = (a1, ..., ax), by the rule

In the gl case, we have & = (£1,&2,&3), and formula (3.1) takes the form

hyo B o Bl B2l B R\ 161,202,35

Be(t) = (T(t)T(#)T () R (8,8 R (£,¢") R (£, ¢ ))2517352’453.

Proposition 4.1. Let v be a Y(gly)-singular vector, &1, &2, &3 be nonnegative integers, and
t= (t%,...,tél;tf,...,té;ti’,...,ti). Then

a a b—2
Bet)o = 3 (T()5 (02(6%) (B2 ()" (6 (2) (B2 ()" )
a,b
where the sum is taken over all sequences a = (a1, a2, ...,ag,), b = (b1,ba,...,bg,), such that

a; € {1,2}, b € {3,4} foralli=1,...,6, b—2= (b1 —2,bp —2,...,bg, — 2), and

(T(#)y =T T(B)2 - T(#,),2.

Proof. Formula (4.1) follows from the definition of the maps (t2) and ¢9 (tz) and Lemma 4.2
below. m

Lemma 4.2. One has

[21] [1] ) 161,282 383 161 5,383

Be(tyo = > (T(t2); (R (£2,¢) T(t')

a,b

[']:? 3 [?R?] 3 42
2¢1,a,383 ( (t ) (t X ))151,352,4530’

where the sum over a, b is the same as in formula (4.1).

Proof. Using Yang—Baxter equation (2.2), we can write B(¢) in the following form:

[21] 2] [1] (3] [31] [32] 161,262 363
Be(t)o = (R (£.8)T()T(¢)T() R (£,¢') R (t3,t2)>2§173§2’4§3v.
Therefore,
(21][2][1]\ 161,282,853 /[3]\ p,q,3%3 /Bl p.g,r /[32]\ 2¢1,q,s
Bg(t)’U - Z < R rHw]r)p,q,3§3 (T)p,q,r < R )2517(1,3 ( R )251,352,45:3U’ (42)

p7q7r7s

where p = (p1,...,0¢), @ = (q1,---,Gs,), 7 = (T1,...,7¢;), 8 = (51,...,8¢;). In (4.2), we omit-
ted the arguments t', t2, t3 since they can be restored from the context.

We say that > 3% if r; > 3 for all i = 1,...,&3. Observe that by the definition of a singular
vector and the commutation relations

w 1

—u—1
T3 T3 — u T3 T3 T3 T3
b (W) T (u) Tw—u d () b(w)+w_u ¢ (w)Ty (u),
[3] 383
we have T (t3)r v = 0 unless r > 3%3.

Furthermore, for > 3%, we have by induction on &3 that

B\ p.g.r
( R )2§1 05 = 51),251 51’,5.
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Indeed, for £5 = 0, the statement is true. Assume that

<[§1)p,qm I

281,98
for » > 3% if &g = n — 1, and consider the case &3 = n. Let » = (r1,...,7,), 8 = (81,...,5n),
r=(r1,...,"-1), § = (S1,...,8n—1), then we have
[31] p.q,r <— p7q7';‘77,n < w7q7‘§7rn
s ()] ()
3
has T\ gdn1 \i<j<e ©,q,3,rm \1<k<&; 261,q,3,5,

Observe that the R-matrix entry RJ with 7 # [ is not zero if and only if ¢ = j and k = [, and
R* = 1. Because of that and since 7, > 3, the last factor (HR (€%k) )2!11 ZZ"S in (4.3) equals
O 261 0rp 5, and we get

[31] p.q,r — < ) o pqu';'y'rn

1<isn—1 \1<j<& 281,9,3,m

by the induction assumption.
Since

B\ p,q,3%3
(T) v=0
p7q7'r‘
unless r > 3% and

Bi\pagr
( R )251 0.8 = 51),251 (51’,5

for » > 3, formula (4.2) becomes
[21]2][1]\ 181,262 ,3¢3 ,[3]\ 2¢61,q,3¢3 ,[32]\ 2¢1,q,r
Be (t)v = Z(RTT) (T) (R)

U?
261,342 4¢3
p.qr

2¢1,q,3%3 2%1,q,7

and can be further transformed as

Be(t)o = Z <[%])c,a,353 ([ﬁ}) 161,2€2 3¢3 <[r]1lj)c,b,3€3 <%)251,b,353 <[iﬁ§])2€1,b,r v (4d)

¢,b,383 c,a,3¢3 2¢1,b,361 261 b, 261,382 483
a,b,c,r

where the sum is over all sequences @ = (ai....,ag,), b = (b1....,bg,), ¢ = (c1,...,¢¢),
r = (r1,...,re) such that a;, b, ¢, € {1,2,3,4}. Since

[21] 161,262 3¢€3
(%) =0

c,a,353

if a; > 3 for some 4, and
[32] 281 b,
(%) 2506 =
2¢€1 382 483
if b; < 2 for some i, terms in the sum in the right-hand side of (4.4) equal zero unless a; € {1,2}

and b; € {3,4} for all i. Taking the sum over ¢ and 7 in formula (4.4), we get the statement of
Lemma 4.2. |
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Example. Here we illustrate the proof of the relation

Bl p,g,r
( R )2£1 0. = 6p,2‘51 57*,5

if » > 3% for & = €3 = 2. In this case, p = (p1,p2), r = (r1,72), 8 = (81, 82), and

B\ p,g.r
( R )251 ,q,8 - ;d Rgzrl (t:f )Rgslf)(tg - tl)Rggz (t3 - t2)R252 ( t%) .
0/7 707

For 71 > 3, ro > 3, we have R;? (t% — t%) = 04,20r, 4, thus

[31]
() - - - )

261 . cs1 289

Then RS2 (¢35 — t1) = 0c,20r,,5, and RE™ (83 — t3) = 8py 20, 6, so that

289

BN\ p,g.7 pir1 (a8 1
(R)zﬁl a5 = R2sl (t -1 )51027267"2782 = P2,25P1,25T1,S15T2782 = 0p 261 O s-

5 Main theorem for the gl, case

The main result of this paper is Theorem 5.7 formulated at the end of this section. We will
approach it in several steps.
For a nonnegative integer m, set

ti—t;—1
Qm(t1, .. tm) = H ﬁ (5.1)
1<i<j<m ¢

For an expression f(t1,...,ty), define

Symt f(tl, e ,tm) = Z f(ta(1)7 ceey ta(m)):

oESm

and

Symy f(t1,... tm) = Symg(f(t1, ... tm)Qm(t1, ... tm)). (5.2)

To simplify notation, we will write TZ-<-2> instead of ( );
(

Proposition 5.1. Let £ be a nonnegative integer and t = (t1,...,t¢). Then

3 n
x Symt<(18572>(t1, ) @Bty ,tg))< [T 5t e HTf?(tﬂ))
j=1

i=n+1

This proposition goes back to [4, 28]. For convenience, we give its proof in Appendix A.
Given a subset I of {1,2,...,k} denote by I* the complement of I in {1,2,...,k}. Define
a vector w! € (C2)®k by the rule

1
W = Wq, ®Wa2®"'®waka

where a; =2 ifiel,anda; =1ifi & I.
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Fix a Y (gly)-module V' and a weight singular vector v € V' with respect to the Y (gl,)-action,
2 2 2 2 2
T o =0, T o = (T @), T (o = (T (wo)e.

Here <T1<f> (uw)v) and <T2<§> (u)v) are the corresponding eigenvalues. Given complex numbers
21,. .., 2k, consider the Y (gly)-module L(z;)®---® L(z,) ® V. Observe that w* @ v is a weight
singular vector with respect to the action of Y (gly) in this module.

Proposition 5.2. For the Y (gly)-module L(z1) ® --- @ L(z) ® V, we have

IB%é2> (t) (w?k ®v)

I
Fr(t,2) [[(T (ta)o) (W @ B | (tr141, - te)v) |, (5:3)

a=1

1
S e

1

where the sum is over all subsets I C {1,...,k} such that |I| < &, and for a given I = {i; <
19 < -0 < i|]|},

1] k
1 ty — 1
Fi(t,z) =] (t - 1] “W> (5.4)
a — i, te — Zm

a=1 m=iq+1

Proof. Observe that for each Y (gly)-module L(z;), i = 1,...,k, the corresponding vector
w1 € L(z;) is a weight singular vector,

Tf? (w1 = (1+ (u—2)"")wi, TQ@ (u)wi = wy, Té?wl = 0.

Moreover, IB%§2> (u)wy = T1<22) (u)w1 = (u — z;) " 'wy and IBf) (u1,...,uc)wi =0 for ¢ > 2. Then
formula (5.3) follows from Proposition 5.1 and identity (A.10) by induction on k. [

Given complex numbers 2, ..., 2z, consider the Y (gly)-module V ® L(z;) ® --+ ® L(z1).
Observe that v ® w?k is a weight singular vector with respect to the action of Y (gly) in this
module.

Proposition 5.3. For the Y (gly) module V ® L(z) ® -+ ® L(z1), we have

B (t) (v @ wi) (5.5)
1]
I e .
=2 e | il 2) LTS (teiaa)v) (B (11, teor)v @ w!) |
I =1

where the sum is over all subsets I C {1,...,k} such that |I| <&, and for a given I = {i1 <
g < --- < i|1|},

|| k
Fi(t,z) =[] (1 [[ e 1)- (5:6)

Proof. Observe that for each Y (gly)-module L(z;), i = 1,...,k, the corresponding vector
wo € L(z;) is a weight singular vector,

Tf? (u)wo = wa, T2<§> (Wywa = (1 + (2 — u) ) wa, Té? (u)wy = 0.
Moreover, B<12> (u)we = TI@ (W)wy = (2; — u) " twy, and Bé2> (u1,...,uc)wa =0 for ( > 2. Then
formula (5.5) follows from Proposition 5.1 and identity (A.10) by induction on k. [



New Combinatorial Formulae for Nested Bethe Vectors 11

For t = (t1,...,t¢), 2z = (21,....2), y € C, and a subset I = {i; < ig < .-+ < d} C
{1,...,k}, define the functions

||
1 .

Vi(t,z,y) = (=] Symy (Fl(ta z) H(ta - y)) (5.7)

’ a=1

and

N 1 L ||
Vi(t,z,y) = E Symy (Fl(ta 2) [ (tematr - y)) : (5.8)

’ a=1
Consider the collection S, 4,1 of pairs of subsets of {1,...,k} with given cardinalities of the

subsets and their intersection. Namely,
Spark =1L J) | I, JC{L,....k}, |[I|=p, |J|=¢q, [INJ| =7}
For I c{l,....k},set [ ={k—i+1,iecl}.

Theorem 5.4. Let V be a gly-module andv € V a g[4 singular vector of weight (A1 A% A3, A4).
Let &, &, & be nonnegative integers, t1 = (t},.. ste, ) 12 = (t%,..., 52) 3 = (t:{’,...,tgg),
and t = (tl,tQ,t3). For every triple (p,q,r), p = 0,...,min(&2,&3), ¢ = 0,...,min(&2,&1),
r =max(0,p + q — &),...,min(p, q), fix a pair (Ip @ Jpq 7n) € Spqren- Then,

(a) In the evaluation Y (gly)-module V (x), one has

min(§2,£3) min(§2,£1)  min(p,q) N
X Z Z Z (SyIntQ (Vjp,q,r (t3’ t2’ T — Ag)VJp,qw (tl, i2, T — A2))
¢=0 r=max(0,p+q—&2)

So—p—q+r _q—7 _p—7 _r £1—q E3—P
€32 651 €49 641621 €3 U

(p=r)g=r)ri(&a—p—q—7)!

(5.9)

where £ = (té, .. .,t%).
(b) The function Symy: (Vjp . (t3, 2,z — A3)1~/Jp’w (tl, iQ, T — A2)) in (5.9) does not depend
on the choice of the pair (Ip gy, Jpqr)-

Proof. Item (a) follows from Propositions 5.5 and 5.6 given below. Item (b) is an immediate
corollary of Proposition 5.6.

Propositions 5.5 and 5.6 are proved in Sections 6 and 7, respectively. |
Proposition 5.5. In the notation of Theorem 5.4, we have

3 &a

U_HHt“—x

a=1l:=1 "

S Vit - AV (8 e — AY)

ESp,quQ

min(€2,£3) min(£2,£1) min(p,q)
25 R SR
p=0 q=0 (1,J)

r=max(0,p+q¢—&2)

Eo—p—q+r g—7r p—r r £1—q E3—D
X €3y €31 €40 €41€51 €43 U |- (5.10)



12

M. Kosmakov and V. Tarasov

Proposition 5.6. In the notation of Theorem 5.4, we have
> — &%)
(I’J)e‘spquﬁz
Symga (Vi (88,82, — A%y, (2,82,
N (p—r)g—r)r!l(§&a—p

where (1o, Jo) is any pair from Sp g rc, .

V(' 8% e — A2V (83,82, 2

- 1%)

—q—r)!

Below we reformulate Theorem 5.4 in a more closed form.

(5.11)

Theorem 5.7. Let V be a gly-module and v € V' a gl,-singular vector of weight (Al, A% A3, A4).

Let &1, &, &3 be nonnegative integers, t' = (t%,...,tél), 12 =
and t = (tl,tQ,t3). For every triple (p,q,7), p=0,...

2 2 3
(8, 18,), t* =
7min(§27§3)7 q=0,...

(6, 1),
7min(§27‘£1)7 r=

max(0,p +q — &2), ..., min(p, q), firx two sequences © = {iy < --- < ip} and j = {j1 < --- < jq},
such that [{i1,... iy} N {Jj1,...,dq}| = 7. Then,
(a) In the evaluation Y (gly)-module V(x), one has
3 & 1
Be(t)v = [[]] g
a=1i=1 "t
min(£2,£3) min(£2,61) min(p,q)
X Z Z Z Symy Symyz Symys G (1)
9=0  r=max(0,p+¢—¢€2)
e -
e —p—a+tn)lg-nlp - - glE -l
where
p 3 3 &2 3 2
B _z+A 812 +1
Gi,j(t) = H ( 13— 42 H 13— 42
a=1 a tq m=ig+1 a m
q tl —$+A2§2_jst2—t1 +1
—q+ +
X H( §1t2q_st1 +2 _Elth : : (513>
s=1 Js T&i—aqts =1 ! §1—q+s

(b) The function Symy: Symy2 Symys G; (t) does not depend on the choice of the sequencest, j.

Proof. Given the pair (I}, 4, Jpq,r) from the formulation of Theorem 5.4, define the sequences

i={i;<---<iy}and j = {ji <--- < jg} by the rule
Igr={—t1+ 1,6 —ia+1,...,& —i, + 1},
Jpgr =1 —j1+1L,& —ja+1,...,6 — jg + 1}

Notice that {i1,...,ip} =

|{i1,...,ip}ﬂ{j1,...

Then combining formulae (5.4) and (5.6)—(5.8), we obtain that

1 33—z + A3
S a
(& —p)! e QIII< 3 —12

Lpgrs {J1s- -, Jq} = jp,q,rv and

sJat! = Upgr N Jpgrl =

Vi (88— A%) =

I

ta m=iq+1

&2

to—t2, +1
t3_mt2> (5.14)
a m



New Combinatorial Formulae for Nested Bethe Vectors 13

and

(t%l_bﬂ —x A2 gl 1)

2 1 2 1
=t b1

N v2 1
Vipan (tl, t,x— A2) (f 2 Symy1 H —
L= Jg—b+1 &1—b+1 =1

b=1

After substituting b = ¢ + 1 — s, the last formula becomes

Vﬂqr(tl ” _A2)

1 2 §2—Js 2 1

2 2
t _t£1 q+s =1 t _tfl —q+s

1
7@1 — 0 Symt1 H

s=1

Plugging (5.14) and (5.15) into formula (5.9), we obtain formulae (5.12) and (5.13).
Item (b) of Theorem 5.7 is a reformulation of item (b) of Theorem 5.4. [

Example. Below we give two examples of natural choices of the sequences ¢, j in Theorem 5.7
and write down the corresponding expressions for the function G; ;(t), see formula (5.13).

(@) i=i={1<---<phj=j1={p+1-r<---<p+qg—r} Then

P /.3 3 & 3 2
t2—A to—t2 +1
Gi17j1 (t) = I I (t% —¢2 l l at3 _th )
a m

a=1 a4 m=a+1 a
q 2 Sa—ptr—c 2 1
v H tfl —q+c A H t — t§1 —q+c +1
t2 o t2 o tl :
p—r+c 51 q+c =1 §1—q+c

(b) i=to={q+1—-r<---<qg+p—r},j=7y={1<---<gq}. Then

p 3 &2 3 42
3 — A 32 +1
22:.72 H (tz H tg _ t%@

a=1 q T+ m=q—rta+1

q 2 §2—b 42
H t& b+1_A i—[t _t& b+1+1
t; —

b=1 61 b+l =1 51 —b+1

X

Notice that the equality

Symtl Syth Symt3 G":lvjl (t) == Symtl Syth SymtB G?:Q,j2 (t),

stated in item (b) of Theorem 5.7, is not obvious.

6 Proof of Proposition 5.5

Let V be a gl;-module and v € V a gl -singular vector of weight (Al, A% A3 A4) Let &1, &9, &3 be
nonnegative integers, t' = (t%, .. ,t&) t? = (t%, . ,t&) 13 = (t:{’, ey 53) and t = (tl 2 t3)
Recall that in the evaluation Y (gl,)-module V (), we have T (u) = §ap + €pa(u — )1, thus
u—x+ A°
—.

uU—2x

T u)v =

By Proposition 4.1,

Be(tio= 37 (T(1)) " (6(t2) (B (6))" (va(e?) (B2 (£7)))" 2, 6.
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where the sum is taken over all sequences @ = (a1, a2,...,ag,), b = (b1,b2,...,bg,), such that
a; € {1,2}, and b; € {3,4} for alli =1,...,&.

Let ¥V () be the Y (gly)-module obtained by pulling back the module V (x) through the em-
bedding 5. To compute (1/12 (tQ) (Bé >(t3)))bv we take the weight function IBB< >( )( 88 @ U)
in the Y(gly)-module L(#3) ® -+ ® L(t§ ) ® YV (z) and apply Pr0p081t10n 5.2 for k = &
Then we obtain

(02() (B (£%)))" 20

11| 3 &
= msymts F[ t t H H PER—— €y U, (6.2)
m=1 T—|I|+1 r

where the subset 1 C {1,...,&} and the sequence b = (b1, ..., bg,) are related as follows: b; =3
if j ¢ I and b; =4 if j € I. Therefore, by formula (5.8) we have

_ 1 -
() B2 )0 = [T ol 20— 20)e
r=1 T
The next step is to compute (¢2 (t2) (IB%Q (tl)))ae%’,jmv. Notice that for any nonnegative
integer m, we have

u—ax+ A2

Tf(w)elfyo =0, T3 (u)efv = o, edsv, Ti (u)efyo = It LE
Let ?V () the Y(g[2)—module obtained by pulling back V(z) through the embedding ¢2. To
compute the (¢z(t?) (IB%< >(t1)))aei§ u'v we take the weight function IB%< >( )(e% 1y & w®§2)

3

in the Y (gl,)-module ¢‘}( ) ® L(lté ) ® -+ ® L(t7) and apply Prop051t10n 5.3 for k = &. Then

we obtain

2) (41\\\@ &3]
(02 (t%) (B (£1))) el "o
1 2y T —w+A2 o1 11 &I,
= Symy: | F t t 3 6.3
& — I ymg | Fy ( H H - 5 v, (6.3)
m= r=|J|+1

where the subset J C {1,...,&} and the sequence a = (a1,...,as,) are related as follows:

aj=1if j € Jand a; =2 if j ¢ J. Therefore, by formula (5.7) we have

J I

2 2 1 a &—|1
(0n(62) B2 ()55 Mo = T o
r=1 r
Finally, for the sequences a, b that are related to the sets I, J as above, we have

&2

12 21\ ¢ 1 Eo—p—q+s _q—s p—s
(T(t )) = H 2 _ e32 eq “ely el (6.4)
r=1 T

b

where p = |I|, ¢ = |J|, s = |I N J|. Now formula (5.10) follows from formulae (6.1)—(6.4).

7 Proof of Proposition 5.6

Consider the algebra A generated by two commuting copies of the symmetric group S; and
rational functions of zi,..., 2, subject to relations (7.1) below. We denote the copies of Sj
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in A by S, and Sj, and mark elements of S; and S by the corresponding dots, keeping the
notation S without dots for the abstract symmetric group.

Let z = (21,...,2) and 27 = (2,(1), - - -, Zo(k))- The additional relations in A are
of(z)=f(z%)s,  7f(z) = f(z)7. (7.1)
Fora=1,...,k—1, let s, € S; be the transposition of a and a 4+ 1. Consider the elements
§1,...,§k Of.A7
Go= (o fatl 5 ! 8 (7.2)
¢ za_za—i-l_l ¢ Za_za—‘rl_l “ .

It is straightforward to check that they satisfy the following relations:
A A A oA A A A2
S45a+15a = Sa+15a5a+1, 55 =1

Therefore, the assignment s, — §, defines an algebra homomorphism CSy — A. For any o € S,
we denote by & the corresponding element of A. Every element 6 can be written in the following
form:

6= X,-(2)76, (7.3)

TESE

where X, ;(z) are functions of z1,. .., 2.
Let |o| denote the length of o € S.

Lemma 7.1. The functions X, .(z) have the following properties:

0 il > ol (7.4
Xor(2) =067 X50(2) if |7 = o, (7.5)

Za — 2b
Xoo(2) = H PRp— (7.6)
a<bo—1(a)>o-1(b) ¢

Proof. Formulae (7.4) and (7.5) follow from formula (7.2) by inspection. Formula (7.6) can be
shown by induction on |o]|. [ |

Denote by o¢ the longest element of Sg, og(i) =k —i+1,i=1,...,k. Let

(z) = [[ 2L

a<b Za T %
Notice that
1
O(z) = ——. (7.7)
Xoo,00 (2)
Lemma 7.2. One has
Z X)‘vﬂ(z)q)(ZAUO)X00>\*1700T*1 (ZAUO) = Opr- (7.8)
AESE

Proof. Since 67 = 67, by formula (7.3) we have

Xorp(2) =Y Xon(2) X, 1-1,(2°). (7.9)
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Taking here p = 0p, and using Lemma 7.1 and formula (7.7), we get

1

;XU,W('Z>X7’,W100 (ZU) = 50’7‘,00 w (710)
Replacing now z by 2" in formula (7.10) and taking there 7 = pu~log, we get
1 1
;Xa'ﬂr (ZU )Xu7100,7r710'0 (Z) = (50—’“@. (711)

Formula (7.11) can be understood as the matrix equality AB = C for k! x k! matrices A, B, C
with entries labeled by permutations:
1

1

Acf,7r = ch,7r (207 )7 BTr,u = prlcro,wflcro (z)v CU,M =9

Therefore, the product BC~!A equals the identity matrix, which can be written as follows:

Z X 10g 7100 (2)P (z“il)X“,U (z“il) =0n0-
o

After the substitution A = yp~tog, p = 7 1oy, 7 = 0 Log, we get formula (7.8). |

Lemma 7.3. One has

Za — Za4l 1
X, o(z%) = 2" X Z2)+ —————
MU( ) Zag — Zat1 + 1 samsao( ) Za — Za+1 1

Proof. By formulae (7.2) and (7.3), we have

Xsopo(z). (7.12)

Zqa — Za+1 -1

Xsaysa (Z) = Xsayid(z) =

24 — Zagy1 — 1’ 24 — Zgy1 — 17
and X, -(z) = 0, otherwise. Therefore, by formula (7.9) we obtain

Za — Zat1 1
Xsaﬂ'yo'(z) = £ ot Xﬂ'asaa(zsa) -

Xro(25).
Za — Za+1 — 1 7r,o‘( )

Zg — Za41 — 1
Replacing here z by z® and making the substitution 7 = s,u, we get formula (7.12). |

Lemma 7.4. One has

1

Xuo (Zsa‘uil) = MXusa,asa (zsaﬂil) B m

-1
Za — Zat1 — 1 Xpsoo(25#). (7.13)

Proof. By formula (7.9), we have
Xpusaro(2) = ZX“’W(z)XSmWAU(z“).
™
Thus

Xpsao(2) = D X (2) Xy r-10(2) = Xpuio (2) X ja(29) + Xpuiosa (2) Xy s, (24).

Replacing here z by z“_l, we get
—1 —1 -1
X,usa,a (Z“ ) = X,u,a (Zu )Xsa,id(z) + X ,0Sa (Z“ )Xsa,sa (Z)

Substituting now u with us,, we obtain (7.13). |
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For o € S,, and a subset I = {i1,...,i,} C{1,...,n}, denote

o(I)=A{o(i1),...,0(im)}
Recall the functions V(t, z,y), Vi(t, z,y), see formulae (5.4), (5.7) and (5.6), (5.8).
Lemma 7.5. For eacha=1,...,k— 1, we have

Za+1 — Za

Vi(t,z%,y) = Vean)(t, 2,y) — Vi(t, z,y), (7.14)

Za+1 — 2q — 1 Za+1 — Zq — 1

nd Za — Ra+1 T

Vi(t, z%y) = Veu(n(t, 2,y) — Vi(t, z,y). (7.15)

Za — Za41 — 1 Za — Za41 — 1

Proof. By the structure of formulae (5.4) and (5.7) for the function V;(t, z,y), it is enough to
prove formula (7.14) for k = 2. In this case, the statement follows from the identities

2 —z 1
lzz’—z—l_z’—z—l’
1 t—z+1 -z 1 1 1 t—-2Z+1
t—2  t—2 A —z2—1 t—2 F—z2—-1 t—z t—2z

(' —2)t—2+1)( -t =) —(t—2)t =2 +1)({' —t—1)
=t -)t—z+D)(t—t' -1) = (-2 )t —2+1)(t' —t—1).

The proof of (7.15) is similar by using formulae (5.6) and (5.8) for functions V;(¢,z,y). M

The statement of Proposition 5.6 is given by formula (5.11). It can be written as follows:

Z Vj(t?’,z,:}:—Ag)VJ(tl,z,x—AQ)
(I,J)ESp q.r.k

- D Vior) (82,27, 2 = A3V (¢, 2770, 2 — A%)2(27), (7.16)

C.
P,q,Tsk €Sk

where S ;1 in the left-hand side is the set of all pairs of subsets I, J of {1,...,k}, such that
Il =p, |J|=gq, INJ| =7, and we use k = &2, z = t>. In the right-hand side,

Cpark = (p—r)g—r)rl(k—p—q—1)!

and (lo, Jo) is any fixed pair from S, 4, 5. We also expanded Sym,: according to formulae (5.1)
and (5.2), and observed that

jo ZJ()(I()), i = 29,

In the rest of the proof, we will suppress the arguments t!, t3, x — A%,  — A3 because they
are the same in both sides of formula (7.16) and will never be changed in the reasoning.

Notice that every pair (I, J) € Sp 4,k can be obtained from an arbitrary fixed pair (1o, Jy) €
Spqrk by the action of the symmetric group Sj. Therefore, the left-hand side of the for-
mula (7.16) can be written in the following way:

- 1 ~
Z Vi(z)Vi(z) = c Z Vo 7o) (2)Va(10) (2)- (7.17)
(1.J)ESp.qrk Park geg,
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Using Lemma 7.2, we get

Z V Jo G(Io)( )

€S}

D Vo) (2) Xa o (2)2(27) Xy 1 g1 (2770) Vi1 (2), (7.18)

o,m,TES)

since from formula (7.8)

Z XW,U(z)q)(zﬂ-gO)XUOW*1,007*1(zmjo) = 50,7’-

TESk

Lemma 7.6. We have

> Vo) (2)Xeo(2) = Vi (27). (7.19)

oES

Proof. We will use induction on the length of the permutation 7. For 7 = id, formula (7.19) is
clear, and for m = s, with some a =1,...,k — 1, formula (7.19) coincides with formula (7.15).
For the induction step, we find a such that |s,7| = |7| — 1, and denote p = s,m. Then by the
induction assumption

> Vo) (2)Xp0(2) = Vig(27).
Replacing here z by 2%, we get

D Vot () Xpo(2°0) = Viy(2°°) = Vi (27). (7.20)

Using formulae (7.12) and (7.15), the left-hand side of (7.20) becomes

2
24 — Za ~
Z ( ( +;) Vioo(0) (2) Xsup,sac (%)

— (%a — Za+1) -1
Za+1 nd
XS g
+ Z - 1 Veao(30) (2) Xsapo(2)
— Za-i—l ~
- Z — Za-‘,—l 1VJ(J0)<Z)Xsap,saa(z)

_ Z ‘N/U(JO)(Z)Xsap,a(z)‘

o = Za+1)?

Changing the summation index in the first and second sums from o to s,o, we observe that the
second and third sums cancel each other, while the first and forth sums combine together and
simplify to the expression

> Vo) (D) Xsupo(2) = D Vi) (2) X o (2),

which appears in the left-hand side of formula (7.19). [

Lemma 7.7. We have

Z VT(IO)(Z)XUUW_l,O'UT_l (zmTO) = Vcro(Io)(zWUO)' (7.21)
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Proof. Recall the notation og(Ip) = Ip. Transform formula (7.21) by making the substitutions

n= 0077_1, o= 007_1,

> Vi () X () = Vi (2. (7.22)

The rest of the proof is analogous to that of Lemma 7.6.

To prove formula (7.22), we will use induction on the length of p. For p = id, formula (7.22)
is clear, and for u = s, with some a = 1,...,k —1, formula (7.22) coincides with formula (7.14).
For the induction step, we find a such that |us,| = |u| — 1, and denote p = ps,. Then by the
induction assumption,

Z Vafl(io)(z)Xp,U (zp_l) =V (Zp_l)v
and replacing here z by z%, we get
3 Vi (250 X (2™ ) = Vi (27) = vy (207, (729

Using formulae (7.13), (7.14), the left-hand of (7.23) side becomes

— )2 _
Wowe Z“’_ Vo 310 Ky (7)

Za+1 — za)2
— Za+1 e
e L STRIE R Cy
Za—i—l ) .
+ Z ~ zar1)? 1V071(I~0)(z)Xpsa7asa (ZS p )

—2

Changing the summation index in the first and second sums from o to os,, we observe that the
second and third sums cancel each other, while the first and the forth sums combine together
and simplify to the expression

3 Vo X () = X Vo ().

which appears in the left-hand side of formula (7.21). [

-1
P LSS OR N C)

Using Lemmas 7.6 and 7.7, we evaluate the sums over ¢ and 7 in the right-hand side of the
formula (7.18) and get the equality

> Vo) (2)Vam) (2 ZVUO 10) (277 Vi (27)D(277°). (7.24)

oES

Using formula (7.17) in the left-hand side and making the substitution 7 = ooy in the right-hand
side, we obtain that (7.24) can be written as

PN E

(IvJ)ESp,q,r,k pqu

ZVUO Io VJO( 770)@(27),

which is formula (7.16). Proposition 5.6 is proved.
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A Proof of Proposition 5.1

In this appendix, we will consider only the algebra Y (gl,) and, for convenience, we will not write
the superscript (2). We will use the commutation relations

Ty (w)T11(t) = T11(t) 111 (), T12(u)Ti2(t) = Ti2(t)T12(u),

T () Thoa (1) = Ta(£) Tha (1), (A1)
Tia (1) Tia(t) = L Tia(t)Tor () + —— Tholw)Tia (), (A.2)
oo (u) T () = %Tm(t)ng(u) - - L T ()T t), (A.3)

following from the defining relations in Y (gls), see (2.4). We will also use the next statement.

Proposition A.1. One has

k
u—t;—1
T (uw)Thz(tr) - Tia(te) = H TltTm(tl) - Tia(tk) T11 (w) (A4)
ey :
S S
l m
Tia(ty) - - Toa(ti 1) Tia(tisy) - - - Tro(ts) Tha(u) Ty (¢
+;u—tl 1__[1 t— b 12(t1) 12(ti-1)T12(ti41) 12(te) Th2(w)Th1 (),
- m;él
i u—t;+1
Too(u)Ti2(ty) - - Tha(ty) = H ﬁﬂQ(h) < Tho(ty)Taa(u) (A.5)
ey :
LR P ; +1
;-
- Z H “——Tua(t1) - - Taa(ti—1)Taz(tis1) - - - Tra(te) Taz(w) Toa (1)
u—t t; —1tm
=1 m=1
m#l

Proof. The statement goes back to [23]. We will prove it by induction on k. Consider for-
mula (A.4). The statement for £ = 1 is given by formula (A.2). We use the induction assumption
to move T11(u) through the product Tho(t1) - - - Ti2(tgp—1):

k-1

u—t; —1
T (w)Tio(ty) - - Tho(tp—1)Tia(ty) = H Tlt-TH(tl) o Tho(tp—1)Th1 (w)Tia(ts)  (A.6)
1 i
k—1 1 k—1 ' . ] v
I — im —
Tro(t1) - Tioltr VTro(trer) - - Tro(tr Y io(@)Ths (6o (£2).
+;u—tl mH1 r— 12(t1) 12(ti—1)Th2(ti41) 1o (te—1)Tho (W) Ty (8) Tia(ts)
m#l

Then we apply (A.2) to the product 711 (u)Ti2(tx) and T11(¢;)T12(tx) and the right-hand side
of (A.6) becomes

u—t;—1
H " - y Tia(t1) - - Tho(tk—1) T2 (k) T11 (u)
i=1 g
k-1
1 u—t;—1
Tio(t1) - Tho(tp—1)T T11(t
— 1:[ s 12(t1) 12(te—1)Th2(w) T ()
k-1 k
1 =t —1
_l’_
;u—tlgl t—1tm
m#l

x Tha(t1) -+ Tia(ti—1)Tha(tier) - - Tha(te—1)Th2(w) Tia(tk) Tha (t)
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=ty —1
+Zu—tltl—tk H1 tl—tm
m#l
x Tia(t1) - - - Taa(ti—1)Tia(ti1) - - - Tao(te—1)Tr2(w) T12(t) Th1 (k)

The first term here coincide with the first term in the right-hand side of formula (A.4). The
third term here is the second term of (A.4) without [ = k summand. We also used that T2(u)
and T2(tx) commute, see (A.1). The second and forth summands combine into the product

k-1
1 tr —tm
| | b T12(t1) “Tio(ti—1)Th2(tisr) - - Tho(te—1)Ti2(w) T (), (A7)
e

using the following identity:

k—1 k—1 k—1 k—1

1 u—t; —1 ti—tm—1 1 te —tm — 1
u—tkH u—t; + (u—t)( tl—tk)H t—t _u—tkH te —tm
=1 ! =1 m;% m m=1 m
m

~

The product (A.7) is exactly the summand with [ = & of the second term in (A.4). Formula (A.4)
is proved.

The proof of formula (A.5) is similar to that of formula (A.4) with relation (A.3) used instead
of (A.2). |

Recall that for the gl, case we have
Be(t) = Tiz(t1) - - - Tha(te),
and thus Proposition 5.1 can be rewritten as follows.

Proposition A.2. Let £ be a nonnegative integer and t = (t1,...,t¢). Then

A(Tia(tr) -+ - Tha(te)) (A8)
¢ 3
= Z@ijmt <HT12 ® H Tia(t5) ) ( H Tho(ty) @ HTH b )
=0 ! j=n+1 k=n+1

Remark. Notice that according to (A.1), the factors in each of the large products commute
among themselves, so the order of the factors is irrelevant. (A.8).

Proof. Consider the summand from the right-hand side of (A.8) with a given 7,

§
FT?:5 77 = Symt (HTI2 X H Tm(t] ) ( H T22 tk ®HT11 t; >] (A9>
J=n+l1 k=n+1
Let
ti—t;—1

Pren® =] B

; . ) J

1<i<n<j<é
(HTIQ ti) ® H Tho(t; )( H Too(tr) ®HT11 4] )
=n-+1 k=n+1

ti—t-—l ti—tj—1 .
Upen® = 1] ——— Il 25— 7=t toe):

ti—t ti —t;
I<i<j<n 'Y ptagicge Y
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Using this notation, formula (A.9) can be written as

Fye- n Z Une— 77 Py e n(tg)-
0'655

Observe that Fy ¢_p(t) is symmetric in ty,...,tc. Denote by S, x S¢_, the subgroup of S¢
stabilizing the subsets {1,...,n} and {n+1,...,&}. We have

Fy e n(t) ! Z Fn,&n(tT)

(5 n) TGSWXSE,,]
1 0' TO
e —n) Z Z Une—n(77) Ppe—n(t™).
" n): TGSnXS§ n G’GSg

Changing the summation variable in the inner sum, ¢ = 7 !'pr, and using the fact that
Peny(tPT) = Pye_p(tP) for all 7 € Sy x Sg_p, we get

Fe— n(t) (51 ) Z ZUM n P n(tm)

TGSnXS§ n pES&
5 n) | Z n&—n(t) Z Un,e—n(t7).
pESg TESWXS§,W

Furthermore, using the identity

> H T, (A.10)
TES, 1<i<j<n T( T(j)
we obtain that 3 g xSe_n Upe—n(t’™) = nl(§ —n)! and
Fen( ZPM n(t"). (A.11)
pESg

Using formula (A.11), the statement of Proposition A.2 can be formulated as follows:

£

A(Tya(ty) - - Tha(te)) = ) n'pezs;g mie—n(t"). (A.12)

We will prove this formula using the induction on £. The base of induction at £ =1 is given by
formula (2.5):

A(T2(t1)) = Th2(t1) @ Thi(tr) + Toa(t1) @ Tia(t). (A.13)
To make the induction step, we use that
A(Be(t) = A(Ti2(t1)) A(Taa(t2) - - - Tiz(te)), (A.14)

expand the first factor according to (A.13), and apply the induction assumption to expand the
second factor. Denote by Sé—1 C S¢ the subgroup of permutations p, such that p(1) = 1. Then
the right-hand side of formula (A.14) becomes

£
T12(t1)®T11(t1)Z(§ 12 Prrrealtne - tre)
n=1 esg 1
e-1
+ Toa(t1) @ Tha(t1) Z g Z Pre—n—1(tp@)s-- - tpe))s (A.15)
n= 0 pES;

-1
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where in the first term we shifted the summation variable of the exterior sum. Using the
definition of P, ¢_1_,(t) and P,_; ¢,(t), we further expand expression (A.15):

i SOOI by = try) —1
n—=1 5 77 - 1 GS’ | 1<i<n<j<e tT(i) - tT(j)
Ul S
X <T12(t1)HT12( ()) ® T1(t1) H Tio(t ) ( H T (tr (k) ®HT11 )
=2 Jj=n+1 k=n+1
! 1

p(i) ~ bp(5)
Sy I e

0 pes' 1<i<n+1<j<é p(i) ~ to(j)

n+1 3 n+1
X <T22 (t1) HT12 ) ® Tia(th) H Tio(t ) < H Tz (tpy) @ HTll(tp(l))>'
1=2

Jj=n+2 k=n+2

In the first term, we move 77 (¢1) through the product HJ —y+1 112 (tr(j)) using formula (A.4):

—t =1
T <tf<j>)>Tn<t1>

-1

¢ 1 € bt
4 Z - (H ;p) (4)
J

i—pt1 T T tr () T12( 70 ))>T12(t1)T11( T(p))-

Similarly, in the second term we move Tha(t1) through the product [ _, Tia (tp(m)) using for-
mula (A.5):

n+1 n+1 t—t " i
T22 tl HT12 z)) = (H #Tm (tp( ))>T22(t1)
=2 =2 17 Yp(3)
n+1 n+1
1 tp(s) —tow 1
B T ; T T
Ztl_t&( to(s) = to(i) 12(tp(0)) | Tiz2(t) T2 (to(s))

After all, the right-hand side of (A.14) becomes a sum of four terms:
A(Be(t)) = Yi(t) + Ya(t) + Y3(t) + Ya(?),

where

3 1 ¢ tr—trq —1 trii) = tr(j) —
N TP [H U ==

TES] I=n+1 tlitT(l) 1<i<n<j<é& tT(l) tT(J)

n 1

<T12 t1) HT12 @) © H Tip(t >

J=n+1

(H Tos (1)) © Thi (1) HTn )))]

k=n+1 =2
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&1 1
Ya(t) =
2 & it 1)
< §
1 by = tr) = 1 br@y = trgm) =1
o Il
rég il LTI 0 1 Gigieee @) T EG) m:ﬂl br@) = tr(m)
U
X <T12(t1) T 12 (tr ) @ Tra(tr) H Tra(t )
k=2 m=n+1
m#l
S
(H Toa (tr(y) © Tha(t HTH (5) )]
i=n+1
HH=S L 3 [H oy ~h =1y 0 "l
—n—1)n! .
n=0 (€—n—1)! pes;_, Lm=2 h 1<i<n+1<j<¢ fo) ~ o)
n+1 3
(H T2 (p(m)) @ Ti2(t1) H Tha p(l)))
l=n+2
£ n+1
x (me IT %o(tso) [T 10000 ) |
i=n+2 j=2
§-1 1
Yi(t) = —
) ; E—n—-1!
+1 +1
< Y rz L 11 boti) = tpi) =1 h botk) = tpm) + 1
peS;_y Lk=2 b=toth) | iepitcjee @) ~ o) m=2 Fotk) ~ Tp(m)
n+1 3
X (le(t1) H T2 (tp(m)) @ Ti2(t1) H T12(tp(l))>
m=2 l=n+2
m#k
n+1
<T22 o)) H ot z))®HT11(tp(j))>]‘
i=n+2 7j=2
To complete the proof, we will show that
3
Yi(t) + Y3(t) Z ) W,Z 6t and  Ya(t) + Yy(t) = 0. (A.16)

pESg

We will start with the first equality in (A.16).
Observe that

£
1
L e & el

! o€Sg
o(1)=1
and
£-1
B S
n=0 O’ES§

o(n+1)=1
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On the other hand, we have

§ 3
Z (€— I Z ne-n(t7) = Z Z Ppen(t?)
n= "7 77 oES; 77=1 0ESe
ot )e{t,..n}
-1 1
S Y hew
— UESa]
= (€= m)h! forych

“HOe{nt1,..8)
Denote by s,; € S¢ the transposition of a and b. Then we have

S

=1 7'6557
T(1)=1

e ntmu =7 Z

7’6557
T(1)=1

Z 77&?7

0'655
“te{1,n}

For the first step, we used | = o~ 1(1) and 7 = 081,,-1(1), S0 that 7(1) = 1. For the second step,
we used the equality Py, ¢, (t714) = P, ¢_p(t7). Similarly,

Z Pm&—n(ta) = (£ - Z Pmﬁ—n(t )

UESE
“t)ef{n+1,....¢}

Therefore,

§
Zﬁ ,,777|Z 77677

3
:Z(g_

pGSg,
p(n+1)=1

i b

n= o€S;e n=1 'oeS
o(l):l
£—1
et Xn
n=0 065’5
o(n+1)=

=Yi(t) + Y3(t).

Finally, we show that Y2(¢) + Y4(¢t) = 0. Observe that Y5(t) can be written as

1
Yo(t) =
5(t) eIV
: ¢
1 br) —tr( — 1 trt) = tr(m)
|
Ertires, LT 0 Gsiee O TG T T T Erom)

¢t m;él

X <T12(t1) H T12( ® T12 tl H T12 )

k=2 m=n+1
m#l

o)

¢
(H Toa (tr()) @ Tha(t

i=n+1
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Changing the summation variable in the inner sum, 7 = 0s; 41, we obtain that

-1

o

1
Ya(t) =
2= 2 e -1
3
1 to(nr1) — to(m) — 1 to(i) —to() — 1
> ¥ | Il I
I=n+loeS._, b = lo(y+1) m=n+2 to(n+1) — lo(m) 1<i<n<j<¢ to(i) — ta(j)

U
X <T12(t1) H Tlg( ® T12 tl H T12 >

k=2 m=n+1
3 ntl
X < H Tz (o)) © H T (ta(j))>] .
1=n+2 j=2

The expression under the inner sum over ¢ does not depend on [ and after a redistribution of
factors, we get

1 U

1 S ity — to(m — S |
X Z Z [tl—t H (n+1) _() H (4) (n+1)

o) p=pgra Lol Tlotm)  2p L) T la(nt1)

I to(i) —to(j) — 1

l<i<nt1<j<¢ to(i) = to(s)

n
X (Tlg(h) HT12( ) ® Tia(t1) H Tha(t )

k=2 m=n+1
13 n+1
X ( H Too (ta(i)) &® H Ti1 (ta(j))>] . (Al?)
i=n+2 j=2
Similarly, Y;(t) can be written as
1
= E=1=n!
+1 ntl
X nz: Z [ H bo(i) P(J ~-17 p (k) m) +1
k= 2p€ . P(k) 1<i<n+1<5<E p(i) — ;Ak ( )

n+1
X <T12(t1) H T2 (tp(m)) ® Ti2(t1) H T12(tp(l))>

m=2 l=n+2
mtk K

n+1
<T22 o(k)) H Toa (t () ®HT11 >]>

i=n+2
and changing the summation variable in the inner sum, p = os 11, we get

£—1

1
_2(5—1—77)'77'

n=1
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(AR 1 T ity — tom + 1 toiiy — tociy — 1
Y [tl_t 11 (n+1) ~ lo(m) 11 () ~ ta(y)

o(n+1) 2o tO'(TH‘l) o tU(m) 1<i<n+1<j<¢ to'(i) o to'(j)

7 §
X <T12(t1) H T12(to(my) @ Tr2(t1) H T12(t0'(l))>

m=2 l=n+2
13 n+1
(T it Tt )|
i=n+1 j=2
The expression under the inner sum over o does not depend on k and after a redistribution of
factors, we get
£-1 1
Ya(t) = —
2 E—=n—-1n—-1)

=1

- [ 1 ﬂto<n+1>—to<m>+1 ﬁ totm+1) —lo(g) — 1

ves. LB T lein) ny Tt Tlotm) Sy tetri) T (o)

3

to(iy — to() — 1
y 11 a(i) ~ lo(h)
to(i) — to(j)

1<i<n+1<5<E
7 3
X <T12(t1) H T12(to(m)) @ Tra(t1) H TIQ(tJ(l)))
m=2 l=n+2

£ n+1
x < II Za(tow) ® HTll(tcr(j)))]- (A.18)

i=n+1

Formulae (A.17) and (A.18) show that Y2(t) +Ya(t) = 0. This completes the proof of for-
mula (A.12). Proposition A.2 is proved. |
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