Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 042, 16 pages      arXiv:2405.04862      https://doi.org/10.3842/SIGMA.2025.042

On Degenerations of the Projective Plane

Jürgen Hausen a, Katharina Király a and Milena Wrobel b
a) Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
b) Institut für Mathematik, Universität Oldenburg, 26111 Oldenburg, Germany

Received December 17, 2024, in final form June 07, 2025; Published online June 12, 2025

Abstract
Complementing results of Hacking and Prokhorov, we determine in an explicit manner all log terminal, rational, degenerations of the projective plane that allow a non-trivial torus action.

Key words: degenerations of the plane; Markov numbers; del Pezzo surfaces; torus action.

pdf (399 kb)   tex (22 kb)  

References

  1. Akhtar M., Coates T., Galkin S., Kasprzyk A.M., Minkowski polynomials and mutations, SIGMA 8 (2012), 094, 707 pages, arXiv:1212.1785.
  2. Akhtar M.E., Kasprzyk A.M., Mutations of fake weighted projective planes, Proc. Edinb. Math. Soc. 59 (2016), 271-285, arXiv:1302.1152.
  3. Arzhantsev I., Derenthal U., Hausen J., Laface A., Cox rings, Cambridge Stud. Adv. Math., Vol. 144, Cambridge University Press, Cambridge, 2014.
  4. Ascher K., Bejleri D., Blum H., DeVleming K., Inchiostro G., Liu Y., Wang X., Moduli of boundary polarized Calabi-Yau pairs, arXiv:2307.06522.
  5. Brieskorn E., Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.
  6. Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., Vol. 124, American Mathematical Society, Providence, RI, 2011.
  7. Gyoda Y., Matsushita K., Generalization of Markov Diophantine equation via generalized cluster algebra, Electron. J. Combin. 30 (2023), 4.10, 20 pages, arXiv:2201.10919.
  8. Hacking P., Compact moduli spaces of surfaces and exceptional vector bundles, in Compactifying Moduli Spaces, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2016, 41-67.
  9. Hacking P., Prokhorov Yu., Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010), 169-192, arXiv:0808.1550.
  10. Hättig D., Hafner B., Hausen J., Springer J., Del Pezzo surfaces of Picard number one admitting a torus action, Ann. Mat. Pura Appl., to appear, arXiv:2207.14790.
  11. Hättig D., Hausen J., Hendrik S., Log del Pezzo $\mathbb{C}^*$-surfaces, Kähler-Einstein metrics, Kähler-Ricci solitons and Sasaki-Einstein metrics, Michigan Math. J., to appear, arXiv:2306.03796.
  12. Hättig D., Hausen J., Springer J., Classifying log del Pezzo surfaces with torus action, Rev. Mat. Complut., to appear, arXiv:2302.03095.
  13. Hausen J., Hummel T., The automorphism group of a rational projective $\mathbb{K}^*$-surface, arXiv:2010.06414.
  14. Ilten N.O., Mutations of Laurent polynomials and flat families with toric fibers, SIGMA 8 (2012), 047, 7 pages, arXiv:1205.4664.
  15. Liu Y., Xu C., Zhuang Z., Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. 196 (2022), 507-566, arXiv:2102.09405.
  16. Manetti M., Normal degenerations of the complex projective plane, J. Reine Angew. Math. 419 (1991), 89-118.
  17. Petracci A., Homogeneous deformations of toric pairs, Manuscripta Math. 166 (2021), 37-72, arXiv:1801.05732.
  18. Urzúa G., Zúñiga J.P., The birational geometry of Markov numbers, arXiv:2310.17957.

Previous article  Next article  Contents of Volume 21 (2025)