|
SIGMA 21 (2025), 059, 27 pages arXiv:2403.16845
https://doi.org/10.3842/SIGMA.2025.059
Discrete Lagrangian Multiforms for ABS Equations II: Tetrahedron and Octahedron Equations
Jacob J. Richardson a and Mats Vermeeren b
a) School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
b) Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK
Received March 26, 2024, in final form July 02, 2025; Published online July 18, 2025
Abstract
We present four types of discrete Lagrangian 2-form associated to the integrable quad equations of the ABS list. These include the triangle Lagrangian that has traditionally been used in the Lagrangian multiform description of ABS equations, the trident Lagrangian that was central to Part I of this paper, and two Lagrangians that have not been studied in the multiform setting. Two of the Lagrangian 2-forms have the quad equations, or a system equivalent to the quad equations, as their Euler-Lagrange equations, and one produces the tetrahedron equations. This is in contrast to the triangle Lagrangian 2-form, which produces equations that are weaker than the quad equations (they are equivalent to two octahedron equations). We use relations between the Lagrangian 2-forms to prove that the system of quad equations is equivalent to the combined system of tetrahedron and octahedron equations. Furthermore, for each of the Lagrangian 2-forms, we study the double zero property of the exterior derivative. In particular, this gives a possible variational interpretation to the octahedron equations.
Key words: discrete integrability; Lagrangian multiforms; variational principles.
pdf (472 kb)
tex (30 kb)
References
- Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, arXiv:nlin.SI/0202024.
- Bazhanov V.V., Kels A.P., Sergeev S.M., Quasi-classical expansion of the star-triangle relation and integrable systems on quad-graphs, J. Phys. A 49 (2016), 464001, 44 pages, arXiv:1602.07076.
- Bobenko A.I., Günther F., On discrete integrable equations with convex variational principles, Lett. Math. Phys. 102 (2012), 181-202, arXiv:1111.6273.
- Bobenko A.I., Suris Yu.B., On the Lagrangian structure of integrable quad-equations, Lett. Math. Phys. 92 (2010), 17-31, arXiv:0912.2464.
- Boll R., Petrera M., Suris Yu.B., What is integrability of discrete variational systems?, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014), 20130550, 15 pages, arXiv:1307.0523.
- Boll R., Petrera M., Suris Yu.B., On integrability of discrete variational systems: octahedron relations, Int. Math. Res. Not. 2016 (2016), 645-668, arXiv:1406.0741.
- Caudrelier V., Dell'Atti M., Singh A.A., Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems, Lett. Math. Phys. 114 (2024), 34, 52 pages, arXiv:2307.07339.
- Hietarinta J., Zhang D.-J., Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization, J. Phys. A 42 (2009), 404006, 30 pages, arXiv:0903.1717.
- Kels A.P., Interaction-round-a-face and consistency-around-a-face-centered-cube, J. Math. Phys. 62 (2021), 033509, 36 pages, arXiv:2003.08883.
- Kels A.P., Two-component Yang-Baxter maps and star-triangle relations, Phys. D 448 (2023), 133723, 23 pages, arXiv:1910.03562.
- Lobb S.B., Nijhoff F.W., Lagrangian multiforms and multidimensional consistency, J. Phys. A 42 (2009), 454013, 18 pages, arXiv:0903.4086.
- Lobb S.B., Nijhoff F.W., Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy, J. Phys. A 43 (2010), 072003, 11 pages, arXiv:0911.1234.
- Lobb S.B., Nijhoff F.W., A variational principle for discrete integrable systems, SIGMA 14 (2018), 041, 18 pages, arXiv:1312.1440.
- Nijhoff F.W., Lagrangian multiform structure of discrete and semi-discrete KP systems, Open Commun. Nonlinear Math. Phys. 4 (2024), OCNMP Conference, 91-115, arXiv:2406.13423.
- Nijhoff F.W., Atkinson J., Hietarinta J., Soliton solutions for ABS lattice equations. I. Cauchy matrix approach, J. Phys. A 42 (2009), 404005, 34 pages, arXiv:0902.4873.
- Nijhoff F.W., Capel H.W., Wiersma G.L., Quispel G.R.W., Bäcklund transformations and three-dimensional lattice equations, Phys. Lett. A 105 (1984), 267-272.
- Nijhoff F.W., Zhang D.-J., On the Lagrangian multiform structure of the extended lattice Boussinesq system, Open Commun. Nonlinear Math. Phys. 4 (2024), special issue, 1-10, arXiv:2312.12684.
- Petrera M., Vermeeren M., Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs, Eur. J. Math. 7 (2021), 741-765, arXiv:1906.04535.
- Richardson J.J., Vermeeren M., Discrete Lagrangian multiforms for ABS equations I: Quad equations, SIGMA 21 (2025), 058, 30 pages, arXiv:2501.13012.
- Sleigh D., Nijhoff F., Caudrelier V., Variational symmetries and Lagrangian multiforms, Lett. Math. Phys. 110 (2020), 805-826, arXiv:1906.05084.
- Sleigh D., Vermeeren M., Semi-discrete Lagrangian 2-forms and the Toda hierarchy, J. Phys. A 55 (2022), 475204, 24 pages, arXiv:2204.13063.
- Suris Yu.B., Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms, J. Geom. Mech. 5 (2013), 365-379, arXiv:1212.3314.
- Suris Yu.B., Variational symmetries and pluri-Lagrangian systems, in Dynamical Systems, Number Theory and Applications, World Scientific Publishing, Hackensack, NJ, 2016, 255-266, arXiv:1307.2639.
- Xenitidis P., Nijhoff F., Lobb S., On the Lagrangian formulation of multidimensionally consistent systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), 3295-3317, arXiv:1008.1952.
|
|