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Abstract. We present four types of discrete Lagrangian 2-form associated to the integrable
quad equations of the ABS list. These include the triangle Lagrangian that has traditionally
been used in the Lagrangian multiform description of ABS equations, the trident Lagrangian
that was central to Part I of this paper, and two Lagrangians that have not been studied
in the multiform setting. Two of the Lagrangian 2-forms have the quad equations, or
a system equivalent to the quad equations, as their Euler–Lagrange equations, and one
produces the tetrahedron equations. This is in contrast to the triangle Lagrangian 2-form,
which produces equations that are weaker than the quad equations (they are equivalent
to two octahedron equations). We use relations between the Lagrangian 2-forms to prove
that the system of quad equations is equivalent to the combined system of tetrahedron
and octahedron equations. Furthermore, for each of the Lagrangian 2-forms, we study the
double zero property of the exterior derivative. In particular, this gives a possible variational
interpretation to the octahedron equations.
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1 Introduction

In Part I of this work [19], we revisited the discrete Lagrangian multiforms for the integrable
quad equations of the ABS list. We showed that two central properties of the theory are more
subtle than usually acknowledged:

(1) the equivalence between quad equations and their three-leg forms,

(2) the closure relation of the Lagrangian multiforms.

By introducing additional, integer-valued, fields to the action, we managed to put property (1)
on sound footing and recovered a slightly weaker version of property (2). We gave counterex-
amples to the usual formulations of these properties. In Part I, we focused our attention to
what we call the trident Lagrangian. We chose this over the established choice in discrete La-
grangian multiform theory (which we call the triangle Lagrangian and was introduced in [11], see
also [4, 5, 6, 13, 24]), because the trident Lagrangian produces Euler–Lagrange equations that
are equivalent to the multi-affine quad equations, whereas the triangle Lagrangian produces
a weaker set of equations.

The first aim of Part II is to compare these choices of Lagrangian, as well as two further
Lagrangians. We will show how the Euler–Lagrange equations of these different Lagrangian
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multiforms relate to various sets of equations that have been associated to integrable quad
equations: tetrahedron equations and octahedron relations [5, 6].

The second aim of Part II involves an algebraic interpretation of the closure relation that
has recently been emphasised: we can write the exterior derivative of the Lagrangian form as
(a sum of) product(s) of Euler–Lagrange expressions. In other words, the exterior derivative is
not just zero on solutions of the Euler–Lagrange equations

(
or possibly a multiple of 4π2

)
, but

attains a double zero on this set of equations. In the continuous (and semi-discrete) case, the
double zero property has been used implicitly in [20, 23] and discussed explicitly in [7, 18, 21].
In the discrete setting, a double zero expansion for the lattice Boussinesq equation was recently
obtained in [17]. In the present work, we give double zero expansions for the Lagrangian mul-
tiforms of the ABS list. These double zero expansions extend the variational interpretation of
the quad and tetrahedron equations and provide the first known variational interpretation of
the octahedron equations.

The structure of this paper is as follows. In Section 2, we review the properties of the ABS
equations that are relevant to this work. We start Section 3 with a review of Lagrangian multi-
form theory, including the extension of the action by integer fields that was developed in Part I.
In Sections 3.3–3.6, we present four types of Lagrangian multiform. For two of these, the varia-
tional principle produces exactly the set of quad equations. One of the Lagrangian multiforms
produces only the tetrahedron equations. The final one is the well-known Lagrangian multi-
form on a triangular stencil. In Section 4, we show that the relations between quad equations,
tetrahedron equations, and octahedron equations follow from relations between the different
Lagrangian 2-forms. In Section 5, we show that the exterior derivatives of all four 2-forms admit
a double zero expansion (in terms of quad, tetrahedron, or octahedron polynomials). We give
a general construction of these double zero expansions and explicit expressions for the quad
equation H1.

2 Quad equations

We consider the multi-affine and multidimensionally consistent quad equations from the ABS
list [1]. The ABS list consists of

� equations of Hirota-type H1, H2, H3δ,

� more symmetric equations Q1δ, Q2, Q3δ, Q4,

� equations A1δ, A2, related to Q1δ, Q3 by non-autonomous transformations.

The subscript in Q1δ etc. indicates dependence on a parameter δ. We often distinguish between
zero and nonzero values of the parameter by writing Q1δ=0 or Q1δ ̸=0. Details of these equations
can be found, for example, in [1, 4, 8, 15], or in Part I [19].

2.1 Three-leg forms

Given a field u : ZN → C and a reference point n ∈ ZN , we write u = u(n), ui = u(n + ei),
uij = u(n+ ei + ej), etc., where ei denotes the unit vector in the i-th direction. Each equation

Qij := Q(u, ui, uj , uij , αi, αj) = 0

of the ABS list is related to a three-leg form. For some of the equations (H1, A1δ=0 and Q1δ=0),
there exist functions ψ and ϕ such that the multi-affine equation is equivalent to

ϕ(u, uij , αi − αj) = ψ(u, ui, αi)− ψ(u, uj , αj). (2.1)
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The other ABS equations have three-leg form with multiplicative structure: there exist func-
tions Ψ and Φ such that the multi-affine equation is equivalent to

Φ(u, uij , αi − αj) =
Ψ(u, ui, αi)

Ψ(u, uj , αj)
.

Setting ψ = log(Ψ) and ϕ = log(ϕ), we find that the multi-affine equation (for H2, H3, A1δ ̸=0,
A2, Q1δ ̸=0, Q2, Q3, Q4) is equivalent to

ϕ(u, uij , αi − αj) = ψ(u, ui, αi)− ψ(u, uj , αj) + 2Θπi, Θ ∈ Z. (2.2)

For all equations of the ABS list, regardless of whether the three leg form is of type (2.1) or (2.2),
ϕ is an odd function of its last entry, i.e., ϕ(u, uij , αi − αj) = −ϕ(u, uij , αj − αi).

We denote the additive three-leg expression by

Q(u)
ij := ψ(u, ui, αi)− ψ(u, uj , αj)− ϕ(u, uij , αi − αj),

where the superscript indicates that the three legs meet at the vertex u. We can also consider
three-leg forms based at the other three vertices of the square:

Q(ui)
ij := ψ(ui, uij , αj)− ψ(ui, u, αi)− ϕ(ui, uj , αj − αi), (2.3)

Q(uij)
ij := ψ(uij , uj , αi)− ψ(uij , ui, αj)− ϕ(uij , u, αi − αj), (2.4)

Q(uj)
ij := ψ(uj , u, αj)− ψ(uj , uij , αi)− ϕ(uj , ui, αj − αi). (2.5)

In summary, we have the following.

Proposition 2.1. For H1, A1δ=0 and Q1δ=0, there holds

Qij = 0 ⇐⇒ Q(u)
ij = 0 ⇐⇒ Q(ui)

ij = 0 ⇐⇒ Q(uj)
ij = 0 ⇐⇒ Q(uij)

ij = 0.

For H2, H3, A1δ ̸=0, A2, Q1δ ̸=0, Q2, Q3, there holds

Qij = 0 ⇐⇒ Q(u)
ij ≡ 0 mod 2πi ⇐⇒ Q(ui)

ij ≡ 0 mod 2πi

⇐⇒ Q(uj)
ij ≡ 0 mod 2πi ⇐⇒ Q(uij)

ij ≡ 0 mod 2πi.

The three-leg forms of quad equations on adjacent faces of the cube combine to form an
equation on a tetrahedral stencil. We can base the three-leg form of the tetrahedron equation
at any of its vertices, as illustrated in Figure 1,

T (u) := ϕ(u, uij , αi − αj) + ϕ(u, ujk, αj − αk) + ϕ(u, uki, αk − αi), (2.6)

T (uij) := ϕ(uij , u, αi − αj) + ϕ(uij , uki, αj − αk) + ϕ(uij , ujk, αk − αi), (2.7)

T (uki) := ϕ(uki, ujk, αi − αj) + ϕ(uki, uij , αj − αk) + ϕ(uki, u, αk − αi), (2.8)

T (ujk) := ϕ(ujk, uki, αi − αj) + ϕ(ujk, u, αj − αk) + ϕ(ujk, uij , αk − αi). (2.9)

The ABS equations of type Q have the property that their short and long leg functions are the
same, ϕ = ψ. Each equation of type H and A shares its long leg function ϕ with an equation of
type Q, but has a different short leg function ψ. Thus, the tetrahedron equation of any member
of the ABS list takes the form of a quad equation of type Q, in their respective three-leg forms.
Similarly, the multi-affine tetrahedron equation T = 0 can be described as a quad polynomial
of type Q, evaluated on a tetrahedron stencil:

T (u, uij , ujk, uki, αi, αj , αk) = Q(type Q)(u, uij , ujk, uki, αi − αj ,−αj + αk).
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Figure 1. Four three-leg forms of a tetrahedron equation.

A second tetrahedron equation is found from this by point inversion,

T (uijk, uk, ui, uj , αi, αj , αk) = Q(type Q)(uijk, uk, ui, uj , αi − αj ,−αj + αk).

Its three-leg forms are

T (uijk) := ϕ(uijk, uk, αi − αj) + ϕ(uijk, ui, αj − αk) + ϕ(uijk, uj , αk − αi), (2.10)

T (uk) := ϕ(uk, uijk, αi − αj) + ϕ(uk, uj , αj − αk) + ϕ(uk, ui, αk − αi), (2.11)

T (uj) := ϕ(uj , ui, αi − αj) + ϕ(uj , uk, αj − αk) + ϕ(uj , uijk, αk − αi), (2.12)

T (ui) := ϕ(ui, uj , αi − αj) + ϕ(ui, uijk, αj − αk) + ϕ(ui, uk, αk − αi). (2.13)

The equivalences between the tetrahedron equations in multi-affine and three-leg forms are
as follows.

Proposition 2.2. For H1, A1δ=0 and Q1δ=0, the multi-affine equation

T (u, uij , ujk, uki, αi, αj , αk) = 0

is equivalent to each of the following:

T (u) = 0 ⇐⇒ T (uij) = 0 ⇐⇒ T (ujk) = 0 ⇐⇒ T (uki) = 0.

For H2, H3, A1δ ̸=0, A2, Q1δ ̸=0, Q2, Q3, the multi-affine equation

T (u, uij , ujk, uki, αi, αj , αk) = 0

is equivalent to each of the following:

T (u) ≡ 0 mod 2πi ⇐⇒ T (uij) ≡ 0 mod 2πi ⇐⇒
T (ujk) ≡ 0 mod 2πi ⇐⇒ T (uki) ≡ 0 mod 2πi.

Analogous equivalences relate T (uijk, uk, ui, uj , αi, αj , αk) = 0 to T (uijk), T (uk), T (ui), and T (uj).

3 Lagrangian multiforms

3.1 General theory

The central object of the Lagrangian multiform description of quad equations is a discrete
two-form L(u, ui, uj , uij , αi, αj), i.e., a function that is skew-symmetric under the swap of in-
dices i↔ j. We require that, for every choice of 2-dimensional discrete surface in the lattice,
the corresponding action sum is critical with respect to variations of the field u : ZN → C.
Equivalently, we require that the action sum over every elementary cube,

S = L(uk, uki, ujk, uijk, αi, αj) + L(ui, uij , uki, uijk, αj , αk) + L(uj , ujk, uij , uijk, αk, αi)

− L(u, ui, uj , uij , αi, αj)− L(u, uj , uk, ujk, αj , αk)− L(u, uk, ui, uki, αk, αi),

is critical with respect to variations of the fields u, ui, . . . , uijk [5].
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Criticality with respect to variations of the fields leads to a set of generalised Euler–Lagrange
equations, which we call corner equations. (They are also known as multiform Euler–Lagrange
equations or multi-time Euler–Lagrange equations.) For the Lagrangians usually given for the
ABS equations, the corner equations are linear combinations of the three-leg forms without 2πi
terms, as in equation (2.1). To recover the three-leg equation modulo 2πi, as in equation (2.2),
we introduced an extended action in Part I:

SΘ,Ξ = S + 2πi(Θu+Θiui +Θjuj +Θkuk +Θijuij +Θjkujk +Θkiuki +Θijkuijk)

+ 2πi(Ξiαi + Ξjαj + Ξkαk),

where Θ,Θi, . . . ,Θijk are integers associated to the vertices of the cube, and Ξi, Ξj , Ξk are
integers associated to the lattice directions.

The terms in SΘ,Ξ involving Ξi, Ξj , Ξk do not affect the corner equations, but they are
key to the second variational principle in Lagrangian multiform theory: the action is invariant
with respect to changes in the surface. This is equivalent to the property that the action on
each elementary cube vanishes, i.e., SΘ,Ξ = 0 on solutions.

(
Except in some cases we only have

SΘ,Ξ ≡ 0 mod 4π2.
)
Since this action can be thought of as the discrete exterior derivative of

the Lagrangian 2-form, it is also referred to as the closure relation.
Similarly, for the equations H1, A1δ=0 and Q1δ=0 with a three-leg form of type (2.1), we

consider

SΞ = S + 2πi(Ξiαi + Ξjαj + Ξkαk)

in order to have a closure relation.

3.2 Lagrangian leg functions

The discrete Lagrangian 2-forms we consider in this work are linear combinations of functions of
two lattice sites only. After a suitable transformation of the variable u, there exist functions L
and Λ such that the leg functions ψ and ϕ can be expressed as

ψ(u, ui, α) =
∂

∂u
L(u, ui, αi), ϕ(u, uij , αi − αj) =

∂

∂u
Λ(u, uij , αi − αj),

and also as

∂

∂ui
L(u, ui, αi) = ψ(ui, u, αi),

∂

∂uij
Λ(u, uij , αi − αj) = ϕ(uij , u, αi − αj).

A key element in the ABS classification is provided by the biquadratics associated to a quad
equation, i.e., the polynomials h and g satisfying

h(u, ui, αi) =
1

k(αi, αj)

(
Q

∂2Q

∂uj∂uij
− ∂Q

∂uj

∂Q

∂uij

)
,

g(u, uij , αi − αj) =
1

k(αi, αj)

(
Q

∂2Q

∂ui∂uj
− ∂Q

∂ui

∂Q

∂uj

)
,

where k is a skew-symmetric function, chosen such that h only depends on the indicated lattice
parameter. They are related to the L and Λ by [4, Lemma 3]

∂L(u, ui, αi)

∂αi
≡ log h(u, ui, αi) + κ(u) + κ(ui) + c(αi) mod 2πi (3.1)

∂Λ(u, uij , αi − αj)

∂αi
≡ log g(u, uij , αi − αj) + κ(u) + κ(uij)− γ(αi − αj) mod 2πi, (3.2)

for some functions κ, c, γ.
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The quad equation Qij = 0 implies the following identities involving the biquadratics (see [4,
Lemma 1] and [1, Proposition 15]):

h(u, ui, αi)h(uij , uj , αi) = h(u, uj , αj)h(uij , ui, αj)

= g(u, uij , αi − αj)g(ui, uj , αi − αj). (3.3)

Similarly, the tetrahedron equations

T (u, uij , ujk, uki, αi, αj , αk) = 0 and T (uijk, uk, ui, uj , αi, αj , αk) = 0

imply

g(u, uij , αi − αj)g(uki, ujk, αi − αj) = g(u, ujk, αj − αk)g(uki, uij , αk − αi)

= g(u, uki, αk − αi)g(uij , ujk, αk − αi) (3.4)

and

g(uijk, uk, αi − αj)g(uj , ui, αi − αj) = g(uijk, ui, αj − αk)g(uj , uk, αk − αi)

= g(uijk, uj , αk − αi)g(uk, ui, αk − αi), (3.5)

respectively.

3.3 Cross 2-form: tetrahedron equations are variational

We will show that the tetrahedron equations arise as corner equations of the following 2-form,
which we call the cross Lagrangian,

L (u, ui, uj , uij , αi − αj) = Λ(ui, uj , αi − αj)− Λ(u, uij , αi − αj).

The name for this Lagrangian is inspired on its leg structure, which is shown in Figure 2 (a). Note
that the lattice is a bipartite graph, we can colour the vertices such that each edge links a black
vertex with white vertex. Then each term of the cross Lagrangian involves two lattice sites of the
same colour, so the cross Lagrangian (and its action) can be decomposed into one contribution
from the black graph, and one from the white graph. These could be studied separately, as was
done in [3, 4] in the more general context of Laplace-type equations on a bipartite quad graph.

Consider the action of L over an elementary cube

S = Λ(uki, ujk, αi − αj)− Λ(uk, uijk, αi − αj)

− Λ(ui, uj , αi − αj) + Λ(u, uij , αi − αj) +⟲ijk

= Λ(u, uij , αi − αj)− Λ(ui, uj , αi − αj)−
←→
(· · · ) +⟲ijk, (3.6)

where ⟲ijk denotes the expressions obtained from the preceding one by cyclic permutations,
and

←→
(· · · ) denotes the point inversion of the preceding terms, i.e., the expression obtained by in-

terchanging u↔ uijk, ui ↔ ujk, etc. Consider also he extended actions

SΞ = S + 2πi(Ξiαi + Ξjαj + Ξkαk),

SΘ,Ξ = S + 2πi(Θu+Θiui +Θjuj +Θkuk +Θijuij +Θjkujk +Θkiuki +Θijkuijk)

+ 2πi(Ξiαi + Ξjαj + Ξkαk).

Proposition 3.1. For H1, A1δ=0 and Q1δ=0, the tetrahedron equations

T (u, uij , ujk, uki, αi, αj , αk) = 0, T (uijk, uk, ui, uj , αi, αj , αk) = 0
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Figure 2. (a) The leg structure of a single Lagrangian L (uk, uki, ujk, uijk, αi, αj). (b) The leg structure

for the action on an elementary cube of the cross 2-form L .

are satisfied if and only if there exist Ξi,Ξj ,Ξk ∈ Z such that

∂SΞ

∂u
= 0,

∂SΞ

∂ui
= 0,

∂SΞ

∂uj
= 0,

∂SΞ

∂uk
= 0,

∂SΞ

∂ujk
= 0,

∂SΞ

∂uki
= 0,

∂SΞ

∂uij
= 0,

∂SΞ

∂uijk
= 0,

and

∂SΞ

∂αi
= 0,

∂SΞ

∂αj
= 0,

∂SΞ

∂αk
= 0.

For H2, H3, A1δ ̸=0, A2, Q1δ ̸=0, Q2, Q3, the tetrahedron equations are satisfied if and only
if there exist Θ,Θi, . . . ,Θijk ∈ Z and Ξi,Ξj ,Ξk ∈ Z such that

∂SΘ,Ξ

∂u
= 0,

∂SΘ,Ξ

∂ui
= 0,

∂SΘ,Ξ

∂uj
= 0,

∂SΘ,Ξ

∂uk
= 0,

∂SΘ,Ξ

∂ujk
= 0,

∂SΘ,Ξ

∂uki
= 0,

∂SΘ,Ξ

∂uij
= 0,

∂SΘ,Ξ

∂uijk
= 0,

and

∂SΘ,Ξ

∂αi
= 0,

∂SΘ,Ξ

∂αj
= 0,

∂SΘ,Ξ

∂αk
= 0.

Proof. We give the proof for the case of H2, H3, A1δ ̸=0, A2, Q1δ ̸=0, Q2, Q3. The argument for
H1, A1δ=0 and Q1δ=0 is obtained from this by setting Θ = 0. In the partial derivatives of (3.6),
we recognise three-leg forms of the tetrahedron equations, (2.6)–(2.13). We have

∂SΘ,Ξ

∂u
= ϕ(u, uij , αi − αj) +⟲ijk + 2Θπi = T (u) + 2Θπi, (3.7)

∂SΘ,Ξ

∂ui
= −ϕ(ui, uj , αi − αj)− ϕ(ui, uk, αk − αi)− ϕ(ui, uijk, αj − αk) + 2Θiπi

= −T (ui) + 2Θiπi, (3.8)
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∂SΘ,Ξ

∂uij
= ϕ(uij , u, αi − αj) + ϕ(uij , ujk, αk − αi) + ϕ(uij , uki, αj − αk) + 2Θijπi

= T (uij) + 2Θijπi, (3.9)

∂SΘ,Ξ

∂uijk
= −ϕ(uijk, uk, αi − αj)− ϕ(uijk, uj , αk − αi)− ϕ(uijk, ui, αj − αk) + 2Θijkπi

= −T (uijk) + 2Θijkπi, (3.10)

and expressions obtained from these by cyclic permutation of the indices. According to Propo-
sition 2.1, there exist Θ,Θi, . . . ,Θijk ∈ Z such that these expressions are zero if and only if the
multi-affine tetrahedron equation T = 0 holds.

To prove the second claim, we use equations (3.1) and (3.2) to compute

∂SΘ,Ξ

∂αi
= log(g(u, uij , αi − αj))− log(g(ui, uj , αi − αj))−

←→
(· · · ) +⟲ijk + 2Ξiπi

≡ log

(
g(u, uij , αi − αj)g(uki, ujk, αi − αj)

g(uk, uijk, αi − αj)g(ui, uj , αi − αj)

)
+⟲ijk mod 2πi.

By virtue of equations (3.4) and (3.5), the logarithm in this expression vanishes on the tetrahe-
dron equations, so given a solution to the tetrahedron equations, we can choose Ξi ∈ Z such that

∂SΘ,Ξ

∂αi
= 0. ■

The closure of the cross-multiform is closely related to the star-triangle relation: the closure
relation splits into contributions on the black and white parts of the bipartite graph, each of
which encodes a star-triangle relation, see [4, Theorem 2]. More about the relation between ABS
equations and star-triangle relations can be found, for example, in [2]. Note that our strategy
of including integer fields to account for branch cuts has previously been used in the context of
star-triangle relations [9, 10].

3.4 Trident 2-form: quad equations are variational

One of the main results of Part I was that the quad equations of the ABS list are variational.
We showed that the trident Lagrangian

L (u, ui, uj , uij , αi, αj) := L(u, ui, αi)− L(u, uj , αj)− Λ(u, uij , αi − αj),

has corner equations that produce the quad equations directly (in their three-leg form). This is
illustrated in Figure 3, where it can be seen that at each vertex there are three legs contributing
to the action around the cube, which either lie in a single quad, or span a tetrahedron.

Proposition 3.2. For H2, H3, A1δ ̸=0, A2, Q1δ ̸=0, Q2, Q3, the quad equations are satisfied if
and only if there exist Θ,Θi, . . . ,Θijk ∈ Z and Ξi,Ξj ,Ξk ∈ Z such that

∂SΘ,Ξ

∂u
= 0,

∂SΘ,Ξ

∂ui
= 0,

∂SΘ,Ξ

∂uj
= 0,

∂SΘ,Ξ

∂uk
= 0,

∂SΘ,Ξ

∂ujk
= 0,

∂SΘ,Ξ

∂uki
= 0,

∂SΘ,Ξ

∂uij
= 0,

∂SΘ,Ξ

∂uijk
= 0, (3.11)

and

∂SΘ,Ξ

∂αi
= 0,

∂SΘ,Ξ

∂αj
= 0,

∂SΘ,Ξ

∂αk
= 0. (3.12)

For H1, A1δ=0 and Q1δ=0, the quad equations are satisfied if and only if there exist integers
Ξi,Ξj ,Ξk ∈ Z such that equations (3.11) and (3.12) hold for SΞ.
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−Λ
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k
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, α
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−
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)
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Figure 3. (a) The leg structure of a single Lagrangian L (uk, uki, ujk, uijk, αi, αj). (b) The leg structure

for the action on an elementary cube of the trident 2-form L .

Proof. We identify the corner equations with the three-leg forms of the quad equations (2.3)–
(2.5) and tetrahedron equations (2.6) and (2.10) by observing that

∂SΘ,Ξ

∂u
= T (u) + 2Θπi,

∂SΘ,Ξ

∂ui
= Q(ui)

jk + 2Θiπi, etc., (3.13)

whereQ(ui)
jk = ψ(ui, uij , αj)− ψ(ui, uki, αk)− ϕ(ui, uijk, αj − αk) is the three leg form based at ui

in the quad oriented along the j, k-directions. Since the quad equations imply the tetrahedron
equations, equations (3.13) imply that the quad equations are equivalent to the system (3.11).

Similar to Proposition 3.1, equations (3.12) can be proved using the biquadratics associated
to each quad equation. Details can be found in [19]. ■

3.5 Cross-square 2-form

We introduce a second 2-form that produces a system of corner equations equivalent to the
quad equations. The function defining this 2-form was introduced in [4], where it was studied
on a single quad. To our knowledge, it was never before considered as a Lagrangian multiform.
It is given by

L := L(u, ui, αi) + L(uij , uj , αi)− L(u, uj , αj)− L(uij , ui, αj)

−Λ(u, uij , αi − αj)− Λ(ui, uj , αi − αj).

Inspired by its leg structure, illustrated in Figure 4, we call it the cross-square Lagrangian.
The action over an elementary cube of the cross-square Lagrangian is

S = 2L(ui, uij , αj) + Λ(u, uij , αi − αj) + Λ(ui, uj , αi − αj)−
←→
(· · · ) +⟲ijk

= 2S − S , (3.14)

so its corner equations consist of linear combinations of the corner equations of the trident and
cross Lagrangians.

Proposition 3.3. For H2, H3, A1δ ̸=0, A2, Q1δ ̸=0, Q2, Q3, the quad equations are satisfied if
and only if there exist Θ,Θi, . . . ,Θijk ∈ Z and Ξi,Ξj ,Ξk ∈ Z such that

∂SΘ,Ξ

∂u
= 0,

∂SΘ,Ξ

∂ui
= 0,

∂SΘ,Ξ

∂uj
= 0,

∂SΘ,Ξ

∂uk
= 0,

∂SΘ,Ξ

∂ujk
= 0,

∂SΘ,Ξ

∂uki
= 0,

∂SΘ,Ξ

∂uij
= 0,

∂SΘ,Ξ

∂uijk
= 0, (3.15)
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uk uki

uijkujk

(a)

• •

• •

uiu
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(b)
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•

Figure 4. (a) The leg structure of a single Lagrangian L (uk, uki, ujk, uijk, αi, αj). (b) The leg structure

for the action on an elementary cube of the cross-square 2-form L .

and

∂SΘ,Ξ

∂αi
= 0,

∂SΘ,Ξ

∂αj
= 0,

∂SΘ,Ξ

∂αk
= 0. (3.16)

For H1, A1δ=0 and Q1δ=0, the quad equations are satisfied if and only if there exist integers
Ξi,Ξj ,Ξk ∈ Z such that equations (3.15) and (3.16) hold for SΞ.

Proof. From (3.14), we deduce that the corner equations are the corresponding linear combina-
tion of the corner equations (3.13) and (3.7)–(3.10) of the trident and cross Lagrangian 2-forms.
Hence,

∂S

∂u
= T (u) + 2Θπi,

∂S

∂uijk
= −T (uijk) + 2Θijkπi,

∂S

∂ui
= 2Q(ui)

jk + T (ui) + 2Θiπi,
∂S

∂ujk
= −2Q(ujk)

jk − T (ujk) + 2Θjkπi, (3.17)

whereQ(ui)
jk = ψ(ui, uij , αj)− ψ(ui, uki, αk)− ϕ(ui, uijk, αj − αk) is the three leg form based at ui

in the quad oriented along the j, k-directions and Q(ujk)
jk

is as in equation (2.4). The remaining
corner equations are obtained from (3.17) by cyclic permutation of the indices.

If multi-affine quad equations hold, then all of the three-leg forms involved in the system (3.17)
are multiples of 2πi, so the corner equations are satisfied. Conversely, if all equations of the
system (3.17) hold, then in particular the tetrahedron equations in three-leg form, centred at u
and uijk, are satisfied. Then the tetrahedron three-leg forms centred at ui, uj , uk, uij , ujk, uki
also vanish modulo 2πi, so the remaining corner equations reduce to individual quad equations
in three-leg form. These are equivalent to the multi-affine quad equations.

Furthermore, using equations (3.1) and (3.2), we find

∂L
∂αi

= log(h(u, ui, αi)) + log(h(uij , uj , αi))

− log(g(u, uij , αi − αj))− log(g(ui, uj , αi − αj)) + 2c(αi)− 2γ(αi − αj)

≡ log

(
h(u, ui, αi)h(uij , uj , αi)

g(u, uij , αi − αj)g(ui, uj , αi − αj)

)
+ 2c(αi)− 2γ(αi − αj) mod 2πi.

From equation (3.3), it now follows that, on solutions to the quad equations, ∂S
∂αi

is a multiple
of 2πi, so there exists a Ξi such that

∂SΘ,Ξ

∂αi
= 0. ■
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Figure 5. (a) The leg structure of a single Lagrangian L (uk, uki, ujk, αi, αj). (b) The leg structure for

the action on an elementary cube of the triangle 2-form L sits on an octahedral stencil.

The following lemma states that, for the cross-square Lagrangian, we can also obtain the
quad equation by taking partial derivatives of the Lagrangian on a single quad. Lagrangian
multiform theory does not require this property, but it will be a useful tool in Section 5.3.

Lemma 3.4. For H2, H3, A1δ ̸=0, A2, Q1δ ̸=0, Q2, Q3, the quad equation is satisfied if and only
if there exist Θ,Θi,Θj ,Θij ∈ Z and Ξi,Ξj ∈ Z such that

∂L
∂u

= 2Θπi,
∂L
∂ui

= 2Θiπi,
∂L
∂uj

= 2Θjπi,
∂L
∂uij

= 2Θijπi.

For H1, A1δ=0 and Q1δ=0, the quad equation is satisfied if and only if there exist Ξi,Ξj ∈ Z
such that

∂L
∂u

= 0,
∂L
∂ui

= 0,
∂L
∂uj

= 0,
∂L
∂uij

= 0.

Proof. We have

∂L
∂u

= ψ(u, ui, αi)− ψ(u, uj , αj)− ϕ(u, uij , αi − αj)

and similar expressions for the derivatives with respect to ui, uj , and uij . ■

3.6 Triangle 2-form

Now we compare the above constructions to the known 2-form L (which has been the standard
choice in the theory of Lagrangian multiforms [11]),

L (u, ui, uj , αi, αj) := L(u, ui, αi)− L(u, uj , αj)− Λ(ui, uj , αi − αj).

We review how this 2-form is critical on a set of equations weaker than the quad equations and
we will relate it to our new 2-forms via L = L − L .

The action around the elementary cube of the triangle Lagrangian depends on an octahedral
stencil depicted in Figure 5,

S = L(ui, uij , αj) + Λ(ui, uj , αi − αj)−
←→
(· · · ) +⟲ijk. (3.18)
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Since u and uijk does not appear in this action, there are no corner equations at these points.
The corner equation at uij in terms of leg functions is

0 =
∂S

∂uij
=

∂

∂uij
(L(ui, uij , αj)−L(uj , uij , αi)−Λ(uij , uki, αj − αk)−Λ(ujk, uij , αk − αi))

= ψ(uij , ui, αj)− ψ(uij , uj , αi)− ϕ(uij , uki, αj − αk)− ϕ(uij , ujk, αk − αi)

=: Eij . (3.19)

Note that this corner equation can be written as a combination of two quad equations in three-leg
form, based at the vertex uij :

Eij = −Q
(uij)
jk −Q(uij)

ki . (3.20)

At the vertex ui, we find the corner equation
←→
E ij = 0, where

←→
E ij := −Q(uk)

jk −Q(uk)
ki is obtained

from Eij by point inversion in the cube, i.e., u↔ uijk, ui ↔ ujk, etc.

Proposition 3.5. For H2, H3, A1δ ̸=0, A2, Q1δ ̸=0, Q2, Q3, the equations Eij = 0, Ejk = 0, . . . ,
←→
E ki = 0 are satisfied if and only if there exist Θ,Θi, . . . ,Θijk ∈ Z and Ξi,Ξj ,Ξk ∈ Z such that

∂SΘ,Ξ

∂ui
= 0,

∂SΘ,Ξ

∂uj
= 0,

∂SΘ,Ξ

∂uk
= 0,

∂SΘ,Ξ

∂ujk
= 0,

∂SΘ,Ξ

∂uki
= 0,

∂SΘ,Ξ

∂uij
= 0, (3.21)

and

∂SΘ,Ξ

∂αi
= 0,

∂SΘ,Ξ

∂αj
= 0,

∂SΘ,Ξ

∂αk
= 0. (3.22)

For H1, A1δ=0 and Q1δ=0, the quad equations are satisfied if and only if there exist integers
Ξi,Ξj ,Ξk ∈ Z such that equations (3.21) and (3.22) hold for SΞ.

Proof. Expressions (3.21) follow from equation (3.19) and its analogues obtained by cyclicity
and point inversion.

To derive equations (3.22), we first show that any solution (ui, uj , uk, uij , ujk, uki) to the
E-equations can be extended to a solution to the quad equations. We have that

←→
E ij = −Q(uk)

jk −Q(uk)
ki ≡ 0 mod 2πi,

←→
E jk = −Q(ui)

ki −Q
(ui)
ij ≡ 0 mod 2πi,

←→
E ki = −Q

(uj)
ij −Q(uj)

jk ≡ 0 mod 2πi.

Choose u such that the quad equation Qij = 0 holds. Then Q(ui)
ij ≡ Q(uj)

ij ≡ 0 mod 2πi, hence
Q(ui)

ki ≡ Q
(uj)
jk ≡ 0 mod 2πi, so the quad equations Qjk = 0 and Qki = 0 hold as well. Sim-

ilarly, we can choose uijk such that the three shifted quad equations
←→
Qij = 0,

←→
Qjk = 0, and←→

Qki = 0 hold.

Now, starting from the definition (3.18) and using equations (3.1)–(3.2), we compute

∂SΘ,Ξ

∂αi
=

∂

∂αi
(L(uk, uki, αi)− L(uj , uij , αi) + Λ(ui, uj , αi − αj) + Λ(uk, ui, αk − αi)

− Λ(uki, ujk, αi − αj)− Λ(ujk, uij , αk − αi) + 2Ξiπi
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≡ log

(
h(uk, uki, αi)g(ui, uj , αi − αj)g(ujk, uij , αk − αi)

h(uj , uij , αi)g(uk, ui, αk − αi)g(uki, ujk, αi − αj)

)
mod 2πi

≡ log

(
g(u, uij , αi − αj)g(ui, uj , αi − αj)

h(u, ui, αi)h(uj , uij , αi)

)
+ log

(
h(u, ui, αi)h(uk, uki, αi)

g(u, uki, αk − αi)g(uk, ui, αk − αi)

)
+ log

(
g(ujk, uij , αk − αi)g(u, uki, αk − αi)

g(uik, ujk, αi − αj)g(u, uij , αi − αj)

)
mod 2πi.

Each of the logarithms vanishes on the quad equations, so the existence of a suitable Ξi

fol̄lows. ■

The triangle Lagrangian 2-form produces a set of corner equations that vanish on the quad
equations but are not equivalent to them, because they lack the variables u and uijk. Further-
more, we can relate each of the four-leg equations (3.19) to a quad equation and a tetrahedron
equation. From L = L − L , we have

S = S − S (3.23)

and thus

Eij = −Q
(uij)
ij − T (uij). (3.24)

Example 3.6. For H1, also known as the lattice potential KdV equation, we have

Qij = (ui − uj)(u− uij)− αi + αj . (3.25)

Its leg functions are given by

ψ(u, ui, αi) = ui and ϕ(u, uij , αi − αj) =
αi − αj

u− uij

and triangle Lagrangian is

L = uui − uuj − (αi − αj) log(ui − uj),

so

S = ukuki − ukujk − (αi − αj) log(uki − ujk) + (αi − αj) log(ui − uj)2 +⟲ijk,

= uiuij + (αi − αj) log(ui − uj)−
←→
(· · · ) +⟲ijk.

Two corner equations are identically zero and the other six have a four-leg form. The corner
equations at uij , ujk and uki are all of the form

0 =
∂S

∂uij
= ui − uj −

αj − αk

uij − uki
+

αk − αi

ujk − uij
= −Q(uij)

jk −Q(uij)
ki = Eij .

Clearly these equations vanish on the quad equations. Similarly, the other three corner equations
are of the form

∂S

∂uk
= uki − ujk +

αk − αi

uk − ui
− αj − αk

uj − uk
= Q(uk)

jk +Q(uk)
ki = −

←→
E ij .
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Furthermore, we have

0 =
∂SΞ

∂αi
= log(ui − uj)− log(ujk − uki)− log(uk − ui) + log(uij − ujk) + 2Ξiπi

≡ log

(
(ui − uj)(uij − ujk)
(uk − ui)(ujk − uki)

)
mod 2πi.

The only way the principal branch of log can yield a multiple of 2πi is for it to be exactly zero.
Hence,

∂SΞ

∂αi
= 0

is equivalent to the lattice KP equation [16]

0 = (ui − uj)(uij − ujk)− (uk − ui)(ujk − uki)
= ui(uij − uki) + uj(ujk − uij) + uk(ujk − uki).

In other words, Proposition 3.5 gives us a short proof that the E-equations for H1 imply the
discrete KP equation. We will return to this when we discuss octahedron equations in Section 4.

3.7 Closure relation

Propositions 3.2–3.5 above provide the basis to prove closure of each of the Lagrangian mul-
tiforms, following the same approach we took in [19] for the trident Lagrangian. Proposi-
tions 3.2–3.5 state that on solutions of the corner equations, the gradient of the action with
respect to both parameters α and fields u vanishes. This means that perturbations of a given
solution will have the same value of the action, unless it crosses a branch cut in one of the
functions making up the action. For H1, H2, Q1, Q2, A1, the effect of crossing a branch cut is
cancelled by the change in Θ (if present) and Ξ that happens at the same point. For H3, Q3, A2,
the net effect of crossing a branch cut is that the value of the action changes by a multiple of 4π2.

Thus we arrive at the following statement (see [19, Theorem 3.5]).

Theorem 3.7. Let S denote one of the actions SΘ,Ξ, SΘ,Ξ, SΘ,Ξ, or SΘ,Ξ for H2, H3, A1δ ̸=0,
A2, Q1δ ̸=0, Q2, Q3. Or, let S denote one of the actions SΞ, SΞ, SΞ, or SΞ for H1, A1δ=0,
Q1δ=0.

For any solution u to the corner equations of S, with associated integer fields Θ, Ξ, there
holds

S(u,Θ,Ξ) =

{
0 for H1, H2, Q1, Q2, and A1,

4kπ2, k ∈ Z, for H3, Q3, and A2.

4 Tetrahedron and octahedron equations

Previously, we discussed the three-leg forms equivalent to the multi-affine quad and tetrahedron
equations. In this section, we discuss the polynomial equations associated with the four-leg
corner equations (3.19) of the triangle 2-form. We review the related multi-affine octahedron
equations (also known as octahedron relations) and their relationship to quad equations. Most
of this section is based on [6], but in Proposition 4.3 we provide an additional variational
interpretation of the relation between the different types of polynomial equations.

The four-leg equation Eij = 0 or Eij ≡ 0 mod 2πi, where the left-hand side is defined
in equation (3.20), can be obtained by eliminating the variable uijk from two quad equations
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in three-leg form. An equivalent equation is obtained by eliminating uijk from the corresponding
two multi-affine quad equations. This yields the equation Eij = 0, where the left-hand side is
the polynomial

Eij =
∂
←→
Qjk

∂uijk

←→
Qki −

∂
←→
Qki

∂uijk

←→
Qjk, (4.1)

where←→· denotes point inversion in the cube, for example
←→
Qjk = Q(uijk, uki, uij , ui, αj − αk).

We have two more polynomials by permuting indices and three more from point inversion:

←→
E ij =

∂Qjk

∂u
Qki −

∂Qki

∂u
Qjk. (4.2)

These polynomials lead to equations that are equivalent to those involving the four-leg expres-
sions Eij :

Eij(ui, uj , uij , ujk, uki, αi, αj , αk) = 0

is equivalent to

Eij(ui, uj , uij , ujk, uki, αi, αj , αk) = 0

for H1, Q1δ=0, A1δ=0, and to

Eij(ui, uj , uij , ujk, uki, αi, αj , αk) ≡ 0 mod 2πi

for H2, H3, A1δ ̸=0, A2, Q1δ ̸=0, Q2, Q3.

From their definition as combinations of quad equations, it is clear that Eij = 0 and
←→
E ij = 0

are consequences of the quad equations. However, they are not equivalent to the quad equations.
Only two of these six equations are independent (see Proposition 4.2 below).

The relation (3.24) suggests that the polynomial Eij is related to the polynomials Qij and T .
Indeed, eliminating the variable u from the system T = 0, Qij = 0 must lead to an equation
equivalent to Eij = 0, so we find

∂Qij

∂u
T − ∂T

∂u
Qij = γ(αi, αj , αk)Eij . (4.3)

Here, γ(αi, αj , αk) does not contain field variables, because the left hand side depends linearly
on (ui, uj , ujk, uki) and quadratically on uij , as does Eij . Under point inversion, we find the
analogous relation

∂
←→
Qij

∂uijk

←→
T − ∂

←→
T

∂uijk

←→
Qij = γ(αi, αj , αk)

←→
E ij .

The main result of [6] is that for every member of the ABS list there exist two octahedron
equations which are equivalent to the set of E-equations. These are of the form

Ω1(ui, uj , uk, uij , ujk, uki, αi, αj , αk) = 0,

Ω2(ui, uj , uk, uij , ujk, uki, αi, αj , αk) = 0,

where Ω1, Ω2 are multi-affine polynomials in the field variables ui, uj , uk, uij , ujk, uki, which form
an octahedral stencil. These polynomials are (anti-)symmetric under point inversion: For Q4
and A2, we have

←→
Ω1 = Ω1 and

←→
Ω2 = Ω2; for the rest of ABS list, there holds

←→
Ω1 = −Ω1 and←→

Ω2 = Ω2.
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In all cases, we can get E-polynomials by eliminating a variable form the system of octahedron
equations. For Q4 and A2, eliminating uk and uij leads to, respectively,

∂Ω1

∂uk
Ω2 −

∂Ω2

∂uk
Ω1 = µ(ui, uj , ujk, uki, αi, αj , αk)Eij ,

∂Ω1

∂uij
Ω2 −

∂Ω2

∂uij
Ω1 = µ(ujk, uki, ui, uj , αi, αj , αk)

←→
E ij , (4.4)

where the factor µ(ui, uj , ujk, uki, αi, αj , αk) is polynomial in ui, uj , ujk, uki. For the rest of ABS
list, we have the explicit expressions

∂Ω1

∂uk
Ω2 −

∂Ω2

∂uk
Ω1 = g1(αi, αj , αk)

(
∂Ω1

∂uij
− ∂Ω1

∂uk

)
Eij ,

− ∂Ω1

∂uij
Ω2 +

∂Ω2

∂uij
Ω1 = g1(αi, αj , αk)

(
−∂Ω1

∂uk
+
∂Ω1

∂uij

)
←→
E ij , (4.5)

where g1 is defined explicitly on a case by case basis in [6, Proposition 5.3].

Example 4.1 (H1 octahedron equations). For H1, the four-leg equations Eij = 0 and
←→
E ij = 0

are equivalent to the following polynomials, respectively:

Eij = (ui − uj)(uij − ujk)(uij − uki) + αi(uki − uij) + αj(uij − ujk) + αk(ujk − uki),
←→
E ij = (ujk − uki)(uk − ui)(uk − uj) + αi(uj − uk) + αj(uk − ui) + αk(ui − uj).

These can written in terms of the following multi-affine octahedron polynomials:

Ω1 = ui(uki − uij) +⟲ijk, (4.6)

Ω2 = αi(uk − uj + uij − uki) + uiujk(uj − uk − uijuki) +⟲ijk,

Equation (4.6) is exactly the discrete KP equation we obtained earlier from ∂S
∂αi

= 0. The
latter can be understood as a conservation law,

0 =
∂S

∂αi
= ∆k

∂Lij
∂αi

+∆j
∂Lki
∂αi

,

where ∆k denotes the difference between the shift in the k-direction and the function itself.
This is the 2-form version of the spectrality property that was formulated in [22] for discrete
Lagrangian 1-forms. Further investigation is required to determine how this property relates to
the octahedron equations of [6] for other members of the ABS list.

The equivalence between the corner equations of L (i.e., the E-equations obtained by setting
the expressions (4.1) and (4.2) to zero) and octahedron equations can be seen as a particular
case of the following statement, which holds in the sense of fractional ideals, as explained in [6].

Proposition 4.2. Out of the set of equations consisting of the six E-equations and two octahe-
dron equations, any 2 equations imply the other six.

Further to this, a dimension-counting argument suggests that if we add the tetrahedron
equations to the set of octahedron equations (or E-equations), we should obtain a system equiv-
alent to the quad equations. The Lagrangian multiform structure provides an explicit proof of
this fact:

Proposition 4.3. The tetrahedron equations and octahedron equations together are equivalent
to the quad equations.
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Proof. From equation (2.6) (or from tetrahedron property as assumed in the ABS classifica-
tion [1]), it follows that the quad equations imply the tetrahedron equations. From (4.4) or (4.5),
it follows that the E-equations, and hence the quad equations, imply the octahedron equations
(in the sense of fraction ideals, as in [6]).

To prove the other implication, assume that the octahedron and tetrahedron equations are
satisfied. Then the actions of L and L are critical. Since L = L + L , it follows that the
action of L is critical, hence the quad equations hold. ■

2-Form Corner polynomials Equivalent system

L
(
0,
←→
E jk,
←→
Eki,
←→
E ij , Eij , Ejk, Eki, 0

)
Ω1,Ω2 = 0

L
(
T,
←→
T ,
←→
T ,
←→
T , T, T, T,

←→
T
)

T,
←→
T = 0

L
(
T,
←→
Qjk,
←→
Qki,
←→
Qij , Qij , Qjk, Qki,

←→
T
)

Ω1,Ω2, T,
←→
T = 0

L
(
T,∼

←→
Qjk,∼

←→
Qki,∼

←→
Qij ,∼ Qij ,∼ Qjk,∼ Qki,

←→
T
)

Ω1,Ω2, T,
←→
T = 0

Table 1. Overview of the four types of Lagrangian multiform, with their corner equations (in polynomial

form) and a symmetric set of equations forming an equivalent system. Note in the final row “∼
←→
Qjk”

represents an expression such that, after the elimination of a tetrahedron polynomial
←→
T , a quad polyno-

mial
←→
Qjk remains.

Proposition 4.3 relates the three sets of equations we are dealing with: those produced by L
(or L ), L , and L . (See Table 1 for an overview.) The corner equations of L can be
immediately identified with the tetrahedron equations. The equations produced by L can be
understood from two points of view. On the one hand, they are generated by the 5-point E-
equations, which have an obvious variational interpretation, but are far less symmetric than the
other equations considered. On the other hand they are generated by the octahedron equations,
which have cyclic and point inversion symmetry, but have no previously known variational
interpretation. The equations produced by L (or L ) are the six quad equations around the
cube (together with the two tetrahedron equations), which are equivalent to the combined set
of two tetrahedron equations and two octahedron equations.

In the next section, we introduce the double zero property, which states that the exterior
derivative of a 2-form can be expanded such that each of its terms is a product of expressions
that vanish on its corner equations. This will give us a variational interpretation for all of the
equations discussed above, including the octahedron equations.

5 The double zero property of discrete exterior derivatives

To motivate the formulation of the double zero property, we first present some observations
regarding a linear quad equation. Then we formalise the definition of a double zero expansion
and provide constructions of double zero expansions for each of the 2-forms for any member
of ABS list. Afterwards we investigate explicit expansions associated with each of the 2-forms
for H1.

5.1 Double zero expansion associated with a linear quad equation

We consider the linear quad equation Qij = 0, with

Qij = (αi + αj)(ui − uj)− (αi − αj)(u− uij).
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This equation can be considered as a linearisation of H1 and is associated to the following
triangle Lagrangian

L = u(ui − uj)−
αi + αj

2(αi − αj)
(u− uij)2.

Its action over an elementary cube can be written as

S = L (uk, uki, ujk, αi, αj) + L (ui, uij , uki, αj , αk) + L (uj , ujk, uij , αk, αi)

− L (u, ui, uj , αi, αj)− L (u, uj , uk, αj , αk)− L (u, uk, ui, αk, αi)

=
O1O2

(αi − αj)(αj − αk)(αk − αi)
, (5.1)

where

O1 := (αj − αk)ui + (αj − αk)ujk +⟲ijk,

O2 := αi(αj − αk)ui − αi(αj − αk)ujk +⟲ijk.

Hence, the action over an elementary cube can be explicitly written as a product of two expres-
sions O1 and O2. They are symmetric under cyclic permutation of the indices and under point
inversion, in the sense that

←→
O1 = O1 and

←→
O2 = −O2.

In analogy to multiple zeros of polynomials, we say that S has a double zero on the system of
equations O1 = 0, O2 = 0. The factorisation (5.1) implies that for any v ∈ {u, ui, uj , uk, uij , ujk,
uki, uijk} there holds

∂S

∂v
=

1

(αi − αj)(αj − αk)(αk − αi)

(
∂O1

∂v
O2 +O1

∂O2

∂v

)
,

which is zero if both O1 = 0 and O2 = 0. Hence, the double zero property tells us that the
action is critical if the two equations O1 = 0 and O2 = 0 hold. This implies that all corner
equations are consequences of these two equations!

This linear example shows the power of the double zero property: if S can be written as
a product of two expressions, then the fact that both these expressions vanish is a sufficient
condition for criticality. Hence, in this situation, two equations together imply the full system
of corner equations.

In some examples, the double zero expansion of S involves more than two expressions and
is a sum of products, rather than a single product. In the next subsection, we give a suitably
general definition of a double zero expansion.

5.2 Definition of a double zero expansion

Definition 5.1. We say that S(u, ui, uj , uk, uij , ujk, uki, uijk) has a double zero on a set of
equations {Km(u, ui, uj , uk, uij , ujk, uki, uijk) = 0 | m = 1, . . . ,M} if it can be written as

S =
∑

1≤m≤m′≤M

dm,m′KmKm′ . (5.2)

Here, dm,m′ are coefficients that can depend upon any variable or parameter, but must be
nonsingular on generic points of {Km(u, ui, uj , uk, uij , ujk, uki, uijk) = 0 | m = 1, . . . ,M}. We
call the right hand side of equation (5.2) a double zero expansion of S.

This definition applies to the example above, because equation (5.1) is of the form (5.2)
with M = 2, K1 = O1, K2 = O2, d1,1 = d2,2 = 0, and

d1,2 =
1

(αi − αj)(αj − αk)(αk − αi)
.
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Proposition 5.2. If the action over an elementary cube S of a Lagrangian 2-form L has a double
zero on a system of equations {Km = 0 | m = 1, . . . ,M}, then this system implies the corner
equations of L.

Proof. For any v ∈ {u, ui, uj , uk, uij , ujk, uki, uijk}, we have

∂S

∂v
=

∑
1≤m≤m′≤M

(
∂dm,m′

∂v
KmKm′ + dm,m′

∂Km

∂v
Km′ + dm,m′Km

∂Km′

∂v

)
,

which vanishes on {Km = 0 | m = 1, . . . ,M}. ■

Below, we will use Taylor expansions to derive double zero expansions involving higher powers
of expressions. For example, consider an action S which is critical on some equation K1 = 0,
and an expansion of the form

S =
∞∑
n=2

cnK
n
1 .

This satisfies Definition 5.1, because we can write the action as

S =

( ∞∑
n=2

cnK
n−1
1

)
K1,

where the sum can be identified with d1,1.

5.3 Double zero expansions for ABS 2-forms

In this subsection, we derive double zero expansions for the action over an elementary cube for
each of the discrete 2-forms for arbitrary members of the ABS list. For ease of notation, we
assume that we are in a case where the closure property holds:

Assumption 5.3. In the following we assume that SΘ,Ξ = 0
(
or SΞ = 0 for H1, A1δ=0, Q1δ=0

)
on solutions. To drop this assumption, a multiple of 4π2 should be added as constant term to
the series expansions that follow.

The double zero expansions are constructed from Taylor expansions in one variable, where the
variable represents either a quad polynomial Q, a tetrahedron polynomial T or an E polynomial.
In this Taylor expansion, the zeroth order term vanishes due to the closure relation and the first
order term vanishes as a consequence of the corner equations. Hence, each discrete 2-form has
a double zero expansion in terms of the polynomials associated with its corner equations. These
double zero expansions are manifestly symmetric under cyclic permutation of the indices and
under point inversion.

Cross-square 2-form. Recall that Qij = 0 implies that ∇L = 0, , where ∇ denotes the
gradient with respect to u, ui, uj , uij (see Lemma 3.4) and that SΘ,Ξ = 0 (see Assumption 5.3).

To get a more explicit picture of the behaviour of L and SΘ,Ξ = 0 near solutions, we would like
to perform a Taylor expansion about solutions Qij = 0. To this end, it is useful to consider Qij

as one of the variables on which L depends. Specifically, we consider a change of variables from
(u, ui, uj , uij) to (Qij , ui, uj , uij). Since the quad polynomial Qij is multi-affine, we can write
it as

Qij(u, ui, uj , uij , αi, αj) = r(ui, uj , uij , αi, αj)u+ s(ui, uj , uij , αi, αj),
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so it is possible to write u as a rational function of Qij , ui, uj , uij :

u = V (Qij , ui, uj , uij , αi, αj) :=
Qij − s(ui, uj , uij , αi, αj)

r(ui, uj , uij , αi, αj)
.

In the case of the cross square 2-form, we can consider the Lagrangian on a single square,
apply this variable transformation, and then Taylor expand about Qij = 0:

L = L (V (Qij , ui, uj , uij , αi, αj), ui, uj , uij , αi, αj)

=
∞∑
n=0

(
1

n!

∂n

∂Qij
nL (V (Qij , ui, uj , uij , αi, αj), ui, uj , uij , αi, αj)

∣∣∣∣
Qij=0

)
Qn

ij .

Now, the fact that for Qij = 0 there holds ∇L = 0 implies that the first order term vanishes.
Hence, we have

L = g(αi, αj) + L
(
V (0, ui, uj , uij , αi, αj), ui, uj , uij , αi, αj

)
+

∞∑
n=2

(
1

n!

∂n

∂Qij
nL

(
V (Qij , ui, uj , uij , αi, αj), ui, uj , uij , αi, αj

)∣∣∣
Qij=0

)
Qn

ij .

Together with the fact that SΘ,Ξ = 0 on solutions, this implies that the series expansion of the
action over the elementary cube has no constant or linear terms in Qij .

Proposition 5.4. The action of the Lagrangian 2-form L over an elementary cube has
a double zero expansion in terms of Qij, Qjk, Qki,

←→
Qij,

←→
Qjk,

←→
Qki:

S = −
∞∑
n=2

(
1

n!

∂n

∂Qij
nL (V (Qij , ui, uj , uij , αi, αj), ui, uj , uij , αi, αj)

∣∣∣∣
Qij=0

)
Qn

ij

−
←→
(· · · ) +⟲ijk. (5.3)

Cross 2-form. Recall that T,
←→
T = 0 implies the existence of Θ and Ξ such that SΘ,Ξ = 0

(see Theorem 3.7) and ∇SΘ,Ξ = 0, where ∇ denotes the gradient with respect to u, . . . , uijk
(these are the corner equations, see Proposition 3.1). With that in mind, and with the in-
tention of finding a series expansion about T,

←→
T = 0, we consider a change of variables form

(u, ui, uj , uk, uij , ujk, uki, uijk) to
(
T, ui, uj , uk, uij , ujk, uki,

←→
T
)
. Since the tetrahedron polyno-

mial T is multi-affine, it is possible to rewrite u in terms of T
(
and uijk in terms of

←→
T
)
in the

following way for the entire ABS list:

u =W (T, uij , ujk, uki, αi, αj , αk), uijk =W
(←→
T , uk, ui, uj , αi, αj , αk

)
.

Here, W is a fraction with a numerator which is multi-affine in (T, uij , ujk, uki) and a denomi-
nator which is multi-affine in (uij , ujk, uki).

Now we consider the action on an elementary cube of the cross 2-form, apply the variable
transformation, and Taylor expand about T = 0 and

←→
T = 0:

S = −L (u, ui, uj , uij , αi, αj)−
←→
(· · · ) +⟲ijk

= −Λ(ui, uj , αi − αj) + Λ
(
W (T, uij , ujk, uki, αi, αj

)
, uij , αi − αj)−

←→
(· · · ) +⟲ijk

= −Λ(ui, uj , αi − αj) +

∞∑
n=0

(
1

n!

∂n

∂Tn
Λ(W (T, uij , ujk, uki, αi, αj), uij , αi − αj)

∣∣∣∣
T=0

)
Tn

−
←→
(· · · ) +⟲ijk.

Now, the fact that T,
←→
T = 0 =⇒ SΘ,Ξ, ∇SΘ,Ξ = 0 means that the zeroth and first order terms

must cancel against the terms involving Θ and Ξ, so we have the following.
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Proposition 5.5. The action of the Lagrangian 2-form L over an elementary cube has a dou-
ble zero expansion in terms of T ,

←→
T

SΘ,Ξ =
∞∑
n=2

(
1

n!

∂n

∂Tn
Λ(W,uij , αi − αj)

∣∣∣∣
T=0

)
Tn −

←→
(· · · ) +⟲ijk, (5.4)

where W =W (T, uij , ujk, uki, αi, αj).

Triangle 2-form. From equations (3.14) and (3.23), we infer that

S =
1

2
S − 1

2
S . (5.5)

We note that S (ui, uj , uk, uij , ujk, uki) does not depend on u or uijk. Thus, imposing the
equations T,

←→
T = 0 has no effect on S : we can take T = 0 and

←→
T = 0 as the definition of u

and uijk in terms of the variables (ui, uj , uk, uij , ujk, uki) that occur in S . Since T,
←→
T = 0 implies

S = 0, we have that

T,
←→
T = 0 =⇒ S =

1

2
S .

Now recall that E,
←→
E = 0 implies SΘ,Ξ = 0 (see Theorem 3.7) and ∇SΘ,Ξ = 0 (see Proposi-

tion 3.5). With all of this in mind, we note that the polynomial identity (4.3) between T , Qij

and Eij implies that

T = 0 =⇒ Qij =
γ(αi, αj , αk)

∂T
∂u

Eij .

Applying these observations to the double zero expansion of the action of the cross square
Lagrangian (5.3), we find the following.

Proposition 5.6. The action of the Lagrangian 2-form L over an elementary cube has
a double zero expansion in terms of Eij, Ejk, Eki,

←→
E ij,

←→
E jk,

←→
Eki

SΘ,Ξ = −1

2

∞∑
n=2

∂n

∂Qij
nL (V, ui, uj , uij , αi, αj)

∣∣
Qij=0

n!
(
∂T
∂u

1
γ(αi,αj ,αk)

)n En
ij −

←→
(· · · ) +⟲ijk, (5.6)

where V = V (Qij , ui, uj , uij , αi, αj).

Trident 2-form. Recall that Q,
←→
Q = 0 implies SΘ,Ξ = 0 (see Theorem 3.7) and ∇SΘ,Ξ = 0

(see Proposition 3.2). From equation (3.14), we know that

S =
1

2
S +

1

2
S . (5.7)

From the three-leg tetrahedron equations (2.6) and (2.10), we can derive the following relations
between the multi-affine polynomials T in terms of Qij , Qjk and Qki:

cT = dijQij + djkQjk + dkiQki,

←→c
←→
T =
←→
d ij
←→
Qij +

←→
d jk
←→
Qjk +

←→
d ki
←→
Qki, (5.8)

where d and cij are polynomials. We can apply these observations to the double zero expansion
of the cross 2-form (5.4) and cross-square 2-form (5.3) and conclude the following.
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Proposition 5.7. The action of Lagrangian 2-form L over a an elementary cube has
a double zero expansion in terms of Qij, Qjk, Qki,

←→
Qij,

←→
Qjk,

←→
Qki

SΘ,Ξ =
1

2

∞∑
n=2

(
1

n!

∂n

∂Tn
Λ(W,uij , αi − αj)

∣∣∣∣
T=0

)
1

cn
(dijQij + djkQjk + dkiQki)

n

− 1

2

∞∑
n=2

(
1

n!

∂n

∂Qij
nL (V, ui, uj , uij , αi, αj)

∣∣∣∣
Qij=0

)
Qn

ij −
←→
(· · · ) +⟲ijk,

where W =W (T, uij , ujk, uki, αi, αj) and V = V (Qij , ui, uj , uij , αi, αj).

5.4 Double zeroes on octahedron equations

Some of the double zero expansions above can be written in terms of octahedron polynomials.
For A2, we can rewrite the expansion (5.6) using equation (4.4).1 With the cyclic symmetry
and point inversion symmetry of Ω1 and Ω2, we can conclude the following.

Proposition 5.8. For equation A2, a double zero expansion for the cube action of the triangle
2-form in terms of Ω1, Ω2 is given by

SΘ,Ξ = −1

2

∞∑
n=2

∂n

∂Qij
nL (V, ui, uj , uij , αi, αj)

∣∣
Qij=0

n!
(
∂T
∂u

µ(ui,uj ,ujk,uki,αi,αj ,αk)
γ(αi,αj ,αk)

)n (
∂Ω1

∂uk
Ω2 −

∂Ω2

∂uk
Ω1

)n

−
←→
(· · · ) +⟲ijk,

where V = V (Qij , ui, uj , uij , αi, αj).

For the rest of the ABS list, we can rewrite the expansion (5.6) using equation (4.5) and can
conclude the following.

Proposition 5.9. For equations Q1, Q2, Q3, H1, H2, H3 and A1, a double zero expansion for
the cube action of the triangle 2-form in terms of Ω1, Ω2 is given by

SΘ,Ξ = −1

2

∞∑
n=2

∂n

∂Qij
nL (V, ui, uj , uij , αi, αj)

∣∣
Qij=0

n!
(
∂T
∂u

1
γ(αi,αj ,αk)

g1
(
∂Ω1
∂uij
− ∂Ω1

∂uk

))n (∂Ω1

∂uk
Ω2 −

∂Ω2

∂uk
Ω1

)n

−
←→
(· · · ) +⟲ijk,

where V = V (Qij , ui, uj , uij , αi, αj).

These propositions give a possible variational interpretation to the octahedron equations.
The double zero expansions imply that the equations Ω1 = 0 and Ω2 = 0 are sufficient conditions
for criticality, hence they imply the corner equations.

5.5 Example: Double zero expansions for H1

In this subsection, we show that the general construction described above leads to succinct
double zero expansions for the actions over the cube of each of the discrete 2-forms associated
with H1. For this example, we will verify by explicit computation that the zeroth and first order
terms vanish in the Taylor expansions.

1This would also be the case for Q4, but we have not proved a closure relation for this equation, so we will
not discuss its double zero expansion either.
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Cross-square Lagrangian. Solving the quad equation Qij = 0 for u, with Qij given by
equation (3.25), we find a change of variables expressing u in terms of the quad polynomial Qij :

u =
αi − αj +Qij

ui − uj
+ uij .

Now we apply this to a single cross-square Lagrangian and Taylor expand in Qij

L = uui + ujuij − uuj − uiuij − (αi − αj) log(u− uij)− (αi − αj) log(ui − uj),
= (u− uij)(ui − uj)− (αi − αj) log((u− uij)(ui − uj)) + 2πiΞ(αi − αj),

= αi − αj +Qij − (αi − αj) log(αi − αj +Qij) + 2πiΞ(αi − αj)

= (αi − αj)(1− log(αi − αj)) + 2πiΞ(αi − αj)−
∞∑
n=2

Qn
ij

n(αj − αi)n−1
.

We find that the first order term vanishes as expected, but the zeroth order term does not.
It depends only on the lattice parameters. When we consider the action around the cube, the
zeroth order contributions cancel, except for terms of the form 2πiΞiαi:

S =
←→
L −L +⟲ijk

=
∞∑
n=2

Qn
ij

n(αj − αi)n−1
−
←→
(· · · ) +⟲ijk − 2πi(Ξiαi + Ξjαj + Ξkαk).

Hence,

SΞ =

∞∑
n=2

Qn
ij

n(αj − αi)n−1
−
←→
(· · · ) +⟲ijk. (5.9)

Equation (5.9) is a double zero expansion for the action around the cube of the cross square
2-form associated with H1 in terms of Qij , Qjk, Qki,

←→
Qij ,
←→
Qjk,

←→
Qki.

Cross Lagrangian. In order to derive a double zero expansion for the cross 2-form associated
with H1, we use its tetrahedron expression

T = (αi − αj)(uuij + ujkuki) + (αj − αk)(uujk + uijuki) + (αk − αi)(uuki + uijujk)

to find a variable transformation that eliminates u in favour of T :

u =
T − ((αi − αj)ujkuki +⟲ijk)

((αi − αj)uij +⟲ijk)
.

From this, we obtain

u− uij =
T + (αi − αj)(uij − ujk)(uki − uij)

((αi − αj)uij +⟲ijk)
. (5.10)

We have an analogous transformation for uijk in terms of
←→
T . Now we apply this to the action

around the cube of the cross 2-form and Taylor expand in T and
←→
T . Using the point inversion

symmetry, we find

S = −L −
←→
(· · · ) +⟲ijk

= −(αi − αj) log(ui − uj) + (αi − αj) log(u− uij)−
←→
(· · · ) +⟲ijk

= (αi − αj) log(ujk − uki) + (αi − αj) log(u− uij)−
←→
(· · · ) +⟲ijk

= (αi − αj) log((u− uij)(ujk − uki))−
←→
(· · · ) + 2πiΞij(αi − αj) +⟲ijk.
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Now we substitute u using equation (5.10),

S = (αi − αj) log

(
T (ujk − uki) + (αi − αj)(uij − ujk)(uki − uij)(ujk − uki)(

(αi − αj)uij +⟲ijk

) )
−
←→
(· · · ) + 2πiΞij(αi − αj) +⟲ijk.

Then we observe that

(αi − αj) log
(
(uij − ujk)(uki − uij)(ujk − uki)

)
+⟲ijk = 0,

(αi − αj) log
(
(αi − αj)uij +⟲ijk

)
+⟲ijk = 0,

because the logarithms are invariant under cyclic permutations of i, j, k, so we find

S = (αi − αj) log

(
T

(uij − ujk)(uki − uij)
+ (αi − αj)

)
−
←→
(· · · ) +⟲ijk

− 2πi(Ξiαi + Ξjαj + Ξkαk)

= −
∞∑
n=2

Tn

n(αi − αj)n−1(uij − ujk)n(uij − uki)n
−
←→
(· · · ) +⟲ijk

− 2πi(Ξiαi + Ξjαj + Ξkαk).

Hence,

SΞ = −
∞∑
n=2

Tn

n(αi − αj)n−1(uij − ujk)n(uij − uki)n
−
←→
(· · · ) +⟲ijk. (5.11)

Note that the zeroth and first order terms vanish. Hence, equation (5.11) is a double zero
expansion in terms of T and

←→
T .

Triangle Lagrangian. In order to derive a double zero expansion for the action on the
elementary cube of the triangle 2-form, we note the following relation for H1:

T = 0 =⇒ Qij =
(αi − αj)Eij

(αi(uij − uki) +⟲ijk)
.

There holds T,
←→
T = 0 =⇒ S = 0, so we deduce form equation (5.5) that

T,
←→
T = 0 =⇒ S =

1

2
S .

Since S (ui, uj , uk, uij , uji, uki) does not depend on u or uijk, we can assume that T = 0
and
←→
T = 0, without affecting the action. Thus, we can write the cube action for the trian-

gle 2-form as

SΞ =
1

2

∞∑
n=2

1

n(αj − αi)n−1

(
(αi − αj)Eij

(αi(uij − uki) +⟲ijk)

)n

−
←→
(· · · ) +⟲ijk

=
1

2

∞∑
n=2

(αj − αi)(−1)n

n(αi(uij − uki) +⟲ijk)n
En

ij −
←→
(· · · ) +⟲ijk. (5.12)

Equation (5.12) is a double zero expansion for the triangle 2-form in terms of Ei, Ej , Ek,
←→
E i,←→

E j ,
←→
Ek.

We can use the identities (4.5), where g1 = 1 for H1, to rewrite this in terms of Ω1 and Ω2:

SΞ =
1

2

∞∑
n=2

(αj − αi)(−1)n

n(αi(uij − uki) +⟲ijk)n

(
∂Ω1
∂uk

Ω2 − ∂Ω2
∂uk

Ω1

∂Ω1
∂uij
− ∂Ω1

∂uk

)n

−
←→
(· · · ) +⟲ijk. (5.13)
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Equation (5.13) is a double zero expansion for the triangle 2-form in terms of the octahedron
polynomials.

Trident Lagrangian. To derive the double zero expansion for action of the trident 2-form,
we consider equation (5.8), which shows that cyclic combinations of quad equations lead to the
tetrahedron equation. For H1, this can be written explicitly as

T = −(u− ujk)(u− uki)Qij − (u− uki)(u− uij)Qjk − (u− uij)(u− ujk)Qki.

Using equation (5.7), we can write the action on an elementary cube of the trident 2-form as

SΞ =
1

2

∞∑
n=2

(
Qn

ij

n(αj − αi)n−1
− Tn

n(αi − αj)n−1(uij − ujk)n(uij − uki)n

)
−
←→
(· · · ) +⟲ijk

=
1

2

∞∑
n=2

(
Qn

ij

n(αj − αi)n−1
−

(−Qij(u− ujk)(u− uki) +⟲ijk)
n

n(αi − αj)n−1(uij − ujk)n(uij − uki)n

)
−
←→
(· · · ) +⟲ijk. (5.14)

Equation (5.14) is a double zero expansion for the cube action of the trident 2-form in terms of
the quad polynomials Qij , Qjk, Qki,

←→
Qij ,
←→
Qjk,

←→
Qki.

6 Conclusion

In this work, we compared the Lagrangian multiforms L , L and L on four-point stencils
to the three-point one L that has been favoured in the previous literature on Lagrangian
multiforms for the ABS equations.

In Part I [19], we focused on L : we introduced integer fields into the action to deal with the
branch cuts of the logarithm and dilogarithm functions that occur in L , and showed that these
integer fields are essential to obtain the closure property of Lagrangian multiforms.

In Part II, we showed that the same construction applies to L , L , and L . We established
that the closure property holds for each of them, in the sense that the action over the cube
vanishes

(
modulo 4π2

)
on solutions of the corresponding corner equations. We studied the

relations between the respective systems of corner equations using the relations between the
Lagrangian 2-forms. We showed that the quad equations are equivalent to the combined system
of tetrahedron and octahedron equations. In addition, we formulated the double-zero property,
which has recently seen a lot of emphasis in the continuous and semi-discrete settings, on the
discrete level. This gives a variational interpretation of the octahedron equations.

This work shows once again that Lagrangian multiform theory is a powerful variational
principle. As well as being an attribute of integrability, it can provide a solution to the inverse
problem of the calculus of variations for equations that do not admit a Lagrangian in the
traditional sense.

The Lagrangian multiforms presented here are specific to the ABS equations, relying in partic-
ular on their three-leg forms. Lagrangian multiforms exists for other integrable quad equations,
such as the discrete Gel’fand–Dikii equations [12], but these do no have a three-leg structure.
It remains to be seen if such examples also admit different Lagrangian multiforms producing
distinct but related corner equations.

The double-zero property has been observed in Lagrangian multiforms for non-ABS lattice
equations [14, 17]. Since the corner equations imply that the gradient of the action vanishes,
we expect the double-zero property to hold for all discrete Lagrangian multiforms that satisfy
the closure property. A careful study of the closure property for non-ABS examples, generalising
the results of Part I, is left for future work.
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