|
SIGMA 21 (2025), 043, 31 pages arXiv:2306.11707
https://doi.org/10.3842/SIGMA.2025.043
Hexagonal Circular 3-Webs with Reducible Polar Curves of Degree Three
Sergey I. Agafonov
Department of Mathematics, São Paulo State University-UNESP, São José do Rio Preto, Brazil
Received November 18, 2023, in final form June 04, 2025; Published online June 13, 2025
Abstract
The paper reports the progress with the classical problem, posed by Blaschke and Bol in 1938. We present new examples and new classifications of natural classes of hexagonal circular 3-webs. The main results is the classification of hexagonal circular 3-webs with reducible polar curves of degree 3 and description of hexagonal circular 3-webs admitting a one-parameter Möbius symmetry.
Key words: circular hexagonal 3-webs.
pdf (5559 kb)
tex (5206 kb)
References
- Balabanova R., Hexagonal circular three-webs, Plovdiv. Univ. Paisií Khilendarski Nauchn. Trud. Mat. 11 (1973), 128-141.
- Blaschke W., Vorlesungen über differentialgeometrie und geometrische grundlagen von einsteins relativitätstheorie. III: Differentialgeometrie der kreise und kugeln, Grundlehren Math. Wiss., Vol. 29, Springer, Berlin, 1929.
- Blaschke W., Einführung in die geometrie der Waben, Birkhäuser, Basel, 1955.
- Blaschke W., Bol G., Geometrie der gewebe. Topologische fragen der differentialgeometrie, Springer, Berlin, 1938.
- Erdovgan H.I., Düzlemde $6$-gen doku teşkil eden čember demety $3$-üzleri, Ph.D. Thesis, Istanbul Teknik Ueniversitesi, Istanbul, 1974.
- Erdovgan H.I., Triples of circle-pencils forming a hexagonal three-web in $E^2$, J. Geom. 35 (1989), 39-65.
- Graf H., Sauer R., Über dreifache Geradensysteme in der Ebene, welche Dreiecksnetze bilden, Sitzungsb. Math.-Naturw. Abt. (1924), 119-156.
- Lazareva V.B., Three-webs formed by families of circles on the plane, in Differential Geometry, Kalinin. Gos. Univ., Kalinin, 1977, 49-64.
- Lubbes N., Surfaces that are covered by two pencils of circles, Math. Z. 299 (2021), 1445-1472, arXiv:1302.6710.
- Nilov F.K., On new constructions in the Blaschke-Bol problem, Sb. Math. 205 (2014), 1650-1667.
- Pottmann H., Shi L., Skopenkov M., Darboux cyclides and webs from circles, Comput. Aided Geom. Design 29 (2012), 77-97, arXiv:1106.1354.
- Shelekhov A.M., Classifications of regular 3-webs formed by pencils of circles, J. Math. Sci. 143 (2007), 3607-3629.
- Strubecker K., Über eine klasse spezieller dreiecksnetze aus kreisen, Monatsh. Math. Phys. 39 (1932), 395-398.
- Volk O., Über spezielle kreisnetze, Sitzungsberichte München 59 (1929), 125-134.
- Wunderlich W., Über ein besonderes dreiecksnetz aus kreisen, Sitzungsber. Akad. Wiss. 147 (1938), 385-399.
|
|