|
SIGMA 21 (2025), 053, 17 pages arXiv:2503.04547
https://doi.org/10.3842/SIGMA.2025.053
Some Spherical Function Values for Hook Tableaux Isotypes and Young Subgroups
Charles F. Dunkl
Department of Mathematics, University of Virginia, PO Box 400137, Charlottesville VA 22904-4137, USA
Received March 12, 2025, in final form June 30, 2025; Published online July 08, 2025
Abstract
A Young subgroup of the symmetric group $\mathcal{S}_{N}$, the permutation group of $\{ 1,2,\dots,N\} $, is generated by a subset of the adjacenttranspositions $\{ ( i,i+1) \mid 1\leq i$ < $N\}$. Such a group is realized as the stabilizer $G_{n}$ of a monomial $x^{\lambda}$ $\big({=}\,x_{1}^{\lambda_{1}}x_{2}^{\lambda_{2}}\cdots x_{N}^{\lambda_{N}}\big)$ with ${\lambda=\bigl( d_{1}^{n_{1}},d_{2}^{n_{2}}, \dots,d_{p}^{n_{p}}\bigr)} $ (meaning $d_{j}$ is repeated $n_{j}$ times, $1\leq j\leq p$, and $d_{1}>d_{2}>\dots>d_{p}\geq0$), thus is isomorphic to the direct product $\mathcal{S}_{n_{1}}\times\mathcal{S}_{n_{2}} \times\cdots\times\mathcal{S}_{n_{p}}$. The interval $\{ 1,2,\dots,N\} $ is a union of disjoint sets $I_{j}= \{ i\mid \lambda_{i}=d_{j} \} $. The orbit of $x^{\lambda}$ under the action of $\mathcal{S}_{N}$ (by permutation of coordinates) spans a module $V_{\lambda}$, the representation induced from the identity representation of $G_{n}$. The space $V_{\lambda}$ decomposes into a direct sum of irreducible $\mathcal{S}_{N}$-modules. The spherical function is defined for each of these, it is the character of the module averaged over the group $G_{n}$. This paper concerns the value of certain spherical functions evaluated at a cycle which has no more than one entry in each interval $I_{j}$. These values appear in the study of eigenvalues of the Heckman-Polychronakos operators in the paper by V. Gorin and the author [arXiv:2412:01938]. In particular, the present paper determines the spherical function value for $\mathcal{S}_{N}$-modules of hook tableau type, corresponding to Young tableaux of shape $\bigl[ N-b,1^{b}\bigr]$.
Key words: spherical functions; subgroups of the symmetric group; hook tableaux; alternating polynomials.
pdf (459 kb)
tex (21 kb)
References
- Ceccherini-Silberstein T., Scarabotti F., Tolli F., Harmonic analysis on finite groups, Cambridge Stud. Adv. Math., Vol. 108, Cambridge University Press, Cambridge, 2008.
- Chalykh O., Dunkl and Cherednik operators, in Encyclopedia of Mathematical Physics, Vol. 3, Academic Press, Oxford, 2025, 309-327, arXiv:2409.09005.
- Dunkl C., Gorin V., Eigenvalues of Heckman-Polychronakos operators, arXiv:2412.01938.
- Heckman G.J., An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math. 103 (1991), 341-350.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, New York, 1995.
- Polychronakos A.P., Exchange operator formalism for integrable systems of particles, Phys. Rev. Lett. 69 (1992), 703-705, arXiv:hep-th/9202057.
|
|