|
SIGMA 21 (2025), 042, 16 pages arXiv:2405.04862
https://doi.org/10.3842/SIGMA.2025.042
On Degenerations of the Projective Plane
Jürgen Hausen a, Katharina Király a and Milena Wrobel b
a) Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
b) Institut für Mathematik, Universität Oldenburg, 26111 Oldenburg, Germany
Received December 17, 2024, in final form June 07, 2025; Published online June 12, 2025
Abstract
Complementing results of Hacking and Prokhorov, we determine in an explicit manner all log terminal, rational, degenerations of the projective plane that allow a non-trivial torus action.
Key words: degenerations of the plane; Markov numbers; del Pezzo surfaces; torus action.
pdf (399 kb)
tex (22 kb)
References
- Akhtar M., Coates T., Galkin S., Kasprzyk A.M., Minkowski polynomials and mutations, SIGMA 8 (2012), 094, 707 pages, arXiv:1212.1785.
- Akhtar M.E., Kasprzyk A.M., Mutations of fake weighted projective planes, Proc. Edinb. Math. Soc. 59 (2016), 271-285, arXiv:1302.1152.
- Arzhantsev I., Derenthal U., Hausen J., Laface A., Cox rings, Cambridge Stud. Adv. Math., Vol. 144, Cambridge University Press, Cambridge, 2014.
- Ascher K., Bejleri D., Blum H., DeVleming K., Inchiostro G., Liu Y., Wang X., Moduli of boundary polarized Calabi-Yau pairs, arXiv:2307.06522.
- Brieskorn E., Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.
- Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., Vol. 124, American Mathematical Society, Providence, RI, 2011.
- Gyoda Y., Matsushita K., Generalization of Markov Diophantine equation via generalized cluster algebra, Electron. J. Combin. 30 (2023), 4.10, 20 pages, arXiv:2201.10919.
- Hacking P., Compact moduli spaces of surfaces and exceptional vector bundles, in Compactifying Moduli Spaces, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2016, 41-67.
- Hacking P., Prokhorov Yu., Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010), 169-192, arXiv:0808.1550.
- Hättig D., Hafner B., Hausen J., Springer J., Del Pezzo surfaces of Picard number one admitting a torus action, Ann. Mat. Pura Appl., to appear, arXiv:2207.14790.
- Hättig D., Hausen J., Hendrik S., Log del Pezzo $\mathbb{C}^*$-surfaces, Kähler-Einstein metrics, Kähler-Ricci solitons and Sasaki-Einstein metrics, Michigan Math. J., to appear, arXiv:2306.03796.
- Hättig D., Hausen J., Springer J., Classifying log del Pezzo surfaces with torus action, Rev. Mat. Complut., to appear, arXiv:2302.03095.
- Hausen J., Hummel T., The automorphism group of a rational projective $\mathbb{K}^*$-surface, arXiv:2010.06414.
- Ilten N.O., Mutations of Laurent polynomials and flat families with toric fibers, SIGMA 8 (2012), 047, 7 pages, arXiv:1205.4664.
- Liu Y., Xu C., Zhuang Z., Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. 196 (2022), 507-566, arXiv:2102.09405.
- Manetti M., Normal degenerations of the complex projective plane, J. Reine Angew. Math. 419 (1991), 89-118.
- Petracci A., Homogeneous deformations of toric pairs, Manuscripta Math. 166 (2021), 37-72, arXiv:1801.05732.
- Urzúa G., Zúñiga J.P., The birational geometry of Markov numbers, arXiv:2310.17957.
|
|