|
SIGMA 21 (2025), 058, 30 pages arXiv:2501.13012
https://doi.org/10.3842/SIGMA.2025.058
Discrete Lagrangian Multiforms for ABS Equations I: Quad Equations
Jacob J. Richardson a and Mats Vermeeren b
a) School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
b) Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UK
Received March 26, 2024, in final form July 02, 2025; Published online July 18, 2025
Abstract
Discrete Lagrangian multiform theory is a variational perspective on lattice equations that are integrable in the sense of multidimensional consistency. The Lagrangian multiforms for the equations of the ABS classification formed the start of this theory, but the Lagrangian multiforms that are usually considered in this context produce equations that are slightly weaker than the ABS equations. In this work, we present alternative Lagrangian multiforms that have Euler-Lagrange equations equivalent to the ABS equations. In addition, the treatment of the ABS Lagrangian multiforms in the existing literature fails to acknowledge that the complex functions in their definitions have branch cuts. The choice of branch affects both the existence of an additive three-leg form for the ABS equations and the closure property of the Lagrangian multiforms. We give counterexamples for both these properties, but we recover them by including integer-valued fields, related to the branch choices, in the action sums.
Key words: discrete integrability; Lagrangian multiforms; variational principles.
pdf (510 kb)
tex (35 kb)
References
- Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, arXiv:nlin.SI/0202024.
- Bobenko A.I., Günther F., On discrete integrable equations with convex variational principles, Lett. Math. Phys. 102 (2012), 181-202, arXiv:1111.6273.
- Bobenko A.I., Suris Yu.B., On the Lagrangian structure of integrable quad-equations, Lett. Math. Phys. 92 (2010), 17-31, arXiv:0912.2464.
- Bobenko A.I., Suris Yu.B., Discrete pluriharmonic functions as solutions of linear pluri-Lagrangian systems, Comm. Math. Phys. 336 (2015), 199-215, arXiv:1403.2876.
- Boll R., Petrera M., Suris Yu.B., What is integrability of discrete variational systems?, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014), 20130550, 15 pages, arXiv:1307.0523.
- Boll R., Petrera M., Suris Yu.B., On integrability of discrete variational systems: octahedron relations, Int. Math. Res. Not. 2016 (2016), 645-668, arXiv:1406.0741.
- Caudrelier V., Nijhoff F., Sleigh D., Vermeeren M., Lagrangian multiforms on Lie groups and non-commuting flows, J. Geom. Phys. 187 (2023), 104807, 35 pages, arXiv:2204.09663.
- Caudrelier V., Stoppato M., Vicedo B., Classical Yang-Baxter equation, Lagrangian multiforms and ultralocal integrable hierarchies, Comm. Math. Phys. 405 (2024), 12, 67 pages, arXiv:2201.08286.
- Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2016.
- Kels A.P., Interaction-round-a-face and consistency-around-a-face-centered-cube, J. Math. Phys. 62 (2021), 033509, 36 pages, arXiv:2003.08883.
- Kels A.P., Two-component Yang-Baxter maps and star-triangle relations, Phys. D 448 (2023), 133723, 23 pages, arXiv:1910.03562.
- Lobb S.B., Nijhoff F.W., Lagrangian multiforms and multidimensional consistency, J. Phys. A 42 (2009), 454013, 18 pages, arXiv:0903.4086.
- Lobb S.B., Nijhoff F.W., A variational principle for discrete integrable systems, SIGMA 14 (2018), 041, 18 pages, arXiv:1312.1440.
- Nijhoff F.W., Lagrangian 3-form structure for the Darboux system and the KP hierarchy, Lett. Math. Phys. 113 (2023), 27, 19 pages, arXiv:2206.14338.
- Nijhoff F.W., Lagrangian multiform structure of discrete and semi-discrete KP systems, Open Commun. Nonlinear Math. Phys. 4 (2024), OCNMP Conference, 91-115, arXiv:2406.13423.
- Petrera M., Suris Yu.B., Variational symmetries and pluri-Lagrangian systems in classical mechanics, J. Nonlinear Math. Phys. 24 (2017), suppl. 1, 121-145, arXiv:1710.01526.
- Richardson J.J., Vermeeren M., Discrete Lagrangian multiforms for quad equations II: Tetrahedron and octahedron equations, SIGMA 21 (2025), 059, 27 pages, arXiv:2403.16845.
- Sleigh D., Nijhoff F.W., Caudrelier V., Lagrangian multiforms for Kadomtsev-Petviashvili (KP) and the Gelfand-Dickey hierarchy, Int. Math. Res. Not. 2023 (2023), 1420-1460, arXiv:2011.04543.
- Sleigh D., Vermeeren M., Semi-discrete Lagrangian 2-forms and the Toda hierarchy, J. Phys. A 55 (2022), 475204, 24 pages, arXiv:2204.13063.
- Suris Yu.B., Variational formulation of commuting Hamiltonian flows: Multi-time Lagrangian 1-forms, J. Geom. Mech. 5 (2013), 365-379, arXiv:1212.3314.
- Suris Yu.B., Vermeeren M., On the Lagrangian structure of integrable hierarchies, in Advances in Discrete Differential Geometry, Springer, Berlin, 2016, 347-378, arXiv:1510.03724.
- The Sage Developers, SageMath, the Sage Mathematics Software System, Version 9.1 of 2020-05-21, aviable at https://www.sagemath.org.
- Vermeeren M., SageMath code ABS-multiforms: v1.1, 2025, aviable at https://zenodo.org/doi/10.5281/zenodo.15652765.
- Vermeeren M., A variational perspective on continuum limits of ABS and lattice GD equations, SIGMA 15 (2019), 044, 35 pages, arXiv:1811.01855.
- Xenitidis P., Nijhoff F., Lobb S., On the Lagrangian formulation of multidimensionally consistent systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), 3295-3317, arXiv:1008.1952.
|
|