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Abstract. We obtain a complete characterization of the space of matrix elements dual to
the graded multiplicity space arising from fusion products of Kirillov–Reshetikhin modules
over special twisted current algebras defined by Kus and Venkatesh, which generalizes the
result of Ardonne and Kedem to the special twisted current algebras. We also prove the
conjectural identity of q-graded fermionic sums by Hatayama et al. for the special twisted
current algebras, from which we deduce that the graded tensor product multiplicities of the
fusion products of Kirillov–Reshetikhin modules over special twisted current algebras are
both given by the q-graded fermionic sums, and constant term evaluations of products of
solutions of the quantum twisted Q-systems obtained by Di Francesco and Kedem.
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1 Introduction

1.1 Overview

The Kirillov–Reshetikhin (KR-) modules were first introduced in [24] in the context of Bethe
ansatz of generalized inhomogeneous Heisenberg spin chains. These KR-modules are irreducible,
finite-dimensional modules over the Yangian Y pgq of a simple classical Lie algebra g, and these
modules satisfy two key properties. Firstly, the g-characters of these KR-modules satisfy the
Q-system relations, which is a family of nonlinear recurrence relations [23, 24]. Secondly, the
multiplicities of irreducible, finite-dimensional g-modules in a tensor product of KR-modules are
given by fermionic formulas [24].

Subsequently, the untwisted Q-systems arose in the fusion procedure for the transfer matrices
of the vertex and the restricted solid-on-solid (RSOS) models associated to Yangian Y pgq [25], or
equivalently, an untwisted quantum affine algebra Uqppgq. The twisted Q-systems then appeared
in a subsequent sequel [26], where Kuniba and Suzuki generalized the fusion procedure to the
twisted quantum affine algebras.

In [17], Hatayama et al. gave combinatorial definitions of q-deformations of the fermionic
sums, and defined KR-modules over Uqppgq in terms of Drinfeld polynomials [4] in the untwisted
cases. These definitions were then extended to the twisted cases in [16]. In addition, they
showed in [17, Theorem 8.1], [16, Theorem 6.3] that if the Uqpgq-characters of the KR-modules
over Uqppgq satisfy the Q-system relations, together with some extra asymptotic conditions, then
the multiplicity of an irreducible Uqpgq-module in a tensor product of KR-modules over Uqppgq
is given by the extended fermionic sum defined by [17, equation (4.16)], [16, equation (4.20)]
at q � 1. As a first step towards proving the claims advanced by Hatayama et al., Nakajima
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showed that the q-characters of the KR-modules over Uqppgq satisfy the T -system relations in
the simply-laced untwisted cases [29]. Subsequently, Hernandez extended the results to the non-
simply laced untwisted cases [18], and the twisted cases [19], using a different approach from
Nakajima. As the Q-system relations are specializations of the T -system relations, this implies
the fermionic formulas for the tensor product multiplicities.

In the same papers, Hatayama et al. also conjectured via [17, Conjecture 3.1], [16, Conjec-
ture 3.10] that the q-grading of the fermionic sums also appears in the context of crystals of
tensor products of KR-modules over a quantum affine algebra. Shortly after [17], Kirillov et al.
proved [17, Conjecture 3.1] for the A

p1q
r case, by establishing a bijection between rigged config-

urations and crystal paths in type A. This was then extended to the D
p1q
r case by Naoi [30] via

a representation theoretic approach.

Subsequently, further interpretations of the q-grading in the q-graded fermionic sums were
given in the untwisted cases. In [1, 7], it was shown that the q-grading corresponds to the
g-equivariant grading on the Feigin–Loktev fusion product [14] of localized KR-modules over
the untwisted current algebra grts, by showing that the graded tensor product multiplicities
are given by defined by the q-graded fermionic formula given in [17, equation (4.3)]. A subse-
quent interpretation was given in [9, 28], where the q-grading corresponds to the q-grading of
quantum Q-systems. These quantum Q-systems arise naturally as the quantum deformation
of the Q-system cluster algebras defined in [8, 21], and were used to yield a complete charac-
terization of the fusion product of KR-modules over current algebras in terms of the quantum
Q-systems.

A natural question to ask at this point is whether there are analogues of the various interpre-
tations of the q-grading of the fermionic sums [16, equations (4.5) and (4.20)] in the twisted case.
In more recent work, Okado et al. [31] showed that q-grading of the fermionic sums arises in the
context of crystals of tensor products of KR-modules in the non-exceptional twisted cases, and
Scrimshaw did the same in the exceptional twisted cases described in [32, 33], by proving [16,
Conjecture 3.10] in the aforementioned twisted cases.

Our goal in this paper is to extend the results in [1, 9, 28], and show that the q-grading
corresponds to the equivariant grading on the fusion product [27] of localized KR-modules over
special twisted current algebras, as well as that of the quantum twisted Q-systems of type � A

p2q
2r

defined by Di Francesco and Kedem [11]. More precisely, we will use the quantum twisted Q-
system relations to prove the identity [16, Conjecture 4.3] of q-graded fermionic sums for all
twisted affine types � A

p2q
2r . We will also show that the graded multiplicities in the fusion product

of KR-modules over the special twisted current algebras are given by the q-graded fermionic
sums defined in [16, equation (4.5)]. These two results together will then yield a complete
characterization of the fusion product of KR-modules over the special twisted current algebras in
terms of the quantum twisted Q-systems, thereby complementing the characterizations obtained
in the untwisted cases [9, 28].

1.2 Main results

To begin, we let g be a simply-laced simple Lie algebra of Dynkin type Xm � A2r, σ be
a nontrivial Dynkin diagram automorphism of g, and κ be the order of σ. We denote the
subalgebra of σ-fixed points of the untwisted current algebra grts by grtsσ, and we call grtsσ the
(special) [27, Section 1.5] twisted current algebra of affine Dynkin type X

pκq
m . We also denote

the subalgebra of σ-fixed points of g by gσ, the Dynkin type of gσ by Yr, and the Cartan matrix
of gσ by C.

The KR-modules over grtsσ are parameterized by a P Ir, where Ir � r1, rs is the set of
simple root labels of gσ, m P Z�, along with a non-zero localization parameter z P C�, and
are denoted by KRσ

a,mpzq. The gσ-characters Qa,k � ch res
grtsσ

gσ KRσ
a,kpzq of these KR-modules
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over grtsσ satisfy the X
pκq
m Q-system relations [26], that is, we have

Qa,k�1Qa,k�1 � Q2
a,k �

¹
b�a

Q�Cba
b,k , a P Ir, k P N, (1.1)

where b � a if and only if Cba   0.
Our first result involves the identity Mλ,n

�
q�1

�
� M̃λ,n

�
q�1

�
[16, Conjecture 4.3], which was

previously proved for the untwisted simply-laced and untwisted non-simply laced cases in [9,
Theorem 5.1] and [28, Theorem 1.2] respectively. To begin, we let t_1 , . . . , t

_
r be integers that sat-

isfy minaPIr t
_
a � 1 and t_a Cab � t_b Cba for all a, b P Ir. We let n � pna,iqaPIr,iPN be a vector that

parameterizes a finite set of KR-modules over grtsσ, where na,i is the number of KR-modules of
type KRσ

a,i. In addition, let us fix any dominant gσ-weight λ, and write λ �
°

aPIr
ℓaωa, where ωa

is the fundamental gσ-weight corresponding to the root label a. For any vectorm � pma,iqaPIr,iPN
of nonnegative integers with a finite number of nonzero entries, we define the total spin qa,0 and
the vacancy numbers pa,i as follows:

qa,0 � ℓa �
¸
jPN

¸
bPIr

j
�
Cabmb,j � δabnb,j

�
, pa,i �

¸
jPN

¸
bPIr

minpi, jq
�
δabnb,j � Cabmb,j

�
.

Next, we define the quadratic form Qpm,nq by

Qpm,nq �
1

2

¸
i,jPN

¸
a,bPIr

t_a minpi, jqma,i

�
Cabmb,j � 2δabnb,j

�
.

The M -sum Mλ,n

�
q�1

�
is given by [16, equation (4.5)]

Mλ,n

�
q�1

�
�

¸
m¥0

qa,0�0,pa,i¥0

qQpm,nq
¹
iPN

¹
aPIr

�
ma,i � pa,i

ma,i

�
qa

, (1.2)

where�
m� p
m

�
v

�

�
vp�1; v

�
8

�
vm�1; v

�
8

pv; vq8
�
vp�m�1; v

�
8

, pa; vq8 �
8¹
j�0

�
1� avj

�
,

and qa � qt
_
a for all a P Ir. Similarly, the M̃ -sum M̃λ,n

�
q�1

�
, defined without the con-

straint pa,i ¥ 0, is given by [16, equation (4.20)]

M̃λ,n

�
q�1

�
�

¸
m¥0
qa,0�0

qQpm,nq
¹
iPN

¹
aPIr

�
ma,i � pa,i

ma,i

�
qa

.

The following theorem implies that the identity Mλ,n

�
q�1

�
� M̃λ,n

�
q�1

�
[16, Conjecture 4.3]

holds for all twisted types not of type A
p2q
2r :

Theorem 1.1. Let grtsσ be a twisted current algebra of type X
pκq
m � A

p2q
2r , λ be a dominant gσ-

weight, and n � pna,iqaPIr,iPN be a vector that parameterizes a finite set of KR-modules over grtsσ.
Then we have Mλ,n

�
q�1

�
� M̃λ,n

�
q�1

�
.

Here, we would like to remark that Okado et al. [31] proved [16, Conjecture 3.10] in the
non-exceptional twisted cases, and Scrimshaw did the same in the exceptional twisted cases
described in [32, 33]. These results, along with earlier results by Hernandez [19], show that the
conjectural identity [16, Conjecture 4.3] of the q-graded fermionic sumsMλ,n

�
q�1

�
� M̃λ,n

�
q�1

�
holds at q � 1 in the twisted cases described above.
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Our next result involves the description of the graded multiplicities of the irreducible gσ-
module V

�
λ
�
of highest gσ-weight λ in a graded tensor product of KR-modules over grtsσ

in terms of the M -sum Mλ,npqq. For each vector n � pna,iqaPIr,iPN, we let F�
n denote the

corresponding graded tensor product of twisted KR-modules parameterized by n, equipped
with a gσ-equivariant grading, which is called the fusion product of twisted KR-modules [27]
parameterized by n. Then the graded components F�

nrms of F�
n are gσ-modules for all m P Z�.

Let us define the generating function Mλ,npqq for the graded multiplicities of V
�
λ
�
in F�

n by

Mλ,npqq �
8̧

m�0

dimHomgσ
�
F�
nrms, V

�
λ
��
qm. (1.3)

Here, HomgσpF�
nrms, V

�
λ
�
q denotes the multiplicity space of gσ-equivariant maps from F�

nrms

to V
�
λ
�
. The graded gσ-character chq F�

n of F�
n is then defined by

chq F�
n �

¸
λ

Mλ,npqq chgσ V
�
λ
�
.

By extending the tools developed in [1] to derive the graded dimension of the space of matrix
elements dual to the multiplicity space HomgσpF�

n , V
�
λ
�
q, and using Theorem 1.1 as well, we

arrive at the following fermionic formula for the graded multiplicities Mλ,npqq, which extends
the results obtained in [1, 7] for the untwisted types to the twisted types not of type A

p2q
2r :

Theorem 1.2. Let us keep the assumptions as in Theorem 1.1. Then we have Mλ,n

�
q�1

�
�

Mλ,n

�
q�1

�
.

Our last result involves a q-graded version of the X
pκq
m Q-system relations (1.1), which gen-

eralizes the q-graded version of the Q-system relations of untwisted type obtained in [28, Theo-
rem 1.3] to the twisted types not of type A

p2q
2r :

Theorem 1.3. For all a P Ir and m P N, we let

Kσ
a,m �

â
b�a

pKRσ
b,mq

b|Cba|,

and we let pKσ
a,mq

� denote the fusion product corresponding to the tensor product Kσ
a,m of twisted

KR-modules. Likewise, we let KRσ
a,m�1 �KRσ

a,m�1 and KRσ
a,m � KRσ

a,m denote the fusion prod-
ucts corresponding to KRσ

a,m�1bKRσ
a,m�1 and KRσ

a,mbKRσ
a,m respectively. Then the graded

gσ-characters of the fusion products of the twisted KR-modules satisfy the following identity:

chq KRσ
a,m�1 �KRσ

a,m�1 � chq KRσ
a,m �KRσ

a,m�qt
_
a m chqpK

σ
a,mq

�.

Here, we briefly remark that Kus and Venkatesh obtained a short exact sequence of fusion
product of KR-modules in [27] that extends the X

pκq
m Q-system relations (1.1). We will explain

the connection between Theorem 1.3 and their short exact sequences in Section 5.

1.3 Outline of the paper

The paper is organized as follows. In Section 2, we will review the notion of Kirillov–Reshetikhin
modules and fusion products of cyclic modules over both untwisted and twisted current alge-
bras. In Section 3, we will extend the tools and techniques in [1] to the twisted setting, where
we will describe the decomposition of fusion products of KR-modules over grtsσ into irreducible
gσ-modules. Specifically, we will explicitly describe the space of matrix elements dual to the
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multiplicity space Homgσ
�
F�
n , V

�
λ
��

to first deduce that an upper bound for the graded multi-
plicity Mλ,n

�
q�1

�
is given by the M -sum Mλ,n

�
q�1

�
.

In Section 4, we will first review the definition and properties of the quantum twisted Q-
systems given by Di Francesco and Kedem [11], which are quantum deformations of the cluster
transformations corresponding to the twisted Q-system relations given by Williams [34]. Sub-
sequently, we will introduce quantum generating functions in the general twisted case whose
constant term evaluation is a scalar multiple of the M̃ -sum, and derive factorization properties
of these generating functions analogous to those in [7, 9, 28]. Using these factorization prop-
erties, along with the Laurent polynomiality property of the solutions of the quantum twisted
Q-systems, we will then show that Mλ,n

�
q�1

�
� M̃λ,n

�
q�1

�
in the twisted cases. Together with

the upper bound on the graded multiplicity Mλ,n

�
q�1

�
derived in Section 3, we will then show

that Mλ,n

�
q�1

�
�Mλ,n

�
q�1

�
. Finally, in Section 5, we will use the results in Section 4 to derive

a q-graded version of the twisted Q-system relations.

2 Preliminaries

Throughout this section and beyond, we let g be a finite-dimensional simply-laced simple Lie
algebra of Dynkin type Xm � A2r. We will also let h be a Cartan subalgebra of g, g � n�`h`n�
be the triangular decomposition of g with respect to h, and C be the Cartan matrix of g.

In addition, we let ∆ be the set of roots of g with respect to h, and ∆� � ∆ the subset of
positive roots. We also fix a basis of simple roots Π � tα1, . . . , αmu � h� for ∆ and a basis
of corresponding simple coroots tα_1 , . . . , α

_
mu for h� satisfying αjpα

_
i q � Ci,j for all i P r1,ms.

Finally, we let te�α, α
_
i | α P ∆�, i P r1,msu be a Chevalley basis for g, and we denote the

positive and negative Chevalley generators for g by ei :� eαi and fi :� e�αi for all i P r1,ms.

Next, we let P denote the weight lattice of g, and P� � P the set of dominant integral weights
of g. The weight lattice P has a basis given by the set tω1, . . . , ωmu � h� of fundamental weights
of g, defined by ωipα

_
j q � δi,j for all i, j P r1,ms. The irreducible highest weight g-modules are

parameterized by λ P P�, and are denoted by V pλq.

2.1 Untwisted affine and current algebras

Let g
�
t�1

�
:� g b C

�
t�1

�
denote the untwisted loop algebra of g, and we denote the current

generators of g
�
t�1

�
by xrns :� x b tn for all x P g and n P Z. The Lie bracket on g

�
t�1

�
is given by

�
xb tm, y b tn

�
� rx, ys b tm�n for all x, y P g and m,n P Z. The untwisted loop

algebra g
�
t�1

�
contains the untwisted current algebra grts :� g b Crts of positive currents as

a subalgebra, which in turn contains g as a subalgebra, where we identify x with xr0s for all x P g.

The untwisted affine algebra pg associated with the simple Lie algebra g is the central extension
of g

�
t�1

�
by the central element K associated to the cocycle x�, �y, where the cocycle x�, �y is

defined by
@
x b tm, y b tn

D
� mδm,�npx|yq for all x, y P g and m,n P Z. Here, p�|�q is the

symmetric, nondegenerate, invariant bilinear form on g.

The triangular decomposition of pg is given by pg � pn� ` ph ` pn�, where ph � CK ` h,
and pn� � n� `

�
gb t�1C

�
t�1

��
.

The irreducible highest weight pg-modules are parameterized by a positive integer k, and
λ P P�

k , and are denoted by pVk,λ. Here, the integer k is called the level of pVk,λ: the central
element K acts on pVk,λ by the constant k. The set P�

k is defined by

P�
k �

#
λ �

m̧

i�1

ℓiωi P P
� |

m̧

i�1

ℓia
_
i ¤ k

+
,

where a_1 , . . . , a
_
m are the co-marks of pg.
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2.2 Untwisted current algebra modules

2.2.1 Localization

Let V be a grts-module on which grts acts via some representation π0. For any z P C�, we define
the localization of V at z to be the grts-module V pzq whose underlying vector space is V , and
on which grts acts by expansion in the local parameter tz :� t� z. More precisely, if we define
the Lie algebra map φz : grts Ñ grts by xb tn ÞÑ xbpt� zqn for all x P g and n P Z�, then V pzq
is the pullback of V under φz. By denoting the “translated” action of grts on V pzq by πz, it
follows that the actions π0 and πz of grts on the vector space V are related to each other by the
following equation for all x P g, n P Z�, and v P V ,

πzpxrnsqv � π0pxb pt� zqnqv �
ņ

j�0

�
n

j



zn�jπ0pxrjsqv. (2.1)

2.2.2 Associated graded space of cyclic untwisted current algebra modules

The degree d � t ddt grading in t on Crts induces a natural Z�-grading on the current algebra grts,
and hence also on its universal enveloping algebra Upgrtsq. In particular, for any j P Z�, the j-th
graded component Upgrtsqpjq of Upgrtsq is spanned by monomials of the form x1rn1s � � �xkrnks,
where k P Z�, x1, . . . , xk P g, n1, . . . , nk P Z�, and

°k
i�1 ni � j. Consequently, the Z�-grading

on Upgrtsq naturally induces a filtration of Upgrtsq,

Upgq � Upgrtsqp0q � Upgrtsqp¤1q � Upgrtsqp¤2q � � � � ,

where

Upgrtsqp¤nq �
nà

j�0

Upgrtsqpjq

for all n P Z�.
Let V be a cyclic grts-module with cyclic vector v. Then V inherits a filtration (depending

on the choice of v) from the filtration on Upgrtsq as follows:

Fp0qpV q � Fp1qpV q � Fp2qpV q � � � � ,

where FpiqpV q � pUpgrtsqp¤iqqv for all i P Z�. Consequently, the associated graded space
grV �

À8
i�0FpiqpV q{Fpi�1qpV q (where Fp�1qpV q :� t0u) of the above filtration of V inherits

a canonical structure of a cyclic graded grts-module, where the grts-action on grV is given
by xrns � w � xrns � w for all x P g, n P Z� and w P FpiqpV q{Fpi � 1qpV q. As the Z�-grading
on the filtration is g-equivariant, it follows that the graded components FpiqpV q{Fpi � 1qpV q
of grV are g-modules for all i P Z�.

2.2.3 Fusion product of untwisted current algebra modules

Let V1, . . . , VN be cyclic grts-modules with cyclic vectors v1, . . . , vN respectively, and let z1, . . . ,
zN P C be pairwise distinct nonzero localization parameters. Feigin and Loktev [14, Propo-
sition 1.4] showed that the tensor product V1pz1q b � � � b VN pzN q is a cyclic grts-module with
cyclic vector v1 b � � � b vN . Thus, the tensor product V1pz1q b � � � b VN pzN q of localized grts-
modules V1pz1q, . . . , VN pzN q can be endowed with a g-equivariant grading, and the resulting
graded tensor product, which we denote by V1pz1q � � � � � VN pzN q, is called the Feigin–Loktev
fusion product of untwisted current algebra modules.
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2.3 Kirillov–Reshetikhin modules over untwisted current algebras

In this subsection, we will review the construction of Kirillov–Reshetikhin modules over un-
twisted current algebras, in order to motivate the definition of Kirillov–Reshetikhin modules
over twisted current algebras, which we will do in Section 2.5. While the KR-modules over the
untwisted Yangian or the untwisted quantum affine algebra are defined in terms of their Drinfeld
polynomials, the KR-modules over the untwisted current algebra grts are defined in terms of
current generators eirns, firns, α

_
i rns (i P r1,ms, n P Z�) and relations, and are the classical

limits of the KR-modules over the untwisted quantum affine algebra [5, 22].

Definition 2.1 ([5, Definition 2.1]). Let i P r1,ms and k P Z�. The KR-module KRi,k over grts
is the graded grts-module generated by a vector v, with relations given by

π0pn�rtsqv � 0,

π0pfjrnsqv � 0, n ¥ δi,j ,

π0pfiq
k�1v � 0, π0pα

_
j rnsqv � kδi,jδn,0v. (2.2)

Using (2.1) and (2.2), the KR-module KRi,kpzq is then defined to be the localization of the
graded grts-module KRi,k at z, with the relations given by

πzpn�rtsqv � 0, (2.3a)

πzpfjrnsqv � δi,jz
nπ0pfiqv, (2.3b)

πzpfiq
k�1v � 0, (2.3c)

πzpα
_
j rnsqv � kznδi,jv. (2.3d)

For any nonzero z P C�, we have that the associated graded space grKRi,kpzq of KRi,kpzq
is isomorphic to KRi,k as graded grts-modules, and KRi,k and KRi,kpzq are isomorphic as g-
modules, but not as grts-modules [5].

In type A, we have KRi,kpzq � V pkωiq as g-modules, so KR-modules over grts are irreducible
as g-modules. In general, the KR-module KRi,kpzq decomposes into irreducible g-modules as
follows [4]

KRi,kpzq � V pkωiq `
� à
µ mωi

V pµq`mµ

	
,

where   is the usual dominance partial ordering on P . This decomposition immediately implies
that under the restriction of the action to g, KRi,kpzq has a highest weight component isomorphic
to V pkωiq.

2.4 Twisted affine and current algebras

In this subsection, we will review the definition of twisted affine and current algebras. To begin,
we let σ be a nontrivial automorphism of the Dynkin diagram of g of order κ ¡ 1, and we
let r denote the number of orbits of σ. The diagram automorphism σ is described explicitly, as
follows:

(1) If g is of type A2r�1, then we have σpiq � 2r � i for all i P r1, 2r � 1s.

(2) If g is of type Dr�1, then we have σpiq � i for all i P r1, r�1s, σprq � r�1 and σpr�1q � r.

(3) If g is of type E6, then we have σpiq � 6� i for all i P r1, 5s, and σp6q � 6.

(4) If g is of type D4, then we have σp1q � 3, σp2q � 2, σp3q � 4 and σp4q � 1.

The diagram automorphism σ naturally induces an automorphism σ of ∆, and hence of g.
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The following table lists all pgσ and their corresponding gσ:

pgσ A
p2q
2r�1 D

p2q
r�1 E

p2q
6 D

p3q
4

gσ Cr Br F4 G2

Next, we let ξ be a κ-th primitive root of unity. Then σ can be extended to an automorphism
of pg by defining σpKq � K and σpxrnsq � ξ�nσpxqrns for all x P g and n P Z. By [20,
Theorem 8.5], the affine Dynkin type of pgσ is given by X

pκq
m . We denote the σ-fixed points of g,

grts and pg by gσ, grtsσ and pgσ, respectively.
Our next step is to describe the twisted affine and current algebras in further detail, and

review some basic properties concerning the twisted affine and current algebras.

We let ∆ be the set of roots of gσ with respect to the Cartan subalgebra hσ of gσ, and ∆
�

be the set of positive roots of gσ. Then we have ∆
�
�

 
α|hσ | α P ∆�

(
. In particular, a set Π

of simple roots for ∆ is given by Π � tα1, . . . , αru � phσq�, where αj � αj |hσ for all j P r1, rs.

Let tα_1 , . . . , α
_
r u be the corresponding basis of simple coroots for phσq� satisfying αjpα

_
i q �

Ci,j for all i P Ir. Then for all j P Ir, α
_
j is given by

α_j �

$'&'%
α_j if σpjq � j,
κ�1̧

k�0

α_
σkpjq

if σpjq � j.

Next, we will describe a Chevalley basis of pgσ (and hence grtsσ). To this end, we will first need
to describe the set p∆σ of roots of pgσ with respect to phσ. We let ∆ℓ and ∆s denote the set of long
and short roots of gσ, respectively. In addition, we also let ∆

�
ℓ :� ∆

�
X∆ℓ and ∆

�
s � ∆

�
X∆s.

By letting δ denote the unique non-divisible positive imaginary root of pgσ, it follows that the
set p∆σ is given by

p∆σ � t�nδ | n P Nu Y
 
�α� nδ | α P ∆

�
s , n P Z

(
Y
 
�α� κnδ | α P ∆

�
ℓ , n P Z

(
.

We are now ready to describe a Chevalley basis of pgσ. As pgσ � CK ` g
�
t�1

�σ
, it suffices to

describe a Chevalley basis of g
�
t�1

�σ
. A basis for g

�
t�1

�σ
is given by the following elements:

e�αrns �
κ�1̧

i�0

ξ�ine�σipαq b tn, α P ∆
�
s ,

e�αrκns � e�α b tκn, α P ∆
�
ℓ ,

α_j rns �
κ�1̧

i�0

ξ�inα_σipjq b tn, i P Ir with σpjq � j,

α_j rκns � α_j b tκn, i P Ir with σpjq � j,

for all n P Z�, where α is a root of g satisfying α|hσ � α.

The roots of p∆σ and the basis elements of the corresponding root space of pgσ, are described
in the following table:

root basis elements

�α� nδ, α P ∆
�
s , n P Z e�αrns

�α� κnδ, α P ∆
�
ℓ , n P Z e�αrκns

nδ, n P Z, κ � n α_j rns, j P Ir

nδ, n P Z, κ � n α_j rns, j P Ir with σpjq � j
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For later convenience, we will write f irt
_
i ns in lieu of e�αirt

_
i ns for any n P Z and i P Ir

�
note

that t_i � 1 if αi P ∆
�
s , and t

_
i � κ if αi P ∆

�
ℓ

�
.

Next, we will review a few basic facts and properties concerning twisted affine and current
algebras. To begin, we recall that the central element K of pgσ is given by K � κK, and
that the triangular decomposition of pg restricts to the triangular decomposition of pgσ, given
by pgσ � pnσ� ` phσ ` pnσ�, where phσ � CK ` hσ, and pnσ� � nσ� ` pgb t�1C

�
t�1

�
qσ.

We let P denote the weight lattice of gσ, and P
�
� P the set of dominant integral weights

of gσ. The weight lattice P has a basis given by the set tω1, . . . , ωru � phσq� of fundamental
weights of gσ, where ωj � ωj |hσ for all j P Ir. The irreducible highest weight gσ-modules are
parameterized by λ P P

�
, and by an abuse of notation, are denoted by V

�
λ
�
as well.

Similar to the untwisted case, the irreducible highest weight pgσ-modules are parameterized
by a positive integer k, and λ P P

�
k , and are denoted by pVk,λ. Here, the central element K acts

on pVk,λ by the constant k, and the set P
�
k is defined by

P
�
k �

#
λ �

ŗ

i�1

ℓiωi P P
�
|

ŗ

i�1

ℓia
_
i ¤ k

+
,

where a_1 , . . . , a
_
r are the co-marks of pgσ.

2.4.1 Fusion product of twisted current algebra modules

Our final goal of this subsection is to recall the construction of fusion product of modules over
twisted current algebras by Kus and Venkatesh [27]. Unlike the untwisted case, the construction
of fusion product of modules over twisted current algebras is more involved, as the Lie algebra
map φz : grts Ñ grts does not restrict to a Lie algebra map grtsσ Ñ grtsσ, and hence the local-
ization of twisted current algebra modules cannot be defined using pullbacks via the restriction
of φz to grtsσ. Nevertheless, the fusion product of twisted current algebra modules can still
be defined in the case where the constituent grtsσ-modules are also grts-modules, which we will
describe in detail below the fold.

To begin, we first observe that the Z�-grading on the universal enveloping algebra Upgrtsq
of grts naturally induces a Z�-grading on the universal enveloping algebra Upgrtsσq of grtsσ via
restriction, and hence a filtration of Upgrtsσq

Upgrtsσq � Upgrtsσqp0q � Upgrtsσqp¤1q � Upgrtsσqp¤2q � � � � ,

where Upgrtsσqp¤nq �
Àn

j�0 Upgrts
σqpjq for all n P Z�. Similar to the untwisted case, this implies

that for any cyclic grtsσ-module V with cyclic vector v, V inherits a filtration from the filtration
on Upgrtsσq as follows:

Fp0qpV q � Fp1qpV q � Fp2qpV q � � � � ,

where FpiqpV q �
�
Upgrtsσqp¤iq

�
v for all i P Z�. Consequently, the associated graded space

grV �
À8

i�0FpiqpV q{Fpi� 1qpV q (where Fp�1qpV q :� t0u) of the above filtration of V inher-
its a canonical structure of a cyclic graded grtsσ-module, with the grtsσ-action on grV given
by xrns � w � xrns � w for all xrns P grtsσ and w P FpiqpV q{Fpi � 1qpV q. As the Z�-grading
on the filtration is gσ-equivariant, it follows that the graded components FpiqpV q{Fpi � 1qpV q
of grV are gσ-modules for all i P Z�.

We are now ready to define the notion of fusion products of twisted current algebra modules.
Let us first recall the following twisted analogue of [14, Proposition 1.4]:

Proposition 2.2 ([27, Proposition 6.3]). Let V1, . . . , VN be finite-dimensional cyclic grts-modules
with cyclic vectors v1, . . . , vN respectively, and z1, . . . , zN P C be nonzero localization parameters
satisfying zκi � zκj for all distinct i, j P r1, N s. Then V1pz1qb� � �bVN pzN q is a cyclic grtsσ-module
with cyclic vector v1 b � � � b vN .
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Thus, by Proposition 2.2, the tensor product V1pz1q b � � � b VN pzN q of localized grtsσ-
modules V1pz1q, . . . , VN pzN q can be endowed with a gσ-equivariant grading, and we call the
resulting graded tensor product, which we denote similarly by V1pz1q � � � � � VN pzN q, the fusion
product of twisted current algebra modules.

2.5 Kirillov–Reshetikhin modules over twisted current algebras

In this subsection, we will recall the construction of Kirillov–Reshetikhin modules over grtsσ

and their associated properties given in [5, 6, 27]. The graded Kirillov–Reshetikhin modules
over grtsσ was first defined by Chari and Moura in [5, 6] in an analogous fashion as their
untwisted counterparts in terms of the current generators eirt

_
i ns, f irt

_
i ns, α

_
i rt

_
i ns (i P Ir,

n P Z�) of grtsσ and relations. While localized KR-modules over grtsσ cannot be defined directly
using pullbacks via the restriction of the Lie algebra map φz : grts Ñ grts to grtsσ, they can still
be defined by restricting the action of localized KR-modules over grts to grtsσ [27, Section 6.5],
and the associated graded space of the localized KR-modules over grtsσ are precisely the graded
KR-modules over grtsσ, which we will explain below the fold.

Definition 2.3 ([5, Definition 3.3] and [6, Definition 2.2]). Let i P Ir and k P Z�. The KR-
module KRσ

i,k over grtsσ is the graded grtsσ-module generated by a vector v, where grtsσ acts
on V via a representation ψ0, with relations given by

ψ0

�
n�

�
t�1

�σ�
v � 0, (2.4a)

ψ0

�
f jrt

_
j ns

�
v � δi,jδn,0ψ0

�
f ir0s

�
v, (2.4b)

ψ0

�
f ir0s

�k�1
v � 0, (2.4c)

ψ0

�
α_j rt

_
j ns

�
v � δi,jδn,0kv. (2.4d)

Definition 2.4. Let i P r1,ms, k P Z� and z P C�. Let us denote the restriction of the action πz
of grts on KRi,kpzq to grtsσ by ψz. We denote the resulting grtsσ-module by KRσ

i,kpzq, and we
call KRσ

i,kpzq a localized KR-module over grtsσ.

The following proposition justifies the notation and definition of KRσ
i,kpzq as a localized KR-

module over grtsσ.

Proposition 2.5 ([15, Theorem 4] and [27, Propositions 6.6, 6.7 and 7.2]). Let j P r1,ms,
k P Z�, z P C�, and i P Ir be the unique index that satisfies σpiq � σpjq. Then

grKRσ
j,kpzq � grKRσ

i,kpzq � KRσ
i,k

as graded grtsσ-modules.

Thus, by Proposition 2.5, we may restrict our attention to localized KR-modules KRσ
i,kpzq

over grtsσ whose root index i lies in Ir.
It remains to describe the relations of KRσ

i,kpzq for any z P C�, k P Z� and i P Ir. It
follows from the relations (2.3) of the localized KR-module KRi,kpzq over grts that the relations
of KRσ

i,kpzq are given by

ψz

�
n�

�
t�1

�σ�
v � 0, (2.5a)

ψz

�
f jrt

_
j ns

�
v � δi,jz

t_j nπ0pfiqv, (2.5b)

ψz

�
f ir0s

�k�1
v � 0, (2.5c)

ψz

�
α_j rt

_
j ns

�
v � δi,jz

t_j nkv (2.5d)

for all n ¥ 0 and j P Ir.
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Following (2.3b), it follows that we can rewrite (2.5b), using (2.4b), as

ψz

�
f jrt

_
j ns

�
v � δi,jz

t_j nψ0

�
f ir0s

�
v (2.6)

for all n ¥ 0 and j P Ir.

3 Fusion products of Kirillov–Reshetikhin modules
over twisted current algebras

Our goal in this section is to establish an upper bound on the graded multiplicity Mλ,npqq.

Theorem 3.1. Let us keep the assumptions as in Theorem 1.1. Then we have Mλ,n

�
q�1

�
¤

Mλ,n

�
q�1

�
, where the inequality refers to an inequality in the respective coefficients of each power

of q.

Our strategy in proving Theorem 3.1 is largely similar to that employed by Ardonne et al.
in [1, 2] for the untwisted cases, where they gave an upper bound for the graded multiplicities of
irreducible g-modules in a fusion product of KR-modules over grts in terms of q-graded fermionic
sums. Before we recall the definitions and results needed to prove Theorem 3.1, we will first start
by recalling some basic results concerning the space of generating functions of matrix elements
corresponding to the fusion products of finite-dimensional cyclic modules over untwisted current
algebras in the following subsection, following the treatment given in [1, Section 3.2], before
extending the tools and techniques developed in [1, 2] to the twisted case.

3.1 Fusion products of current algebra modules and matrix elements

3.1.1 The untwisted case

Let us first recall the relation between fusion products of finite-dimensional cyclic grts-modules
and the fusion product of pg-modules. To begin, we let V1, . . . , VN be graded, finite-dimensional
cyclic grts-modules with cyclic vectors v1, . . . , vN respectively, where the cyclic vectors v1, . . . , vN
are also highest weight vectors with respect to the g-action, and z1, . . . , zN P C be nonzero
localization parameters satisfying zi � zj for all distinct i, j P r1, N s. For convenience, we
let V :� V1pz1q b � � � b VN pzN q.

Next, for any positive integer k, we let pV k
1 pz1q, . . . ,

pV k
N pzN q denote the pg-modules induced from

the localized grts-modules V1pz1q, . . . , VN pzN q at level k respectively. The fusion product of thepg-modules pV k
1 pz1q, . . . ,

pV k
N pzN q, denoted

pV k
1 pz1q b � � � b pV k

N pzN q [12], is an integrable pg-module
of level k (compared to the usual tensor product pV k

1 pz1q b � � � b pV k
N pzN q of

pV k
1 pz1q, . . . ,

pV k
N pzN q,

which is of levelNk), where for any xbfptq P pg and w � w1b� � �bwN P pV k
1 pz1qb� � �b

pV k
N pzN q, the

element xbfptq acts on w by the usual coproduct formula, but similar to the setting of localized
grts-modules, the action of xbfptq on the i-th component wi is given by the expansion in the local
parameter tzi � t� zi. For later convenience, we will write pV in lieu of pV k

1 pz1qb � � �b pV k
N pzN q.

As pV is an integrable pg-module of level k, pV is completely reducible, and thus pV admits
a decomposition into irreducible pg-modules of level k (we refer the reader to the Appendix of [13]
and the introduction of [12] for further details). When k is sufficiently large,1 it follows that
the multiplicity of the pg-module pVk,µ in the fusion product pV of pg-modules pV k

1 pz1q, . . . ,
pV k
N pzN q

is equal to the multiplicity of the g-module V pµq in the tensor product V of localized grts-
modules V1pz1q, . . . , VN pzN q for any dominant weight µ of g, that is, we have [1, equation (3.6)]

dimHompg
�pV , pVk,µ� � dimHomgpV, V pµqq. (3.1)

1In the case where the modules V1, . . . , VN are graded KR-modules over grts, one can explicitly define a lower
bound for the level k; we refer the reader to the footnote in [1, Section 5.1] for further details.
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Next, we will describe the dual space C
µ,pV of Hompg

�pV , pVk,µ� in terms of generating functions of
matrix elements (here, we suppress the integer k from the notation C

µ,pV , as it follows from (3.1)
that we may take k to be sufficiently large in all of our subsequent calculations). We let vµ�

be a lowest weight vector of the irreducible lowest weight pg-module pV �
k,µ, where pV �

k,µ is the
graded dual of pVk,µ. Let us define the following generating functions of current generators for
any i P r1,ms:

e 0
i pzq �

�1̧

n��8

eirnsz
�n�1, fipzq �

¸
nPZ

firnsz
�n�1, h 0

i pzq �
�1̧

n��8

α_i rnsz
�n�1.

Next, we observe that the grts-module V is generated by the action of Upn�rtsq on the cyclic
vector v � v1 b � � � b vN , as the cyclic vectors v1, . . . , vN of V1pz1q, . . . , VN pzN q respectively are
highest weight vectors with respect to the g-action. Together with the Poincaré–Birkhoff–Witt
theorem and the triangular decomposition pg � pn� ` ph` pn�, it follows that we havepV � U

�
n� b t�1C

�
t�1

��
U
�
hb t�1C

�
t�1

��
U
�
n�

�
t�1

��
v.

As the Borel subalgebras n� and n� are generated by e1, . . . , em and f1, . . . , fm, respectively, it
follows that C

µ,pV consists of generating functions of matrix elements of the following form:@
vµ�

��e 0
j1 py1q � � � e

 0
jℓ
pyℓqh

 0
k1 pu1q � � �h

 0
kp pupqfi1px1q � � � finpxnq

��vD, (3.2)

where ℓ, p, n P Z�, j1, . . . , jℓ, k1, . . . , kp, i1, . . . , in P r1,ms, and y1, . . . , yℓ, u1, . . . , up, x1, . . . , xn
are formal variables. Moreover, as vµ� is a lowest weight vector of pV �

k,µ, it follows that we
have pn� � vµ� � 0. In particular, we have eirns�vµ� � 0 � α_i rns�vµ� for all i P r1,ms and n P Z 0.
Thus, it follows from (3.2) that the space C

µ,pV only contains generating functions of matrix
elements of the following form xvµ�

��fi1px1q � � � finpxnq��vy, where n P Z�, i1, . . . , in P r1,ms,
and x1, . . . , xn are formal variables, which implies that C

µ,pV consists of polynomials in the
formal variables x1, . . . , xn. Subsequently, the graded multiplicity of V pµq in V is then equal
to the graded dimension of the associated graded space gr C

µ,pV , where the filtration on C
µ,pV is

inherited from the Z-filtration on the universal enveloping algebra U
�
n�

�
t�1

��
of n�

�
t�1

�
.

3.1.2 The twisted case

The approach described above in expressing the graded multiplicity in the fusion product of
localized current algebra modules in terms of generating functions of matrix elements for the
untwisted case can be extended to the twisted case as well, which we will describe below the
fold. Let us keep the notations as above, with the further assumption that we have zκi � zκj
for all distinct i, j P r1, N s. We recall that for any dominant weights µ and λ of g and gσ

respectively, the multiplicity of the pgσ-module pVκk,λ in pVk,µ (regarded as a pgσ-module of level κk
via restriction, as the central elementK of pgσ is related to the central elementK of pg byK � κK)
is equal to the multiplicity of the gσ-module V

�
λ
�
in V pµq, that is, we have

dimHompgσ
�pVk,µ, pVκk,λ� � dimHomgσ

�
V pµq, V

�
λ
��
. (3.3)

We claim that when k is sufficiently large, the multiplicity of the pgσ-module pVκk,λ in pV is equal
to the multiplicity of the gσ-module V

�
λ
�
in V , that is, we have

dimHompgσ
�pV , pVκk,λ� � dimHomgσ

�
V, V

�
λ
��
.

Indeed, as V is finite-dimensional, there are only finitely many dominant g-weights µ for
which dimHomgpV, V pµqq � 0. Thus, by equations (3.1) and (3.3), we have

dimHomgσ
�
V, V

�
λ
��
�

¸
µPP�

dimHomgpV, V pµqq dimHomgσpV pµq, V
�
λ
�
q
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�
¸

µPP�

dimHompg
�pV , pVk,µ�dimHompgσ

�pVk,µ, pVκk,λ�
� dimHompgσ

�pV , pVκk,λ�.
Similar to the untwisted case, the dual space C

λ,pV of Hompgσ
�pV , pVκk,λ� can be described in terms

of generating functions of matrix elements as well. We let v
λ
� be a lowest weight vector ofpgσ-module pV �

κk,λ
, where pV �

κk,λ
is the graded dual of pVκk,λ. Let us define the following generating

functions of current generators for any i P Ir:

f ipzq �
¸
nPZ

f irt
_
i nsz

�t_i pn�1q.

Next, we observe that the grtsσ-module V is generated by the action of Upn�rts
σq on the cyclic

vector v � v1 b � � � b vN , as the cyclic vectors v1, . . . , vN of V1pz1q, . . . , VN pzN q respectively are
highest weight vectors with respect to the gσ-action. As the twisted loop algebra n�

�
t�1

�σ
is

generated by the coefficients of f1px1q, . . . , f rpxrq, it follows from a similar argument as in the
untwisted case that C

λ,pV consists of generating functions of matrix elements of the following
form: @

v
λ
�

��f i1px1q � � � f inpxnq��vD, (3.4)

where n P Z�, i1, . . . , in P Ir, and x1, . . . , xn are formal variables. The graded multiplicity
of V

�
λ
�
in V is then equal to the graded dimension of the associated graded space gr C

λ,pV ,
where the filtration on C

λ,pV is inherited from the Z-filtration on U
�
n�

�
t�1

�σ�
.

The remainder of this section is devoted to describing the structure of the dual space C
λ,pV

in the case where V1, . . . , VN are graded KR-modules over grts, in which case the associated
graded space grV of V (with respect to the Z�-filtration on U

�
g
�
t�1

�σ�
) is given by the fusion

product of localized twisted KR-modules. In this case, we let na,i denote the number of graded
grts-modules Vj that are isomorphic to the graded KR-module KRa,i over grts for all a P Ir
and i P N, and we will write Cλ,n in lieu of C

λ,pV , where n � pna,iqaPIr,iPN.
The approach that we will take in describing the structure of Cλ,n in the subsequent sub-

sections will follow that of [2] and [1] for the A
p1q
r and the general untwisted cases respectively,

which we will describe briefly here. We will first describe the dual space U of functions to the
universal enveloping algebra U :� U

�
n�

�
t�1

�σ�
of the twisted loop algebra n�

�
t�1

�σ
, and intro-

duce a filtration on U . We will then specialize to the subspace Cλ,n of U and its corresponding
filtration, from which we will derive Theorem 3.1.

3.2 The dual space of functions to the universal enveloping algebra
of the twisted loop algebra

Let us take any α P ∆
�
. When α P ∆

�
ℓ , we define the following generating function fαpzq of

elements in n�
�
t�1

�σ
as follows:

fαpzq �
¸
nPZ

e�αrκnsz
�κpn�1q.

When α P ∆
�
s , we define the following generating functions fα,jpzq and fαpzq of elements

in n�
�
t�1

�σ
for all j P r0, κ� 1s as follows:

fα,jpzq �
¸
nPZ

e�αrκn� jsz�κn�j�1, fαpzq �
κ�1̧

j�0

fα,jpzq �
¸
nPZ

e�αrnsz
�n�1.

In particular, we have f ipzq � fαi
pzq for all i P Ir.
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Similar to the untwisted case, the generating currents f ipzq, i P Ir (or equivalently, fαpzq,
α P Π) satisfy two types of operator product expansion (OPE) relations. We will first describe
the first type of OPE relations, which arise as a result of the commutation relations between
the generating currents of n�

�
t�1

�σ
.

Lemma 3.2. Let α, β P Π be simple roots that satisfy α � β P ∆. Then up to a sign, the
generating currents fαpwq and fβpzq satisfy the following OPE relation:

fαpwqfβpzq �

$'''''''''''&'''''''''''%

fα�βpzq

wκ � zκ
� regular terms if α P ∆ℓ,

fα�βpzq

w � z
� regular terms if α, β P ∆s,

1

wκ � zκ

κ�1̧

j�0

�w
z

	κ�1�j
fα�β,jpzq

� regular terms if α P ∆s and β P ∆ℓ.

(3.5)

Here, “regular terms” refer to terms which have no pole at w � z, and the expansion of the
denominator is taken in the region |w| ¡ |z|.

Proof. Let us first show that (3.5) holds when α, β P ∆ℓ. In this case, we have α�β P ∆ℓ, and
up to a sign, we have�

fαpwq, fβpzq
�
�

¸
m,nPZ

re�αrκms, e�βrκnssw
�κpm�1qz�κpn�1q

�
¸

m,nPZ
e�pα�βqrκpm� nqsw�κpm�1qz�κpn�1q

�
1

wκ

¸
m,jPZ

e�pα�βqrκjsz
�κpj�1q

�
zκ

wκ


m

�
1

wκ
δpzκ{wκqfα�βpzq,

where δpzq �
°

mPZ z
m. This implies that (3.5) holds when α, β P ∆ℓ. By a similar argument as

above, it follows that (3.5) holds when α, β P ∆s.
Next, let us show that (3.5) holds when α P ∆ℓ and β P ∆s. In this case, we have α�β P ∆s,

and up to a sign, we have�
fαpwq, fβpzq

�
�

¸
m,nPZ

re�αrκms, e�βrnssw
�κpm�1qz�n�1

�
¸

m,nPZ
e�pα�βqrκm� nsw�κpm�1qz�n�1

�
1

wκ

¸
m,jPZ

e�pα�βqrjsz
�j�1

�
zκ

wκ


m

�
1

wκ
δpzκ{wκqfα�βpzq.

Consequently, it follows that (3.5) holds when α P ∆ℓ and β P ∆s.
Finally, let us show that (3.5) holds when α P ∆s and β P ∆ℓ. Then up to a sign, we have�

fαpwq, fβpzq
�
�

¸
m,nPZ

re�αrms, e�βrκnssw
�m�1z�κpn�1q
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�
κ�1̧

k�0

¸
m,nPZ

re�αrκm� ks, e�βrκnssw
�κm�k�1z�κpn�1q

�
κ�1̧

k�0

¸
m,nPZ

e�pα�βqrκpm� nq � ksw�κm�k�1z�κpn�1q

�
1

wκ

κ�1̧

k�0

�w
z

	κ�1�k ¸
m,jPZ

e�pα�βqrκj � ksz�κj�k�1

�
zκ

wκ


m

�
1

wκ
δpzκ{wκq

κ�1̧

k�0

�w
z

	κ�1�k
fα�β,kpzq.

Consequently, it follows that (3.5) holds when α P ∆s and β P ∆ℓ, and this completes the
proof. ■

Next, we will describe the second type of OPE relations, which arise mostly as a result of the
Serre relations for gσ.

Lemma 3.3. Let α, β P Π be simple roots that satisfy α � β P ∆. Then we have the following
OPE relation:

pw1 � zqpw2 � zqfαpw1qfαpw2qfβpzq
��
w1�w2�z

� 0. (3.6)

Proof. When α P ∆ℓ or α, β P ∆s, it follows that we have 2α� β R ∆, or equivalently,�
fαpw1q,

�
fαpw2q, fβpzq

��
� 0.

On the other hand, it follows from (3.5) that pw2 � zqfαpw2qfβpzq consists solely of regular
terms. The OPE relation (3.6) then follows by combining the above two observations.

Next, let us show that the OPE relation (3.6) holds when κ � 2, α P ∆s and β P ∆ℓ. Then
α� β P ∆s and 2α� β P ∆ℓ, and up to a sign, we have

re�αr2m� js, e�pα�βqr2n� jss � 2p�1qje�p2α�βqr2pm� nqs

for j P t0, 1u. This implies that for j P t0, 1u, we have�
fα,jpw1q, fα�β,jpzq

�
�

¸
m,nPZ

re�αr2m� js, e�pα�βqr2n� jssw�2m�1�j
1 z�2n�1�j

� p�1qj
¸

m,nPZ
e�p2α�βqr2pm� nqsw�2m�1�j

1 z�2n�1�j

� p�1qj
�
z

w1


1�j ¸
m,kPZ

e�p2α�βqr2ksz
�2k�2

�
z2

w2
1


m

� p�1qj
�
z

w1


1�j

δ
�
z2{w2

1

�
f2α�βpzq,

from which we deduce that

fα,jpw1qfα�β,jpzq �
p�1qjz1�jw1�j

1 f2α�βpzq

z2 � w2
1

� regular terms. (3.7)

Consequently, we deduce from (3.5) and (3.7) that we have

fαpw1qfαpw2qfβpzq �
w1pw2 � w1qf2α�βpzq�
z2 � w2

1

��
z2 � w2

2

� � regular terms, (3.8)
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and thus pw1 � zqpw2 � zqfαpw1qfαpw2qfβpzq consists solely of regular terms. As the terms
w1pw2�w1q and pw1� zqpw2� zq both vanish when w1 � w2 � z, it follows from (3.8) that the
OPE relation (3.6) holds when κ � 2, α P ∆s and β P ∆ℓ.

Finally, let us show that the OPE relation (3.6) holds when κ � 3, α P ∆s and β P ∆ℓ. Then
α� β, 2α� β P ∆s, and up to a sign, we have

re�αr3m� i� js, e�pα�βqr3n� jss �
�
ξj�i � ξ�j

�
e�p2α�βqr3pm� nq � is

for all i, j P t0, 1, 2u. By letting i� j be the unique element in t0, 1, 2u that satisfies i� j � i� j
mod 3 for all i, j P t0, 1, 2u, it follows that we have�

fα,i�jpw1q, fα�β,jpzq
�
�

¸
m,nPZ

re�αr3m� i� js, e�pα�βqr3n� jssw�3m�1�i�j
1 z�3n�1�j

�
�
ξj�i � ξ�j

� ¸
m,nPZ

e�p2α�βqr3pm� nq � isw�3m�1�i�j
1 z�3n�1�j

�
�
ξj�i � ξ�j

�
zi�jwj�i�1

1

¸
m,kPZ

e�p2α�βqr3k � isz�3k�i�1

�
z3

w3
1


m

�
�
ξj�i � ξ�j

�
zi�jwj�i�1

1 δ
�
z3{w3

1

�
f2α�β,ipzq,

from which we deduce that

fα,i�jpw1qfα�β,jpzq �

�
ξj�i � ξ�j

�
zi�jwj�i�2

1 f2α�β,ipzq

z3 � w3
1

� regular terms. (3.9)

Consequently, we deduce from (3.5) and (3.9) that we have

fαpw1qfαpw2qfβpzq �
w2
1p2w2 � w1qpw2 � w1qf2α�β,0pzq

z2
�
z2 � w2

1

��
z2 � w2

2

�
�
ξw1pw2 � 2w1qpw2 � w1qf2α�β,1pzq

z
�
z2 � w2

1

��
z2 � w2

2

�
�
ξ2pw2 � w1q

2f2α�β,2pzq�
z2 � w2

1

��
z2 � w2

2

� � regular terms, (3.10)

and thus pw1 � zqpw2 � zqfαpw1qfαpw2qfβpzq consists solely of regular terms. As the terms
w2
1p2w2 � w1qpw2 � w1q, w1pw2 � 2w1qpw2 � w1q, pw2 � w1q

2 and pw1 � zqpw2 � zq all vanish
when w1 � w2 � z, it follows from (3.10) that the OPE relation (3.6) holds when κ � 3, α P ∆s

and β P ∆ℓ, and this completes the proof. ■

Next, we will describe the dual space U of functions to U � U
�
n�

�
t�1

�σ�
. By the Poincaré–

Birkhoff–Witt theorem, we have

U �
à

m�pmp1q,...,mprqqPZr
�

U rms,

where

U rms �

#
f i1rt

_
i1n1s � � � f imrt

_
imnms | i1, . . . , im P Ir, n1, . . . , nm P Z,

m̧

j�1

αij �
ŗ

i�1

mpiqαi

+
.

We define the dual space U to U by

U �
à

m�pmp1q,...,mprqqPZr
�

Urms,
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where Urms is the dual space to U rms defined as follows: it is a space of functions in

xm �
 �
x
pbq
i

�t_b | b P Ir, i P
�
1,mpbq

�(
,

where x
pbq
i is the variable corresponding to a generator of the form fαb

�
x
pbq
i

�
. We define a pair-

ing Urms � U rns Ñ C between Urms and U rns for all m,n P Zr as follows: the pairing is 0
if m � n, and otherwise it is defined inductively by the relations

x1, 1y � 1,@
gpxq,Wf brt

_
b ns

D
�

B¾
x
pbq
1 �0

�
x
pbq
1

�t_b pn�1q�1
gpxmqdx

pbq
1 ,W

F
, W P U rm1

bs,

where

m1
b �

�
mp1q, . . . ,mpb�1q,mpbq � 1,mpb�1q, . . . ,mprq

�
,

and we may take any counterclockwise oriented contour around the point x
pbq
1 � 0 that does not

contain the points x
pbq
1 � x

paq
i for all pa, iq � pb, 1q in our above definition of

@
gpxq,Wf brt

_
b ns

D
.

Similarly,

@
gpxq, f brt

_
b nsW

D
�

B¾
x
pbq
1 �8

�
x
pbq
1

�t_b pn�1q�1
gpxmqdx

pbq
1 ,W

F
, W P U rm1

bs,

where we may take any clockwise oriented contour around the point x
pbq
1 � 8 that does not

contain the points x
pbq
1 � x

paq
i for all pa, iq � pb, 1q in our above definition of

@
gpxq, f brt

_
b nsW

D
.

With this pairing, the first OPE relation (3.5) implies that the functions in the dual space
Urms may have a simple pole whenever x

paq
i � x

pbq
j for any a, b P Ir satisfying Cab   0. In

addition, for any c P Ir satisfying t_c � κ, it follows from the definition of xm that any func-
tion f P Urms is a function in

�
x
pcq
ℓ

�κ
, which implies in particular that we have f

�
x
pcq
ℓ

�
�

f
�
ξmx

pcq
ℓ

�
for all m P r1, κ � 1s. These two observations together imply that in the case

where Cab   0 and max
�
t_a , t

_
b

�
� κ, the functions in Urms may have a simple pole when-

ever x
paq
i � ξmx

pbq
j for all m P r1, κ � 1s. Thus, the dual space Urms is a space of rational

functions gpxmq in xm that is of the form

gpxmq �
g1pxmq±

a b
Cab 0

±
i,j

��
x
paq
i

�kab � �
x
pbq
j

�kab� , (3.11)

where kab � maxpt_a , t
_
b q for all a, b P Ir satisfying Cab   0. The function g1pxmq is a Laurent

polynomial in xm, and is symmetric in each subset
 
x
paq
i | i P

�
1,mpaq

�(
of xm for all a P Ir,

as we have
�
fapwq, fapzq

�
� 0. Moreover, the second OPE relation (3.6) implies that the

function g1pxmq satisfies the following vanishing condition:

g1pxmq
��
x
paq
i �x

paq
j �x

pbq
k

� 0 (3.12)

for all a, b P Ir satisfying Cab   0, distinct i, j P
�
1,mpaq

�
, and k P

�
1,mpbq

�
. Moreover, in

the case where Cab   0 and maxpt_a , t
_
b q � κ, the function g1pxmq also satisfies the following

vanishing condition:

g1pxmq
��
x
paq
i �x

paq
j �ξmx

pbq
k

� 0 (3.13)

for all distinct i, j P
�
1,mpaq

�
, k P r1,mpbqs and m P r1, κ� 1s.
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3.3 Filtration of the dual space U rrrmsss

Our next step is to introduce a filtration on Urms, following the approaches outlined in [2,
Section 3.4] and [1, Section 4.1]. To begin, we let µ �

�
µp1q, . . . , µprq

�
be a multipartition

of m �
�
mp1q, . . . ,mprq

�
, that is, µpaq is a partition of mpaq for all a P Ir. For each a P Ir,

i P N, we let ma,i

�
µpaq

�
denote the number of parts of length i in the partition µpaq. When

the context is clear, we will write ma,i in lieu of ma,i

�
µpaq

�
. We note that there is a bijection

between the set of multipartitions µ �
�
µp1q, . . . , µprq

�
of m �

�
mp1q, . . . ,mprq

�
, and the set of

vectors m � pma,iqaPIr,iPN of nonnegative integers that satisfy
°

iPN ima,i � mpaq for all a P Ir,
given by

µ ÞÑ
�
ma,i

�
µpaq

��
aPIr,iPN (3.14)

for all multipartitions µ of m.
Next, for any multipartition µ of m, denoted µ $ m, we let Hrµs be a space of functions

in the variables yµ �
 �
y
pbq
i,r

�t_b | b P Ir, i P
�
1,mpbq

�
, r P r1,mb,is

(
. For any a P Ir and any par-

tition µpaq of mpaq, we note that there is a bijective correspondence between the parts of µpaq

and the pairs pi, rq, where i P
�
1,mpaq

�
and r P r1,ma,is. We define an ordering on the parts

of µpaq, or equivalently, the pairs
 
pi, rq | i P

�
1,mpaq

�
, r P r1,ma,is

(
, as follows: pi, rq ¡ pj, sq

if i ¡ j, or i � j and r   s. Let us pick a collection T � pT1, . . . , Trq of tableaux, where Ta
is a tableau of shape µpaq on the letters 1, . . . ,mpaq for all a P Ir. For each n P

�
1,mpaq

�
, we

let iTapnq be the length of the row in Ta in which n appears, and rTapnq � 1 be the number
of rows above the row in which n appears of the same length iTapnq. We define the evalua-
tion map φµ,T : Urms Ñ Hrµs by φµ,T

�
x
paq
n

�
� y

paq
iTa pnq,rTa pnq

, a P Ir, n P
�
1,mpaq

�
, and extend

the map φµ,T to the whole of Urms by linearity. As the functions in Urms are symmetric
in

 
x
paq
i | i P

�
1,mpaq

�(
for each a P Ir, it follows that any two collections T, T1 of tableaux give

rise to the same map Urms Ñ Hrµs. Thus, we may write φµ in lieu of φµ,T.
We define a lexicographical ordering on the set of multipartitions µ $ m as follows: µ ¡ ν

if there exists some index a P Ir satisfying µpbq � νpbq for all b P r1, a� 1s and µpaq ¡ νpaq, where
we take the lexicographical ordering on partitions here. We define

Γµ �
£
ν¡µ

kerφν , Γ1µ �
£
ν¥µ

kerφν � Γµ

for all multipartitions µ $ m. By enumerating the set of multipartitions µ $ m as µ1   µ2  
� � �   µN , where µ1 �

��
1m

p1q�
,
�
1m

p2q�
, . . . ,

�
1m

prq��
and µN �

��
mp1q

�
,
�
mp2q

�
, . . . ,

�
mprq

��
,

and setting Γµ0 :� t0u, it follows that we have ΓµN � Urms, and Γµi�1 � Γ1µi
for all i P r1, N s.

Thus, we have a filtration Fm on Urms parameterized by all multipartitions µ $m

t0u � Γµ0 � Γµ1 � Γµ2 � � � � � ΓµN � Urms.

Consequently, the associated graded space grFm of the filtration Fm on Urms is given by

grFm �
Nà
i�1

Γµi{Γµi�1 �
Nà
i�1

Γµi{Γ
1
µi
�

à
µ$m

Γµ{Γ
1
µ. (3.15)

Our next step is to understand the graded structure of the functions in Urms through the
associated graded space grFm of Fm on Urms, by relating each graded piece Γµ{Γ

1
µ of the

associated graded space grFm to its corresponding image under the evaluation map φµ for
each multipartition µ $ m. To this end, we will define H̃rµs to be the space of rational
functions hpyµq in yµ that is of the form

hpyµq �

±
aPIr

±
pi,rq¡pj,sq

��
y
paq
i,r

�t_a � �
y
paq
j,s

�t_a q2minpi,jq±
a b

Cab 0

±
i,j,r,s

��
y
paq
i,r

�kab � �
y
pbq
j,s

�kab�minpi,jq
h1pyµq, (3.16)
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where kab � maxpt_a , t
_
b q for all a, b P Ir satisfying Cab   0, and h1pyµq is an arbitrary Lau-

rent polynomial in yµ that is symmetric in
 
y
paq
i,r | r P r1,ma,is

(
for all pairs pa, iq.

We are now ready to relate Γµ{Γ
1
µ to H̃rµs for each multipartition µ $m.

Theorem 3.4. Let µ be a multipartition of m. Then the evaluation map φµ : Urms Ñ Hrµs
induces an isomorphism φµ : Γµ{Γ

1
µ Ñ H̃rµs of graded vector spaces.

The proof of Theorem 3.4 proceeds in a similar manner as in the proof of [2, Theorem 3.6]
and [1, Theorem 4.1], which we will describe below the fold.

Our first step is to describe the zeros and poles of the functions in H̃rµs.

Lemma 3.5. Let gpxmq P Γµ, and a P Ir. Then the function hpyµq � φµpgpxmqq has a zero of
order at least 2minpi, jq whenever y

paq
i,r � y

paq
j,s . Moreover, if t_a � κ, then the function hpyµq has

a zero of order at least 2minpi, jq whenever y
paq
i,r � ξmy

paq
j,s for all m P r1, κ� 1s.

Proof. The proof of the first part of Lemma 3.5 follows in the same fashion as in the proof
of [2, Lemma 3.7], and shall be omitted. For the second part of Lemma 3.5, we first note that
as t_a � κ, we have g

�
x
paq
ℓ

�
� g

�
ξmx

paq
ℓ

�
for allm P r1, κ�1s. As the map φµ is degree preserving,

it follows that we have h
�
y
paq
ℓ,u

�
� h

�
ξmy

paq
ℓ,u

�
for all m P r1, κ� 1s. Together with the first part of

Lemma 3.5, this proves the second part of Lemma 3.5. ■

Lemma 3.6. Let gpxmq P Urms, a, b P Ir be root indices that satisfy Cab   0, and pi, rq
and pj, sq be parts of µpaq and µpbq, respectively. Then the function hpyµq � φµpgpxmqq has
a pole of order at most minpi, jq whenever y

paq
i,r � y

pbq
j,s . Moreover, if maxpt_a , t

_
b q � κ, then the

function hpyµq has a pole of order at most minpi, jq whenever y
paq
i,r � ξmy

pbq
j,s for all m P r1, κ�1s.

Proof. Let us write gpxmq in the form given in (3.11). As the vanishing condition (3.12)
satisfied by the function g1pxmq is identical to the vanishing condition arising from the Serre
relations in the simply-laced untwisted case (see [2, equation (3.15)] and [1, equation (4.4)]), the
first part of Lemma 3.6 follows in a similar fashion as in the proofs of [2, Lemma 3.8] and [1,
Lemma A.2], and shall be omitted. We will omit the proof of the second part of Lemma 3.6 as
well, as it follows from a similar argument as in the proof of the second part of Lemma 3.5. ■

As a corollary of Lemmas 3.5 and 3.6, this shows that the evaluation map φµ : Γµ Ñ H̃rµs
is well-defined.

Our next step is to show that the evaluation map φµ : Γµ Ñ H̃rµs is surjective. Similar
as before in the proofs of [2, Lemma 3.16] and [1, Theorem A.4], we will produce an explicit
function gpxmq P Urms for each function hpyµq P H̃rµs, and show that up to a nonzero scalar,
the image of gpxmq under the evaluation map φµ is precisely hpyµq.

Let us enumerate the variables in the pre-image of y
paq
i,r under the evaluation map φµ � φµ,T

as
 
x
paq
i,r r1s, . . . , x

paq
i,r ris

(
�

 
x
paq
1 , . . . , x

paq

mpaq

(
. We first let

g0pxmq �

±
aPIr

±
pi,rq¡pi1,r1q

±i1

j�1

�
x
paq
i,r rjs

t_a � x
paq
i1,r1rjs

t_a
��
x
paq
i,r rj � 1st

_
a � x

paq
i1,r1rjs

t_a
�

±
a b

Cab 0

±
i,j,r,s

±minpi,jq
ℓ�1

�
x
paq
i,r rℓs

kab � x
pbq
j,srℓs

kab
� , (3.17)

where kab � maxpt_a , t
_
b q for all a, b P Ir satisfying Cab   0, and x

paq
i,r ri� 1s :� x

paq
i,r r1s. Next, for

any Laurent polynomial h1pyµq in yµ that is symmetric in
 
y
paq
i,r | r P r1,ma,is

(
for all pairs pa, iq,

and any term

c �
�
y
pa1q
i1,r1

�m1t_a1 � � �
�
y
pakq
ik,rk

�mkt
_
ak

of the Laurent polynomial h1pyµq, we let

g1pxmq �
�
x
pa1q
i1,r1

r1s
�m1t_a1 � � �

�
x
pakq
ik,rk

r1s
�mkt

_
ak ,
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and we define

gpxmq � Sympg0pxmqg1pxmqq, (3.18)

where the symmetrization is over each of the r sets
 
x
paq
1 , . . . , x

paq

mpaq

(
of variables with the same

label a.

Lemma 3.7. The function gpxmq defined by equation (3.18) is an element of Γµ, and the
image φµpgpxmqq of the function gpxmq under the evaluation map φµ : Γµ Ñ Hrµs is a nonzero
scalar multiple of the function hpyµq defined by (3.16).

The proof of Lemma 3.7 shall be omitted, as it follows from the proofs of [2, Lemmas 3.11,
3.13, and 3.15], with the appropriate modifications made in the definition of g0pxmq in (3.17) to
account for the differences in the structure of zeros and poles between the twisted case and the
untwisted case described in [1, 2].

By Lemma 3.7, this shows that the evaluation map φµ : Γµ Ñ Hrµs is surjective. As the
kernel of the evaluation map φµ : Γµ Ñ Hrµs is given by Γµ X kerφµ � Γ1µ, this completes the
proof of Theorem 3.4. Thus, as a corollary of Theorem 3.4 and (3.15), we see that the associated
graded space grFm of the filtration Fm on Urms is given by grFm �

À
µ$mHrµs.

3.4 The dual space of generating functions of matrix elements
to the fusion product of twisted KR-modules

Having provided an explicit description of the dual space U of functions by describing each
associated graded space grFm of the filtration Fm on Urms in terms of spaces Hrµs of functions
associated to multipartitions µ $ m for each r-tuple m of nonnegative integers, our goal in
this subsection is to give a similar explicit characterization of the subspace Cλ,n of U , consisting
of generating functions of matrix elements that arises from fusion products of localized KR-
modules over grtsσ, by extending the procedure described in Section 3.3 to Cλ,n, following the
approaches outlined in [2, Section 5.5] and [1, Section 5.2].

Let us keep the notations as in Sections 3.1.1 and 3.1.2, and write Vjpzjq � KRσ
aj ,ij pzjq for

all j P r1, N s. Here, we view V1pz1q, . . . , VN pzN q as grtsσ-modules, even though they arise via
the restriction the action of localized KR-modules over grts to grtsσ, as we are interested in
computing the graded multiplicities of irreducible gσ-modules in fusion products of localized
twisted KR-modules.

Following (3.4), we define Cλ,nrms to be the subspace of Urms, consisting of generating
functions of matrix elements of the form@

v
λ
�

��f b1�xpb1q1

�
� � � f bM

�
x
pbM q

mpbM q

���v1 b � � � b vN
D

(3.19)

for each m �
�
mp1q, . . . ,mprq

�
P Zr

�, where M �
°

bPIr
mpbq, and b1, . . . , bM P Ir are root indices

that satisfy
°M

j�1 αbj �
°r

bPIr
mpbqαb.

As Cλ,nrms is a subspace of Urms, it follows that all functions gpxmq in Cλ,nrms are of the
form given in (3.11), and its numerator g1pxmq satisfies the vanishing conditions given in (3.12)
and (3.13). In addition, the functions gpxmq (and hence their corresponding numerators g1pxmq)
satisfy additional properties that arise mainly from the properties of the lowest weight vector v

λ
�

of the pgσ-module pV �
κk,λ

and the highest weight vector v1 b � � � b vN of V1pz1q � � � � � VN pzN q �
KRσ

a1,i1pz1q � � � � �KRσ
aN ,iN

pzN q. These additional properties are given as follows:

p1q Zero weight condition: For the matrix element given by (3.19) to be nonzero, the total
weight of this matrix element with respect to hσ � gσ must be equal to zero, that is, we
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have (recall that the gσ-weight of v
λ
� is �λ)

�λ�
M̧

j�1

αbj �
Ņ

j�1

ijωaj � 0. (3.20)

By letting λ �
°

aPIr
ℓaωa, we may rewrite the left-hand side of the zero weight condi-

tion (3.20) as

�λ�
M̧

j�1

αbj �
Ņ

j�1

ijωaj � �
¸
aPIr

ℓaωa �
¸
bPIr

mpbqαb �
¸
aPIr

¸
iPN

ina,iωa

� �
¸
aPIr

ℓaωa �
¸

a,bPIr

Cabm
pbqωa �

¸
aPIr

¸
iPN

ina,iωa. (3.21)

Thus, by comparing the coefficients of ωa on the right-hand side of (3.20) and (3.21) for
all a P Ir, it follows that the zero weight condition is equivalent to

ℓa �
¸
bPIr

Cabm
pbq �

¸
iPN

ina,i � 0 (3.22)

for all a P Ir. In particular, as the Cartan matrix C is invertible, it follows if there exists
a solution m P Zr

� to (3.22), then it is uniquely determined by the choices of λ and n (note
that for fixed λ and n, there always exists a unique solution m P Qr to (3.22), as (3.22)
is an equation with integer coefficients). Subsequently, in this subsection and beyond, we
may restrict our attention to pairs

�
λ,n

�
for which there exists a unique solution m P Zr

�

to (3.22), or equivalently, a unique m P Zr
� for which Cλ,nrms � t0u.

p2q Lowest weight condition: As v
λ
� is a lowest weight vector of the pgσ-module pV �

κk,λ
, it follows

that we have pnσ� �vλ� � 0. In particular, we have fart
_
a ns�vλ� � 0 for all a P Ir and n P Z¤0.

Thus, we have

fa
�
x
paq
i

�
� v

λ
� �

¸
nPZ

fart
_
a ns

�
x
paq
i

��t_a pn�1q
� v

λ
�

�
¸
nPN

fart
_
a ns

�
x
paq
i

��t_a pn�1q
� v

λ
� , (3.23)

which in turn implies that we must have deg
x
paq
i

gpxmq ¤ �2t_a for all gpxmq P Cλ,nrms
and a P Ir. Equivalently, by letting

f
�
a pzq �

¸
nPN

fart
_
a nsz

�t_a pn�1q (3.24)

for all a P Ir, we see from (3.19) and (3.23) that the space Cλ,nrms consists of generating
functions of matrix elements of the form@

v
λ
�

��f�b1�xpb1q1

�
� � � f

�
bM

�
x
pbM q

mpbM q

���v1 b � � � b vN
D

(3.25)

for each m �
�
mp1q, . . . ,mprq

�
P Zr

�, where M �
°

bPIr
mpbq, and b1, . . . , bM P Ir are root

indices that satisfy
°M

j�1 αbj �
°r

bPIr
mpbqαb.

p3q Highest weight conditions: By (2.6), it follows that for each p P r1, N s, we have

ψzp

�
fart

_
a ns

�
vp � δap,az

t_apn
p ψ0

�
fapr0s

�
vp.
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In light of (3.24) and (3.25), it follows that if a � ap, then we have ψzp

�
f
�
a

�
x
paq
i

��
vp � 0.

Else, we have

ψzp

�
f
�
ap

�
x
papq
i

��
vp �

¸
nPN

ψzp

�
faprt

_
apns

�
x
papq
i

��t_ap pn�1q�
vp

�
¸
nPN

z
t_apn
p

�
x
papq
i

��t_ap pn�1q
ψ0

�
fapr0s

�
vp

�
z
t_ap
p�

x
papq
i

�t_ap��xpapqi

�t_ap � z
t_ap
p

�ψ0

�
fapr0s

�
vp. (3.26)

Using the pairing Urms � U rms Ñ C, this shows that for each gpxmq P Cλ,nrms and a P
Irztapu, the function gpxmq does not have a pole at x

paq
i � zp, and in the case where t_a � κ,

the function gpxmq does not have a pole at x
paq
i � ξmzp for all m P r1, κ� 1s as well. The

function gpxmq may have a simple pole at x
papq
j � zp, and in the case where t_ap � κ,

the function gpxmq may have a simple pole at x
papq
j � ξmzp for all m P r1, κ � 1s as well.

Thus, if we define gpxmq by (3.11), then we have

g1pxmq �
g2pxmq±N

p�1

±mpapq

i�1

��
x
papq
i

�t_ap � z
t_ap
p

� , (3.27)

where g2pxmq is a polynomial in xm that satisfies the vanishing conditions (3.12) and (3.13).
Lastly, gpxmq does not have a pole at x

paq
i � 0 for all a P Ir, as there are no grtsσ-modules

localized at 0.

p4q Integrability condition: For each p P r1, N s, it follows from (2.5c) that we have

ψzp

�
fapr0s

�k�1
vp � 0 � ψ0

�
fapr0s

�k�1
vp. (3.28)

On the other hand, it follows from (3.26) that we have

ψzp

�
f
�
ap

�
x
papq
j1

��
� � �ψzp

�
f
�
ap

�
x
papq
jip

��
vp

�
z
t_ap ip
p±ip

ℓ�1px
papq
jℓ

qt
_
ap
��
x
papq
jℓ

�t_ap � z
t_ap
p

�ψ0

�
fapr0s

�ipvp
for all j1, . . . , jip P

�
1,mpapq

�
, which implies that

ip¹
ℓ�1

��
x
papq
jℓ

�t_ap � z
t_ap
p

�
ψzp

�
f
�
appx

papq
j1

q
�
� � �ψzp

�
f
�
appx

papq
jip

q
�
vp

consists solely of regular terms. Together with (3.28), this shows that we have

ip�1¹
ℓ�1

��
x
papq
jℓ

�t_ap � z
t_ap
p

�
ψzp

�
f
�
ap

�
x
papq
j1

��
� � �ψzp

�
f
�
ap

�
x
papq
jip�1

��
vp
��
x
papq

j1
�����x

papq

jip�1
�zp

� 0

for all distinct j1, . . . , jip�1 P
�
1,mpapq

�
. Using the pairing Urms � U rms Ñ C, this shows

that if we define gpxmq P Cλ,nrms by (3.11) and (3.27), then in addition to the vanishing
conditions (3.12) and (3.13) satisfied by g2pxmq, the function g2pxmq satisfies the following
vanishing condition:

g2pxmq|xpapqj1
�����x

papq

jip�1
�zp

� 0
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for all distinct j1, . . . , jip�1 P
�
1,mpapq

�
, and in the case where t_ap � κ, the function g2pxmq

also satisfies the following vanishing condition:

g2pxmq|xpapqj1
�����x

papq

jip�1
�ξmzp

� 0

for all distinct j1, . . . , jip�1 P
�
1,mpapq

�
and m P r1, κ� 1s.

3.5 Filtration of the space of generating functions of matrix elements Cλ,nrrrmsss

Following the approaches outlined in [2, Section 5.6] and [1, Section 5.3], our next step is to
describe the induced filtration F̃m on Cλ,nrms from the filtration Fm on Urms via restriction
as a subspace of Urms, which can be described explicitly as follows: we enumerate the set of
multipartitions µ $m as in Section 3.3, and we define

Γ̃µ � Γµ X Cλ,nrms, Γ̃1µ � Γ1µ X Cλ,nrms

for all multipartitions µ $m. As we have Γ̃µi�1 � Γ̃1µi
for all i P r1, N s, we have a filtration F̃m

on Cλ,nrms parameterized by all multipartitions µ $m

t0u � Γ̃µ0 � Γ̃µ1 � � � � � Γ̃µN � Cλ,nrms.

Thus, the associated graded space gr F̃m of the filtration F̃m on Cλ,nrms is given by

gr F̃m �
Nà
i�1

Γ̃µi{Γ̃µi�1 �
Nà
i�1

Γ̃µi{Γ̃
1
µi
�

à
µ$m

Γ̃µ{Γ̃
1
µ. (3.29)

Similar as before in Section 3.3, we would like to describe the image φµpΓ̃µq of the functions
in Γ̃µ under the evaluation map φµ for each multipartition µ $m. To this end, we will need the
following description of the poles of the functions in φµ

�
Cλ,nrms

�
that arises from the highest

weight and integrability conditions described in Section 3.4.

Lemma 3.8. Let gpxmq P Cλ,nrms, and p P r1, N s. Then the function hpyµq � φµpgpxmqq
has a pole of order at most minpi, ipq whenever y

papq
i,r � zp. Moreover, if t_ap � κ, then the

function hpyµq has a pole of order at most minpi, ipq whenever y
papq
i,r � ξmzp for all m P r1, κ�1s.

The proof of Lemma 3.8 follows from a similar argument as in the proof of [2, Lemma 3.9],
bearing in mind the presence of extra poles in the twisted case, as compared to the untwisted
case described in [1, 2].

Together with Theorem 3.4 and the lowest weight condition, we have the following charac-
terization of the functions in φµpΓ̃µq for each multipartition µ $m.

Theorem 3.9. Let µ be a multipartition of m. Then the image φµ

�
Γ̃µ

�
of Γ̃µ under the

evaluation map φµ : Urms Ñ Hrµs is a subspace of H̃rµs � Hrµs, where H̃rµs is the space of
rational functions hpyµq in yµ of the form

hpyµq �

±
aPIr

±
pi,rq¡pj,sq

��
y
paq
i,r

�t_a � �
y
paq
j,s

�t_a �2minpi,jq±N
p�1

±
i,r

��
y
papq
i,r

�t_ap � z
t_ap
p qminpi,ipq

±
a b

Cab 0

±
i,j,r,s

��
y
paq
i,r

�kab � �
y
pbq
j,s

�kab�minpi,jq

� h1pyµq (3.30)

with kab � maxpt_a , t
_
b q for all a, b P Ir satisfying Cab   0, and h1pyµq is an arbitrary poly-

nomial in yµ that is symmetric in ty
paq
i,r | r P r1,ma,isu for all pairs pa, iq, such that the total

degree deg
y
paq
i,r

hpyµq of the function hpyµq in the variable y
paq
i,r is less than or equal to �2t_a i for

all a P Ir and parts pi, rq of µpaq.
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As the kernel of the evaluation map φµ : Γ̃µ Ñ H̃rµs is given by Γ̃µ X kerφµ � Γ̃1µ, we have
an induced injective map φµ : Γ̃µ{Γ̃

1
µ Ñ H̃rµs. As in the untwisted case [1, 2], we are unable to

show that the map φµ : Γ̃µ{Γ̃
1
µ Ñ H̃rµs is surjective directly, which will only allow us to deduce

Theorem 3.1 at this point. However, we will see in Section 4 that Theorems 1.1 and 1.2 imply
the surjectivity of the evaluation map φµ : Γ̃µ{Γ̃

1
µ Ñ H̃rµs.

3.6 Proof of Theorem 3.1

We are now ready to prove Theorem 3.1. As in [1, 2], we will first relate the q-graded multiplic-
ity Mλ,npqq of V

�
λ
�
in the fusion product F�

n of localized twisted KR-modules parameterized
by n to the q-graded dimension of Cλ,nrms, or equivalently, the q-graded dimension of gr F̃m.
Subsequently, we will compute the q-graded dimension of H̃rµs for each multipartition µ ofm us-
ing the characterization of the functions in H̃rµs given in Theorem 3.9, and show that each H̃rµs
whose q-graded dimension is nonzero corresponds to a (nonzero) term on the right-hand side
of (1.2). Together with the injectivity of the induced evaluation map φµ : Γ̃µ{Γ̃

1
µ Ñ H̃rµs

and (3.29), this will then show that Mλ,n

�
q�1

�
¤Mλ,n

�
q�1

�
.

To begin, we first note that the space Cλ,nrms has a filtration by homogeneous total degree
in the variables

 
x
paq
i | a P Ir, i P

�
1,mpaq

�(
, where we take the degree of the factors

��
x
papq
i

�t_ap
� z

t_ap
p

�
in the denominator on the right-hand side of (3.27) to be equal to �t_ap for all p P r1, N s

and i P
�
1,mpapq

�
, and is equivalent to setting zp � 0 for all p P r1, N s in (3.27). Let us

denote the graded components by homogeneous total degree of Cλ,nrms by Cλ,nrmsrns. Similarly,
each graded component Γ̃µ{Γ̃

1
µ of the associated graded space gr F̃m of the filtration F̃m on

Cλ,nrms admits a filtration by homogeneous total degree in
 
x
paq
i | a P Ir, i P

�
1,mpaq

�(
for all

multipartitions µ of m.

Now, as the degree of the coefficient
�
x
paq
i

��t_a pn�1q
of fart

_
a ns in the generating function

fa
�
x
paq
i

�
is equal to �t_a pn � 1q, it follows that the space Homgσ

�
F�
nrms, V

�
λ
��

is dual to
the space Cλ,nrmsr�m � Cms for all m P Z�, where Cm �

°
aPIr

t_am
paq. Thus, by letting

chq V �
°

mPZ dimV rmsqm denote the generating function of the dimensions of the Z-graded
components V rms of V for any Z-graded vector space V �

À
nPZ V rms, it follows from (1.3)

and (3.29) that we have

Mλ,npqq �
8̧

m�0

dimHomgσ
�
F�
nrms, V

�
λ
��
qm �

8̧

m�0

dim Cλ,nrmsr�m� Cmsq
m

� q�Cm

8̧

m�0

dim Cλ,nrmsr�m� Cmsq
m�Cm � q�Cm chq�1 Cλ,nrms

� q�Cm
¸

µ$m

chq�1 Γ̃µ{Γ̃
1
µ,

or equivalently,

Mλ,n

�
q�1

�
� qCm chq Cλ,nrms � qCm

¸
µ$m

chq Γ̃µ{Γ̃
1
µ. (3.31)

Likewise, the space of functions H̃rµs admit a filtration by homogeneous total degree in the vari-
ables

 
y
paq
i,r | a P Ir, i P

�
1,mpaq

�
, r P r1,ma,is

(
for each multipartition µ of m. As φµ : Γ̃µ{Γ̃

1
µ Ñ

H̃rµs is an injective map of Z-graded vector spaces, we have chq Γ̃µ{Γ̃
1
µ ¤ chq H̃rµs for all mul-

tipartitions µ of m. Together with (3.31), we have

Mλ,n

�
q�1

�
¤ qCm

¸
µ$m

chq H̃rµs. (3.32)
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It remains to show that the right-hand side of the inequality (3.32) is equal to Mλ,n

�
q�1

�
.

To this end, we will need to compute chq H̃rµs for each multipartition µ of m. We first note
that the associated graded space of the filtration by homogeneous total degree in the variables 
y
paq
i,r | a P Ir, i P

�
1,mpaq

�
, r P r1,ma,is

(
on H̃rµs is obtained by setting zp � 0 for all p P r1, N s

in (3.30), and by Theorem 3.9, this associated graded space is isomorphic to the space of functions
of the form hpyµq � h0pyµqh1pyµq, where

h0pyµq �

±
aPIr

±
pi,rq¡pj,sq

��
y
paq
i,r

�t_a � �
y
paq
j,s

�t_a q2minpi,jq±N
p�1

±
i,r

�
y
papq
i,r

�minpi,ipqt_ap
±

a b
Cab 0

±
i,j,r,s

��
y
paq
i,r

�kab � �
y
pbq
j,s

�kab�minpi,jq

�

±
aPIr

±
pi,rq¡pj,sq

��
y
paq
i,r

�t_a � �
y
paq
j,s

�t_a �2minpi,jq±
bPIr

±
jPN

±
i,r

�
y
pbq
i,r

�nb,j minpi,jqt_b
±

a b
Cab 0

±
i,j,r,s

��
y
paq
i,r

�kab � �
y
pbq
j,s

�kab�minpi,jq
,

with kab � maxpt_a , t
_
b q for all a, b P Ir satisfying Cab   0,

deg
y
paq
i,r

hpyµq ¤ �2t_a i (3.33)

for all a P Ir and parts pi, rq of µpaq, and h1pyµq is an arbitrary polynomial in yµ that is
symmetric in

 
y
paq
i,r | r P r1,ma,is

(
for all pairs pa, iq.

Now, using the fact that we have
°

iPN ima,i � mpaq for all a P Ir, we may rewrite the left-hand
side of (3.22) as

ℓa �
¸
bPIr

Cabm
pbq �

¸
iPN

ina,i � ℓa �
¸
iPN

¸
bPIr

iCabmb,i �
¸
iPN

ina,i

� ℓa �
¸
iPN

¸
bPIr

i
�
Cabmb,i � δabnb,i

�
� qa,0,

from which we see that the zero weight condition (3.22) is equivalent to requiring the vec-
tor m � pma,iqaPIr,iPN satisfy qa,0 � 0 for all a P Ir. Next, let us compute the total degree
deg

y
paq
i,r

h0pyµq of the function h0pyµq in the variable y
paq
i,r for all a P Ir and parts pi, rq of µpaq.

As we have Caa � 2, and kab � maxpt_a , t
_
b q � �t_a Cab � �t_b Cba for all b P Ir satisfying

Cab   0, it follows that we have

deg
y
paq
i,r

h0pyµq �
¸

pj,sq�pi,rq

2t_a minpi, jq �
¸
jPN

t_a minpi, jqna,j �
¸
b�a

Cab 0

¸
pj,sq

kabminpi, jq

� � 2t_a i�
¸
jPN

2t_a minpi, jqma,j �
¸
jPN

¸
bPIr

t_a minpi, jqδabnb,j

�
¸
jPN

¸
b�a

Cab 0

t_a minpi, jqCabmb,j

� � 2t_a i� t_a
¸
jPN

minpi, jqCaama,j � t_a
¸
jPN

¸
bPIr

minpi, jqδabnb,j

� t_a
¸
jPN

¸
b�a

minpi, jqCabmb,j

� � 2t_a i� t_a
¸
jPN

¸
bPIr

minpi, jqδabnb,j � t_a
¸
jPN

¸
bPIr

minpi, jqCabmb,j

� � 2t_a i� t_a pa,i. (3.34)
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Moreover, as h1pyµq is a polynomial in yµ, it follows from (3.33) and (3.34) that we have

0 ¤ deg
y
paq
i,r

h1pyµq ¤ t_a pa,i (3.35)

for all a P Ir and parts pi, rq of µpaq. Thus, the inequality (3.35), the zero weight condition, and
the bijection (3.14) together imply that dim H̃rµs ¡ 0 if and only if the vector m � pma,iqaPIr,iPN
satisfies qa,0 � 0 and pa,i ¥ 0 for all a P Ir and i P N.

Now, we let Prµs denote the space of polynomials ppyµq in yµ that are symmetric in
 
y
paq
i,r |

r P r1,ma,is
(
for all pairs pa, iq, and satisfy the degree restrictions (3.35). Then we have

chq H̃rµs � qdeg h0pyµq chq Prµs, (3.36)

Prµs �
â
aPIr

â
IPN

ma,i¡0

Prµsa,i, (3.37)

where Prµsa,i is the space of polynomials ppya,iq in ya,i �
 �
y
paq
i,1

�t_a , . . . , �ypaqi,ma,i

�t_a ( that are
symmetric in

 
y
paq
i,r | r P r1,ma,is

(
for all pairs pa, iq, and satisfy the degree restriction (3.35).

As the degree of each variable y
paq
i,r of ppya,iq is a multiple of t_a for all polynomials ppya,iq P

Prµsa,i, we have

chq Prµsa,i �
�
ma,i � pa,i

ma,i

�
qt
_
a

�

�
ma,i � pa,i

ma,i

�
qa

for all a P Ir and i P N that satisfy ma,i ¡ 0. Moreover, as�
ma,i � pa,i

ma,i

�
qa

� 1

for all a P Ir and i P N that satisfy ma,i � 0, it follows from (3.37) that we have

chq Prµs �
¹
iPN

¹
aPIr

chq Prµsa,i �
¹
iPN

¹
aPIr

�
ma,i � pa,i

ma,i

�
qa

. (3.38)

Finally, to complete the proof of Theorem 3.1, we would need to show that deg h0pyµq �
�Cm �Qpm,nq. Indeed, we have

deg h0pyµq �
¸
aPIr

¸
pi,rq¡pj,sq

2t_a minpi, jq �
¸
aPIr

¸
jPN

¸
pi,rq

t_a minpi, jqna,j

�
¸
a b

Cab 0

¸
pi,rq,pj,sq

kabminpi, jq

�
¸
aPIr

¸
pi,rq�pj,sq

t_a minpi, jq �
¸
aPIr

¸
i,jPN

t_a minpi, jqma,ina,j

�
¸
a b

Cab 0

¸
i,jPN

t_a Cabminpi, jqma,imb,j

� �
¸
aPIr

t_a
¸
iPN

ima,i �
¸
aPIr

¸
i,jPN

t_a minpi, jqma,ima,j

�
¸

a,bPIr

¸
i,jPN

t_a minpi, jqδabma,inb,j �
¸
a b

¸
i,jPN

t_a Cabminpi, jqma,imb,j

� �
¸
aPIr

t_am
paq �

1

2

¸
aPIr

¸
i,jPN

t_a Caaminpi, jqma,ima,j
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�
¸

a,bPIr

¸
i,jPN

t_a minpi, jqδabma,inb,j

�
1

2

¸
a b

¸
i,jPN

�
t_a Cab � t_b Cba

�
minpi, jqma,imb,j

� � Cm �
1

2

¸
aPIr

¸
i,jPN

t_a Caaminpi, jqma,ima,j

�
¸

a,bPIr

¸
i,jPN

t_a minpi, jqδabma,inb,j �
1

2

¸
a�b

¸
i,jPN

t_a Cabminpi, jqma,imb,j

� � Cm �
1

2

¸
i,jPN

¸
a,bPIr

t_a minpi, jqma,i

�
Cabmb,j � 2δabnb,j

�
� � Cm �Qpm,nq.

Together with (3.32), (3.36) and (3.38), we have

Mλ,n

�
q�1

�
¤

¸
µ$m

dim H̃rµs¡0

qQpm,nq
¹
iPN

¹
aPIr

�
ma,i � pa,i

ma,i

�
qa

�
¸
m¥0

qa,0�0,pa,i¥0

qQpm,nq
¹
iPN

¹
aPIr

�
ma,i � pa,i

ma,i

�
qa

�Mλ,n

�
q�1

�
,

and this completes the proof of Theorem 3.1.

4 Quantum twisted Q-systems and graded fermionic sums

In this section, we will prove Theorems 1.1 and 1.2. As in [7, 9, 28], we will prove a slightly
stronger statement, where we fix a positive integer k, and define k-restricted sums M

pkq

λ,n

�
q�1

�
and M̃

pkq

λ,n

�
q�1

�
by restricting the respective sums Mλ,n

�
q�1

�
and M̃λ,n

�
q�1

�
to the vectors m

that satisfy ma,i � 0 for all a P Ir and i ¡ k, and show that

M
pkq

λ,n

�
q�1

�
� M̃

pkq

λ,n

�
q�1

�
are equal to each other. As both M

pkq

λ,n

�
q�1

�
and M̃

pkq

λ,n

�
q�1

�
are equal to Mλ,n

�
q�1

�
and

M̃λ,n

�
q�1

�
, respectively, whenever k is large, this will show that Theorem 1.1 holds. Together

with a similar argument as in [22, Section 1], this will show that Theorem 1.2 holds as well.

4.1 Quantum twisted Q-systems

In this subsection, we will review the definition and properties of the quantum X
pκq
m Q-systems

for all twisted affine types X
pκq
m � A

p2q
2r . These quantum twisted Q-systems arise from the quan-

tization of the twisted Q-system cluster algebras defined in [34]. While explicit formulas for
the quantum X

pκq
m Q-system relations were only given for the classical twisted affine types

in [11, equations (4.2)–(4.4)], that is, X
pκq
m � A

p2q
2r�1, D

p2q
r�1, the quantum X

pκq
m Q-system relations

for the exceptional twisted affine types, that is, X
pκq
m � E

p2q
6 , D

p3q
4 , can be derived in a similar

fashion as the quantum X
pκq
m Q-system relations for the classical twisted affine types � A

p2q
2r .

More generally, the quantum X
pκq
m Q-system relations for all affine types � A

p2q
2r can be

derived from the Q-system cluster algebras defined in [8, 21, 34] in a uniform manner, following
the procedure outlined in [11, Remark 4.2], which we will use to obtain a uniform derivation of
the quantum X

pκq
m Q-systems for all twisted affine types X

pκq
m � A

p2q
2r below the fold.
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Let us start by first recalling that the X
pκq
m Q-system cluster algebra is defined from the initial

cluster data tQa,0, Qa,1 | a P Iru, whose exchange matrix is given by2 B �
�

0 �C
C 0

�
, where the

order of both the row and column indices appearing in the exchange matrix B correspond
to that in the ordered initial cluster data pQ1,0, . . . , Qr,0, Q1,1, . . . , Qr,1q of the X

pκq
m Q-system.

We let δ � det
�
C
�
, T_ � diagpt_1 , . . . , t

_
r q, and Λ � δT_C

�1
. Then Λ is a symmetric matrix.

Following [3, Definition 3.1], we define a skew-symmetric ν-commutation matrix Λ̃ with respect
to the exchange matrix B by Λ̃ �

�
0 �Λ
Λ 0

�
, so that

�
Λ̃, B

�
forms a compatible pair. We let pQa,i

denote the quantum cluster variable, which we call a quantum Q-system variable, that corre-
sponds to the Q-system variable Qa,i in the quantum X

pκq
m Q-system cluster algebra associated

to the compatible pair
�
Λ̃, B

�
. These quantum Q-system variables satisfy two types of relations.

The first type of relations are the ν-commutation relations

pQa,k�i
pQb,k�j � νpi�jqΛab pQb,k�j

pQa,k�i, a, b P Ir, i, j P t0, 1u, k P Z.

The second type of relations are the quantum X
pκq
m Q-system relations, which are quantum

deformations of the cluster transformations that correspond to the classical X
pκq
m Q-system rela-

tions (1.1). Up to a renormalization of the quantum Q-system variables pQa,i (see, for instance,
[10, Lemma 4.4] and the derivation of [28, equation (3.20)]), the quantum X

pκq
m Q-system rela-

tions are given by

ν�Λaa pQa,k�1
pQa,k�1 � pQ2

a,k �
¹
b�a

pQ�Cba
b,k (4.1)

for all a P Ir and k P Z.

Remark. In the case where X
pκq
m � A

p2q
2r�1, D

p2q
r�1, our choice of the matrices Λ and Λ̃ differ from

those in [11] as follows: the matrix Λ defined in [11, Definition 4.1] is defined by Λ � pT_C
�1

,
where p is chosen so that Λ11 � 1, and the skew-symmetric ν-commutation matrix Λ̃ defined
in [11, Remark 4.2] differs from ours by a sign. The reader can verify that after accounting for
these differences, the ν-commutation relations and quantum Q-system relations given here and
in [11] are equivalent to each other.

For later convenience, we will rewrite the quantum X
pκq
m Q-system relations (4.1) as

ν�Λaa pQa,k�1
pQa,k�1 � pQ2

a,k

�
1� pYa,k�, (4.2)

where pYa,k �±
bPIr

pQ�Cba
b,k for all a P Ir and k P Z.

Next, we will review some basic definitions and properties involving these quantum twisted
Q-systems. We begin by first recalling that a Motzkin path of length ℓ�1 is a vector m⃗ � pmiq

ℓ
i�1

of integers that satisfy |mi �mi�1| ¤ 1 for all i P r1, ℓ � 1s. As an example, an initial data for
the quantum X

pκq
m Q-system is given by

� pQa,0, pQa,1

�
aPIr

. More generally, by letting pQi �
 pQa,i |

a P Ir
(
for all i P Z, it follows that the set pQk Y pQk�1 forms a valid set of initial data for the

quantum X
pκq
m Q-system for all k P Z.

Now, each Motzkin path m⃗ � pmaqaPIr gives rise to a valid set Ym⃗ �
� pQa,ma , pQa,ma�1

�
aPIr

of initial data for the quantum Q-system. As each Ym⃗ corresponds to a cluster consisting of
quantum Q-system variables, it follows that the variables in Ym⃗ lie on the same quantum torus,
and hence satisfy some ν-commutation relations, which are given as follows:

Lemma 4.1. Let m⃗ � pmaqaPIr be a Motzkin path. Then for any pair pQa,i, pQb,j of quantum
Q-system variables in Ym⃗, we have pQa,i

pQb,j � νpi�jqΛab pQb,j
pQa,i.

2Our notation differs from [34], which uses BT instead of B.
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The proof of Lemma 4.1 is similar to that of [9, Lemma 3.2] with minor modifications, and
shall be omitted.

Moreover, as quantum cluster algebras satisfy the Laurent property [3, Corollary 5.2], we
have that the solutions of the quantum Q-system inherit the following Laurent property as well.

Lemma 4.2. For any Motzkin path m⃗ � pmaqaPIr , b P Ir and i P Z, the quantum Q-system
variable pQb,i can be expressed as a pnon-commutativeq Laurent polynomial in the initial data Ym⃗

with coefficients in Z
�
ν�1

�
.

Finally, similar to the untwisted case, the quantum twisted Q-systems satisfy a translational
invariance property. To state the property clearly, we will need to write the solution of the
quantum twisted Q-system as pQa,npYm⃗q to display its dependence on the initial data Ym⃗. Then
we have the following.

Lemma 4.3. For all m P Z and j P Z�, we havepQa,m

� pQj Y pQj�1

�
� pQa,m�j

� pQ0 Y pQ1

�
.

The proof of Lemma 4.3 follows from a similar argument as in the proof of [9, Lemma 4.10],
and shall be omitted.

4.2 Quantum generating functions

Let us fix a positive integer k. Throughout this subsection and the next, we will restrict our
attention to vectors m � pma,iqaPIr,iPN that satisfy ma,i � 0 for all a P Ir and i ¡ k, or
equivalently, pr � kq-tuples m � pma,iqaPIr,iPr1,ks of nonnegative integers.

For any pr � kq-tuples m � pma,iqaPIr,iPr1,ks, n � pnb,jqbPIr,jPr1,ks and any dominant gσ-
weight λ �

°
aPIr

ℓaωa, we define the k-restricted total spin qa,0 and the k-restricted vacancy
numbers pa,i by

qa,0 � ℓa �
ķ

j�1

¸
bPIr

j
�
Cabmb,j � δabnb,j

�
, pa,i �

ķ

j�1

¸
bPIr

minpi, jq
�
δabnb,j � Cabmb,j

�
.

We will also define the modified k-restricted vacancy numbers qa,i by

qa,i � qa,0 � pa,i � ℓa �
ķ

j�i�1

¸
bPIr

pj � iq
�
Cabmb,j � δabnb,j

�
. (4.3)

We see that when qa,0 � 0, we have qa,i � pa,i for all a P Ir and i P r1, ks.
Next, let us define the k-restricted quadratic form Qpkqpm,nq as follows:

Qpkqpm,nq �
1

2

ķ

i,j�1

¸
a,bPIr

t_a minpi, jqma,i

�
Cabmb,j � 2δabnb,j

�
.

The k-restricted M - and M̃ -sums M
pkq

λ,n

�
q�1

�
and M̃

pkq

λ,n

�
q�1

�
are then defined by

M
pkq

λ,n

�
q�1

�
�

¸
m¥0

qa,0�0,pa,i¥0

qQ
pkqpm,nq

k¹
i�1

¹
aPIr

�
ma,i � pa,i

ma,i

�
qa

,

M̃
pkq

λ,n

�
q�1

�
�

¸
m¥0
qa,0�0

qQ
pkqpm,nq

k¹
i�1

¹
aPIr

�
ma,i � pa,i

ma,i

�
qa

. (4.4)

Our first technical lemma involves rewriting the quadratic form Qpkqpm,nq in terms of the
modified k-restricted vacancy numbers qa,i and na,i.
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Lemma 4.4. Let ni � pna,iqaPIr , qj � pqa,jqaPIr , and mℓ � pma,ℓqaPIr , for all i P N, j P r0, ks,
and ℓ P r1, ks. Then we have

Qpkqpm,nq �
1

2δ

ķ

j�1

�
pqj�1 � qjq � Λpqj�1 � qjq �

�
ķ

i�j

ni

�
� Λ

�
ķ

i�j

ni

��
.

Proof. Following the strategy in the proof of [28, Lemma 4.2], but with simplified indices in
the twisted case, we first observe that

Qpkqpm,nq �
1

2

ķ

i,j�1

¸
a,bPIr

t_a minpi, jqma,i

�
Cabmb,j � 2δabnb,j

�
�

1

2

ķ

i,j�1

minpi,jq¸
ℓ�1

¸
a,bPIr

t_ama,i

�
Cabmb,j � 2δabnb,j

�
�

1

2

ķ

ℓ�1

ķ

i,j�ℓ

mi � T
_
�
Cmj � 2nj

�
.

On the other hand, it follows from (4.3) that we have qj�1�qj �
°k

i�j

�
Cmi�ni

�
for all j P r1, ks.

This implies that

ķ

j�1

pqj�1 � qjq � Λpqj�1 � qjq �
ķ

j�1

ķ

i,ℓ�j

�
Cmi � ni

�
� Λ

�
Cmℓ � nℓ

�
�

ķ

j�1

ķ

i,ℓ�j

�
mi � C

T
Λ
�
Cmℓ � 2nℓ

�
� ni � Λnℓ

�
�

ķ

j�1

ķ

i,ℓ�j

�
δmi � T

_
�
Cmℓ � 2nℓ

�
� ni � Λnℓ

�
,

where the last statement follows from the fact that ΛC � δT_. ■

Let us fix the quantum parameter to be q � νδ, and let u � ν1{2 � q
1
2δ and Zu � Z

�
u, u�1

�
.

For any ring R and a set of variables x � tx1, . . . , xnu, we let Rppxqq denote the ring of formal
Laurent series in the variables x1, . . . , xn, with coefficients in R. We define the generating func-
tion for multiplicities Z

pkq

λ,n

� pQ0, pQ1q P Zu

� pQ�1
0

��� pQ�1
1

��
in the fundamental initial data pQ0 Y pQ1

for the quantum Q-system as follows:

Z
pkq

λ,n

� pQ0, pQ1

�
�

¸
m

qQ
pkq
pm,nq

¹
aPIr

k¹
i�1

�
ma,i � qa,i

ma,i

�
qa

¹
aPIr

pQ�qa,0
a,1

¹
aPIr

pQqa,1
a,0 . (4.5)

Here, the sum is over all pr � kq-tuples m � pma,iqaPIr,iPr1,ks, and the modified k-restricted
quadratic form Q

pkq
pm,nq is defined by

Q
pkq
pm,nq �

1

2δ

�
q1 � Λq1 �

ķ

j�2

pqj�1 � qjq � Λpqj�1 � qjq

�
.

Thus, when q0 � 0, we have

Q
pkq
pm,nq � Qpkqpm,nq �

1

2δ
Lkpnq, (4.6)
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where

Lkpnq �
ķ

j�1

�
ķ

i�j

ni

�
� Λ

�
ķ

i�j

ni

�
�

ķ

ℓ�1

ķ

i,j�ℓ

ni � Λnj �
ķ

i,j�1

minpi, jqni � Λnj .

The generating function Z
pkq

λ,n

� pQ0, pQ1

�
is related to the k-restricted M̃ -sum M̃

pkq

λ,n

�
q�1

�
(4.4) via

a constant term and an evaluation. For any f P Zu

� pQ�1
0

��� pQ�1
1

��
, we denote the constant term

of f by CT pQ1
pfq. In particular, if

f �
¸

r,sPZr

fr,s
¹
aPIr

pQra
a,1

¹
bPIr

pQsb
b,0

with fr,s P Zu for all r, s P Zr, then we have

CT pQ1
pfq �

¸
rPZr

f0,s
¹
bPIr

pQsb
b,0.

Similarly, we define the multiple evaluation of f at pQ1,0, . . . , pQr,0 � 1 to be the following formal
series with coefficients in Zu:

f | pQ0�1
�

¸
r,sPZr

fr,s
¹
aPIr

pQra
a,1.

We note that this is a “right evaluation”. The constant term and evaluation maps commute,
and their composition gives

CT pQ1
pfq| pQ0�1

�
¸
rPZr

fr,0.

Remark. As pQa,0 and pQb,1 q-commute for all a, b P Ir, we could also define the notion of a “left
evaluation” analogously. The two different ways of evaluation would still lead to the same result,
since all of the variables involved are on the same quantum torus.

To simplify our notation, we will define ϕ : Zu

� pQ�1
0

��� pQ�1
1

��
Ñ Zu by

ϕpfq � CT pQ1
pfq| pQ0�1

�
¸
rPZr

fr,0

for all f P Zu

� pQ�1
0

��� pQ�1
1

��
.

By (4.6), we may express the k-restricted M̃ -sum M̃
pkq

λ,n

�
q�1

�
in terms of Z

pkq

λ,n

� pQ0, pQ1

�
as

follows

M̃
pkq

λ,n

�
q�1

�
� q�

1
2δ

Lkpnqϕ
�
Z
pkq

λ,n

� pQ0, pQ1

��
. (4.7)

4.3 Factorization properties of the quantum generating functions

In this subsection, we will express the quantum generating function Z
pkq

λ,n

� pQ0, pQ1

�
as a product

of the quantum twisted Q-system variables (and their inverses). In order to arrive at such an
expression, we would need to state a few technical lemmas.

Lemma 4.5. Let pZa,k � pQa,k
pQ�1
a,k�1 for all a P Ir and k P Z. Then for any distinct root indices

a, b P Ir and i P Z, we have

p1q pQb,i
pYa,i�1 � pYa,i�1

pQb,i and pQa,i
pYa,i�1 � qa pYa,i�1

pQa,i,
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p2q pQa,i
pQb,i�2 � ν�2Λab pQb,i�2

pQa,i,

p3q pQb,i�2

� pZ�1
a,i

pZa,i�1

�
�

� pZ�1
a,i

pZa,i�1

� pQb,i�2,

p4q pZb,i
pZa,i � pZa,i

pZb,i and pZb,i
pZa,i�1 � pZa,i�1

pZb,i, and

p5q pZa,i
pYa,i�1 � qa pYa,i�1

pZa,i.

Proof. We only need to prove (1), since (2) follows from (1) and Lemma 4.1, while (3), (4)
and (5) follows from (2) and the commutation relations in Lemma 4.1. We have

pQb,i
pYa,i�1 � pQb,i

¹
dPIr

pQ�Cda
d,i�1 � ν

°
dPIr

ΛbdCda

�¹
dPIr

pQ�Cda
d,i�1


 pQb,i

� νδT
_
ba pYa,i�1

pQb,i � pYa,i�1
pQb,i,

where the last equality follows from the fact that ΛC � δT_. A similar argument as above
would also show that pQa,i

pYa,i�1 � νδt
_
a pYa,i�1

pQa,i � qa pYa,i�1
pQa,i. ■

Lemma 4.6. For all a P Ir and i P Z, we have pZa,i

�
1� pYa,i�1

��1
� pZa,i�1.

Proof. Similar to the proof of [28, Lemma 4.5], it follows from Lemma 4.1 that we have

1� pYa,i�1 � ν�Λaa pQa,i�2
pQa,i

pQ�2
a,i�1 �

pZ�1
a,i�1

pZa,i,

or equivalently,
�
1� pYa,i�1

��1
� pZ�1

a,i
pZa,i�1. ■

Lemma 4.7. For any a P Ir and i, b P Z, we have¸
a¥0

�
a� b
a

�
qa

pY a
a,i�1

pZb
a,i � pZ�1

a,i
pZb�1
a,i�1.

Proof. Similar to the proofs of [9, Lemma 4.7] and [28, Lemma 4.6], we have

¸
a¥0

�
a� b
a

�
v

xayb � y�1
�
yp1� xq�1

�b�1
,

where we consider the right-hand side of the above equation as a formal power series in x. In
particular, by setting v � qa, x � pYa,i�1 and y � pZa,i, the desired statement follows from the
above equation, along with Lemmas 4.5 (5) and 4.6. ■

Lemma 4.8. For any a P Ir and k, b P Z, we have

pZb�1
a,i

pQ�b
a,i � ν

bpb�1qΛaa
2 pZa,i

pQ�b
a,i�1.

Proof. We use the commutation relations in Lemma 4.1 to deduce that

pZb�1
a,i

pQ�b
a,i � ν

bpb�1qΛaa
2 pQb�1

a,i
pQ�b�1
a,i�1

pQ�b
a,i � ν

bpb�1qΛaa
2 pQa,i

pQ�b�1
a,i�1 � ν

bpb�1qΛaa
2 pZa,i

pQ�b
a,i�1. ■

Our first goal is to express Z
p1q

λ,n

� pQ0, pQ1

�
as a product of the quantum twisted Q-system

variables, by explicitly summing over ma,1 for all a P Ir. In the case k � 1, it follows from
equation (4.3) that we have qa,0 � ℓa �

°
bPIr

Cabmb,1 � na,1 and qa,1 � ℓa for all a P Ir. Using
the commutation relations in Lemmas 4.1 and 4.5 (1), we have¹

aPIr

pQ�qa,0
a,1

¹
aPIr

pQqa,1
a,0 �

¹
aPIr

pQna,1

a,1

¹
aPIr

pY ma,1

a,1

¹
aPIr

pQ�ℓa
a,1

¹
aPIr

pQℓa
a,0
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� ν�
°

a¤b Λabℓaℓb
¹
aPIr

pQna,1

a,1

¹
aPIr

pY ma,1

a,1

¹
aPIr

pQℓa
a,0

pQ�ℓa
a,1

� ν�
1
2

°
a�b Λabℓaℓb�

1
2

°
aPIr

Λaap2ℓ2a�ℓapℓa�1qq
¹
aPIr

pQna,1

a,1

¹
aPIr

pY ma,1

a,1

¹
aPIr

pZℓa
a,0

� ν�
1
2

°
a,bPIr

Λabℓaℓb�
1
2

°
aPIr

Λaaℓa
¹
aPIr

pQna,1

a,1

¹
aPIr

pY ma,1

a,1
pZℓa
a,0

� q�
1
2δ

q1�Λq1�
1
2δ

°
aPIr

Λaaℓa
¹
aPIr

pQna,1

a,1

¹
aPIr

pY ma,1

a,1
pZℓa
a,0.

As we have Q
p1q
pm,nq � 1

2δq1 � Λq1, it follows from the previous equation that we have

Z
p1q

λ,n

� pQ0, pQ1

�
�

¸
m

qQ
p1q
pm,nq

¹
aPIr

�
ma,1 � ℓa
ma,1

�
qa

¹
aPIr

pQ�qa,0
a,1

¹
aPIr

pQℓa
a,0

� q�
1
2δ

°
aPIr

Λaaℓa
¹
aPIr

pQna,1

a,1

¹
aPIr

¸
ma,1¥0

�
ma,1 � ℓa
ma,1

�
qa

pY ma,1

a,1
pZℓa
a,0

� q�
1
2δ

°
aPIr

Λaaℓa
¹
aPIr

pQna,1

a,1

¹
aPIr

pZ�1
a,0

pZℓa�1
a,1

� q�
1
2δ

°
aPIr

Λaaℓa
¹
aPIr

pQna,1

a,1

¹
aPIr

pZ�1
a,0

¹
aPIr

pZℓa�1
a,1

� q�
1
2δ

°
aPIr

Λaaℓa�
1
δ

°
a,bPIr

Λabna,1
¹
aPIr

pZ�1
a,0

¹
aPIr

pQna,1

a,1

¹
aPIr

pZℓa�1
a,1 , (4.8)

where we have used the commutation relations in Lemma 4.1, as well as Lemmas 4.5 (4) and 4.7,
to simplify the equalities.

Our next goal is to write Z
pkq

λ,n

� pQ0, pQ1

�
as a product of the quantum twisted Q-system

variables, as well as the generating function Z
pk�1q

λ,n1

� pQ1, pQ2

�
, where n1 � pn1a,iqaPIr,iPN is defined

by n1a,i � na,i�1 for all a P Ir and i P N. We first observe from equation (4.3) that we have

qa,0 � 2qa,1 � qa,2 �
¸
bPIr

Cabmb,1 � na,1

for all a P Ir. Using the commutation relations in Lemmas 4.1 and 4.5 (1), we have¹
aPIr

pQ�qa,0
a,1 �

¹
aPIr

pQna,1

a,1

¹
aPIr

pY ma,1

a,1

¹
aPIr

pQ�2qa,1�qa,2
a,1 , (4.9)

and ¹
aPIr

pQ�2qa,1�qa,2
a,1

¹
aPIr

pQqa,1
a,0

� ν�2
°

a¤b Λabqa,1qb,1�
°

a,bPIr
Λabqa,1qb,2

¹
aPIr

pQqa,1
a,0

pQ�2qa,1
a,1

¹
aPIr

pQqa,2
a,1

� ν�
°

a,bPIr
Λabqa,1pqb,1�qb,2q�

°
aPIr

Λaaq2a,1�
1
2

°
aPIr

Λaaqa,1pqa,1�1q
¹
aPIr

pZqa,1
a,0

pQ�qa,1
a,1

¹
aPIr

pQqa,2
a,1

� q�
1
δ
q1�Λpq1�q2q�

1
2δ

°
aPIr

Λaaqa,1pqa,1�1q
¹
aPIr

pZqa,1
a,0

pQ�qa,1
a,1

¹
aPIr

pQqa,2
a,1 . (4.10)

As Q
pkq
pm,nq �Q

pk�1q
pm1,n1q � 1

δq1 � Λpq1 � q2q (where m1 � pm1
a,iqaPIr,iPr1,k�1s is defined

by m1
a,i � ma,i�1 for all a P Ir and i P r1, k� 1s), it follows from equations (4.9) and (4.10) that

we have

Z
pkq

λ,n

� pQ0, pQ1

�
�

¸
m

qQ
pkq
pm,nq

¹
aPIr

k¹
i�1

�
ma,i � qa,i

ma,i

�
qa

¹
aPIr

pQ�qa,0
a,1

¹
aPIr

pQqa,1
a,0
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�
¹
aPIr

pQna,1

a,1

¸
m1¥0

qQ
pk�1q

pm1,n1q� 1
2δ

°
aPIr

Λaaqa,1pqa,1�1q
¹
aPIr

k¹
i�2

�
ma,i � qa,i

ma,i

�
qa

�

��¹
aPIr

¸
ma,1¥0

�
ma,1 � qa,1

ma,1

�
qa

pY ma,1

a,1
pZqa,1
a,0

pQ�qa,1
a,1

�¹
aPIr

pQqa,2
a,1 , (4.11)

where we used Lemma 4.5 (1) in the last equality. As Q
pk�1q

pm1,n1q � 1
2δ

°
aPIr

Λaaqa,1pqa,1 � 1q
is independent of m1, we may sum over ma,1 for all a P Ir, and simplify the internal product of
sums ¹

aPIr

¸
ma,1¥0

�
ma,1 � qa,1

ma,1

�
qa

pY ma,1

a,1
pZqa,1
a,0

pQ�qa,1
a,1 .

Now, it follows from Lemmas 4.5 (3) and (4), 4.7 and 4.8 that we have¹
aPIr

¸
ma,1¥0

�
ma,1 � qa,1

ma,1

�
qa

pY ma,1

a,1
pZqa,1
a,0

pQ�qa,1
a,1

� q
1
2δ

°
aPIr

Λaaqa,1pqa,1�1q
¹
aPIr

pZ�1
a,0

pZa,1
pQ�qa,1
a,2

� q
1
2δ

°
aPIr

Λaaqa,1pqa,1�1q
¹
aPIr

pZ�1
a,0

pZa,1

¹
aPIr

pQ�qa,1
a,2 . (4.12)

By combining equations (4.11) and (4.12), we have

Z
pkq

λ,n

� pQ0, pQ1

�
�

¹
aPIr

pQna,1

a,1

¸
m1¥0

qQ
pk�1q

pm1,n1q� 1
2δ

°
aPIr

Λaaqa,1pqa,1�1q
¹
aPIr

k¹
i�2

�
ma,i � qa,i

ma,i

�
qa

�

��¹
aPIr

¸
ma,1¥0

�
ma,1 � qa,1

ma,1

�
qa

pY ma,1

a,1
pZqa,1
a,0

pQ�qa,1
a,1

�¹
aPIr

pQqa,2
a,1

�
¹
aPIr

pQna,1

a,1

¸
m1¥0

qQ
pk�1q

pm1,n1q
¹
aPIr

k¹
i�2

�
ma,i � qa,i

ma,i

�
qa

�
¹
aPIr

pZ�1
a,0

pZa,1

¹
aPIr

pQ�qa,1
a,2

¹
aPIr

pQqa,2
a,1

� q�
1
δ

°
a,bPIr

Λabna,1
¹
aPIr

pZ�1
a,0

¹
aPIr

pQna,1

a,1

¹
aPIr

pZa,1

�
¸

m1¥0

qQ
pk�1q

pm1,n1q
¹
aPIr

k¹
i�2

�
ma,i � qa,i

ma,i

�
qa

¹
aPIr

pQ�qa,1
a,2

¹
aPIr

pQqa,2
a,1

� q�
1
δ

°
a,bPIr

Λabna,1
¹
aPIr

pZ�1
a,0

¹
aPIr

pQna,1

a,1

¹
aPIr

pZa,1Z
pk�1q

λ,n1

� pQ1, pQ2

�
, (4.13)

where we have used the commutation relations in Lemma 4.1 in the second last equality.
By invoking Lemma 4.3, along with equations (4.8) and (4.13), we get

Z
pkq

λ,n

� pQ0, pQ1

�
� q�

1
2δ

°
aPIr

Λaaℓa�
1
δ

°
a,bPIr

°k
i�1 Λabna,i

�
¹
aPIr

pZ�1
a,0

�
k¹

i�1

¹
aPIr

pQna,i

a,i

� ¹
aPIr

pZℓa�1
a,k�1. (4.14)
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As an immediate consequence of equation (4.14), we deduce that

Z
pkq

λ,n

� pQ0, pQ1

�
� Z

pjq

0,npjq

� pQ0, pQ1

�
Z
pk�jq

λ,npk�jq

� pQj , pQj�1

�
(4.15)

for all j P r1, ks, where npjq is the pr � jq-tuple of non-negative integers npjq � pna,iqaPIr,iPr1,js,
and npjq�

�
n
pjq
a,i

�
aPIr,iPN is defined by n

pjq
a,i � na,i�j for all a P Ir and i P N.

4.4 Proof of Theorems 1.1 and 1.2

We are now ready to show that the two sumsM
pkq

λ,n

�
q�1

�
and M̃

pkq

λ,n

�
q�1

�
are equal to each other.

To this end, we need a few auxiliary lemmas from [9, Section 5.5]. We will let A denote the
ring ZνrpQ1, pQ�1, pQ�1

0 s, and Aa denote the ring Zν

� pQb,�1

(
b�a

, pQ�1
0

�
.

Lemma 4.9 ([9, Lemma 5.9]). Let a1, . . . , an P Ir, i1, . . . , in P Z and m1, . . . ,mn P Z�. Then±n
j�1

pQmj

aj ,ij
P A.

The proof of Lemma 4.9 follows from that of [9, Lemma 5.9], bearing in mind that pQa,1

and pQb,�1 ν-commute for all distinct a, b P Ir by Lemma 4.5 (1).

Lemma 4.10 ([9, Lemma 5.12]). For any b P Ir, we have�¹
aPIr

pZ�1
a,0


 pQb,�1

���� pQ0�1

� 0.

Lemma 4.11 ([9, Lemma 5.14]). For all a P Ir and n P Z�, we have pQ�1
a,n P Aa

�� pQ�1
a,1

��
.

Proof of Theorem 1.1. By equation (4.7), it suffices to show that if a term S on the right-
hand side of (4.5) corresponds to a vector m that satisfies qa,i   0 for some a P Ir and i P r1, ks,
then ϕpSq � 0. To this end, we will prove by induction on j � k, . . . , 1, and show that if S on
the right-hand side of (4.5) corresponds to a vector m that satisfies qa,i   0 for some a P Ir
and i P rj, ks, then ϕpSq � 0. The base case j � k holds since we have qa,k � ℓa ¥ 0 for all
a P Ir, which implies that there is no such term S that satisfies qa,k   0 for some a P Ir. Next,
let us assume that the statement holds for j � 1, where j ¥ 1. By equations (4.14) and (4.15),
we have

Z
pkq

λ,n

� pQ0, pQ1

�
� q�

1
2δ

°
aPIr

Λaaℓa�
1
δ

°
a,bPIr

°j
i�1 Λabna,i

¹
aPIr

pZ�1
a,0

�
j¹

i�1

¹
aPIr

pQna,i

a,i

� ¹
aPIr

pZa,j�1

�
¸

mpjq¥0

qQ
pk�jq

pmpjq,npjqq

�
¹
aPIr

k¹
i�j�1

�
ma,i � qa,i

ma,i

�
qa

¹
aPIr

pQ�qa,j
a,j�1

¹
aPIr

pQqa,j�1

a,j . (4.16)

By induction hypothesis, we have qa,i ¥ 0 for all a P Ir and i ¥ j � 1. We note that a term in
the right-hand side of (4.16) has the form

S �
¹
aPIr

pZ�1
a,0

�
j¹

i�1

¹
aPIr

pQna,i

a,i

� ¹
aPIr

pZa,j�1

¹
aPIr

pQ�qa,j
a,j�1

¹
aPIr

pQqa,j�1

a,j .

When qb,j   0, it follows from Lemmas 4.9 and 4.11 that S P Ab. By Lemma 4.10, it follows
that

S| pQ0�1
P Zt

� pQ1

��� pQ�1
a,1

(
a�b

��
.
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Due to the prefactor
±

aPIr
pZ�1
a,0 , it follows that the exponent of pQa,1 in all terms of S| pQ0�1

are
positive. Consequently, we have ϕpSq � 0. So this shows that the sum in equation (4.5) is
unchanged if we impose the restriction qb,j ¥ 0. As b P Ir is arbitrary, the statement is proved
for j, and we are done. ■

Having proved Theorem 1.1, it remains to show that Theorem 1.2 holds. As in [22, Section 1],
Theorem 1.2 will follow from a series of (in-)equalities involving tensor product multiplicities
involving KR-modules over twisted quantum affine and current algebras, as well as fermionic
sums, which we will describe in detail as follows.

Proof of Theorem 1.2. We first recall that similar to the setting of twisted current algebras,
the KR-modules over the twisted quantum affine algebra Uqppgσq are parameterized by a P Ir,
m P Z�, and z P C� as well, and we denote them by W σ

a,mpzq. By [19, Theorem 8.5], the

multiplicity of the irreducible Uqpg
σq-module V q

�
λ
�
in the tensor product

Â
αPIr, iPZ�pW

σ
α,iq

bnα,i

of KR-modules over Uqppgσq is given by M̃λ,np1q, that is, we have

dimHomUqpgσq

� â
αPIr, iPZ�

pW σ
α,iq

bnα,i , V q
�
λ
�


� M̃λ,np1q. (4.17)

Next, we note that the tensor product
Â

αPIr, iPZ�pKRσ
α,iq

bnα,i of KR-modules over grtsσ arises
as the q Ñ 1 limit of the tensor product

Â
αPIr, iPZ�pW

σ
α,iq

bnα,i of KR-modules over Uqppgσq. As
both tensor products are defined as quotients by some ideal, and the ideal in the q Ñ 1 limit
may be smaller than that for generic values of q, it follows from general deformation arguments
that we have

dimHomUqpgσq

� â
αPIr,iPZ�

pW σ
α,iq

bnα,i , V q
�
λ
�


¤ dimHomgσ

� â
αPIr, iPZ�

pKRσ
α,iq

bnα,i , V
�
λ
�

. (4.18)

Likewise, by the definition of F�
n and by general deformation arguments, we have

dimHomgσ

� â
αPIr, iPZ�

pKRσ
α,iq

bnα,i , V
�
λ
��

¤ dimHomgσpF�
n , V

�
λ
�
q �Mλ,np1q. (4.19)

Finally, by Theorem 3.1, we have Mλ,np1q ¤ Mλ,np1q. Together with Theorem 1.1 and (4.17)–
(4.19), we have the following twisted analogue of pentagon of inequalities and equalities:

Mλ,np1q Mλ,np1q M̃λ,np1q

dimHomUqpgσq

�Â
αPIr, iPZ�pW

σ
α,iq

bnα,i , V q
�
λ
��

dimHomgσ
�Â

αPIr, iPZ�pKRσ
α,iq

bnα,i , V
�
λ
��

¤ �

�

¥

¤

In particular, equality must hold throughout, and hence we must have Mλ,np1q �Mλ,np1q. As
each of the coefficients in the M -sum Mλ,n

�
q�1

�
are manifestly nonnegative as well, we must

have Mλ,n

�
q�1

�
�Mλ,n

�
q�1

�
as required. ■

In particular, Theorem 1.2 implies that the fusion product F�
n of twisted KR-modules is

independent of the choice of localization parameters, and the evaluation map φµ : Γ̃µ{Γ̃
1
µ Ñ H̃rµs
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defined in Section 3.5 is an isomorphism of graded vector spaces. Moreover, equations (4.7)
and (4.14) allow us to express the graded multiplicity Mλ,n

�
q�1

�
as a constant term evaluation

of a product of quantum twisted Q-system variables as follows:

Mλ,n

�
q�1

�
� q�

1
2δ
pLpnq�

°
aPIr

Λaaℓa�2
°

a,bPIr

°
iPN Λabna,iq

� ϕ

�¹
aPIr

pZ�1
a,0

�¹
iPN

¹
aPIr

pQna,i

a,i


 ¹
aPIr

pZℓa�1
a



, (4.20)

where

Lpnq � lim
kÑ8

Lkpnq �
¸
i,jPN

minpi, jqni � Λnj �
¸
i,jPN

¸
a,bPIr

minpi, jqΛabna,inb,j ,

pZb � lim
kÑ8

pZb,k.

Here, we note that a similar reasoning as in the proof of [9, Theorem 5.17] shows that pZb is
well-defined as a formal power series of pQ�1

b,1 with coefficients that are Laurent polynomials in
the remaining initial data of pQ0 Y pQ1.

5 An identity satisfied by the graded characters
of twisted KR-modules

In this section, we will prove Theorem 1.3, where our approach will follow that taken in the proof
of [28, Section 5]. As our previous calculations only involved nontrivial twisted KR-modules,
whereas the identity of graded gσ-characters of the fusion products of twisted KR-modules
stated in Theorem 1.3 involves trivial twisted KR-modules, we would need a generalized form
of equation (4.20) that includes trivial twisted KR-modules. To arrive at this generalized form,
we will need to consider vectors pn � pna,iqaPIr,iPZ� that parameterizes a finite set of (possibly
trivial) KR-modules over grtsσ. Let us also make the following definitions:

pLppnq � ¸
i,jPZ�

¸
a,bPIr

minpi, jqΛabna,inb,j ,

Mλ,pn
�
q�1

�
� q�

1
2δ
p
°

aPIr
Λaaℓa�2 pF ppnq�pLppnqqϕ

�¹
aPIr

pZ�1
a,0

�¹
iPZ�

¹
aPIr

pQna,i

a,i


 ¹
aPIr

pZℓa�1
a



,

where pF ppnq � °
a,bPIr

°
iPZ� Λabna,i. We claim that Mλ,pn

�
q�1

�
� Mλ,n

�
q�1

�
. Indeed, we may

regard

¹
aPIr

pZ�1
a,0

�¹
iPZ�

¹
aPIr

pQna,i

a,i


 ¹
aPIr

pZℓa�1
a

as an element of Zu

� pQ�1
0

��� pQ�1
1

��
by (4.14). Thus, it follows from the definition of the function ϕ

that we have

Mλ,n

�
q�1

�
� q�

1
2δ
p
°

aPIr
Λaaℓa�2

°
a,bPIr

°
iPN Λabna,i�Lpnqq

� ϕ

�¹
aPIr

pZ�1
a,0

�¹
iPN

¹
aPIr

pQna,i

a,i


 ¹
aPIr

pZℓa�1
a



� q�

1
2δ
p
°

aPIr
Λaaℓa�2

°
a,bPIr

°
iPN Λabna,i�pLppnqq
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� ϕ

�¹
aPIr

pQna,0

a,0

¹
aPIr

pZ�1
a,0

�¹
iPN

¹
aPIr

pQna,i

a,i


 ¹
aPIr

pZℓa�1
a



� q

� 1
2δ
p
°

aPIr
Λaaℓa�2

°
a,bPIr

°
iPZ�

Λabna,i�pLppnqq

� ϕ

�¹
aPIr

pZ�1
a,0

�¹
iPZ�

¹
aPIr

pQna,i

a,i


 ¹
aPIr

pZℓa�1
a



�Mλ,pn

�
q�1

�
,

where the third equality follows from Lemma 4.1. This allows us to regard Mλ,pn
�
q�1

�
as the

graded multiplicity of the irreducible component V
�
λ
�
in F�

pn , where F
�
pn is the fusion product of

twisted KR-modules parameterized by pn. More precisely, we have

Mλ,pnpqq �
8̧

m�0

dimHomgσ
�
F�
pnrms, V

�
λ
��
qm.

Next, let us use Lemma 4.1 to rewrite the quantum X
pκq
m Q-system relations (4.2) as

q
1
δ
Λaa pQa,k�1

pQa,k�1 � pQ2
a,k

�
1� qt

_
a pYa,k� (5.1)

for all a P Ir and k P Z.
Next, we let pd � pdb,iqbPIr, iPZ� , ps � psb,iqbPIr, iPZ� , and

pk � pkb,iqbPIr, iPZ� be vectors that
correspond to the terms

pQa,m�1
pQa,m�1, pQ2

a,m, and pQ2
a,m

pYa,m �
¹
b�a

pQ�Cba
b,m ,

respectively. Specifically, we define

db,i � δabpδi,m�1 � δi,m�1q, sb,i � 2δabδi,m, kb,i � �δb�aδi,mCba

for all b P Ir and i P Z�, where the function δb�a is equal to 1 if b � a, and 0 otherwise.
By applying the map ϕ to (5.1), we have

q
1
δ
Λaaϕ

��¹
bPIr

pZ�1
b,0


 pQa,m�1
pQa,m�1

�¹
bPIr

pZℓb�1
b




� ϕ

��¹
bPIr

pZ�1
b,0


 pQ2
a,m

�¹
bPIr

pZℓb�1
b




� qt

_
a ϕ

�¹
bPIr

pZ�1
b,0

¹
b�a

pQ�Cba
b,m

¹
bPIr

pZℓb�1
b



,

or equivalently,

q
1
2δ
p2 pF ppdq�pLppdq�2ΛaaqM

λ,pd
�
q�1

�
� q

1
2δ
p2 pF ppsq�pLppsqqMλ,ps

�
q�1

�
� q

1
2δ
p2 pF ppkq�pLppkq�2δt_a qM

λ,pk
�
q�1

�
. (5.2)

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Firstly, we havepF ppdq � ¸
c,bPIr

¸
iPZ�

Λcbdc,i � 2
¸
bPIr

Λab, (5.3)

pF ppsq � ¸
c,bPIr

¸
iPZ�

Λcbsc,i � 2
¸
bPIr

Λab, (5.4)

pF ppkq � ¸
c,bPIr

¸
iPZ�

Λcbkc,i � �
¸

bPIr,c�a

ΛcbCca � �δt_a � 2
¸
bPIr

Λab, (5.5)
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where the last equality in (5.5) follows from the fact that Λ is symmetric, along with the
equality ΛC � δT_.

Next, we observe thatpLppdq � ¸
i,jPZ�

¸
c,bPIr

minpi, jqΛcbdc,idb,j

� Λaarminpm� 1,m� 1q � 2minpm� 1,m� 1q �minpm� 1,m� 1qs

� p4m� 2qΛaa, (5.6)pLppsq � ¸
i,jPZ�

¸
c,bPIr

minpi, jqΛcbsc,isb,j � 22Λaaminpm,mq � 4mΛaa, (5.7)

pLppkq � ¸
i,jPZ�

¸
c,bPIr

minpi, jqΛcbkc,ikb,j � minpm,mq
¸

c,b�a

ΛcbCbaCca

� m
¸

c,b�a

ΛcbCbaCca � m
¸

bPIr,c�a

ΛcbCbaCca � 2m
¸
c�a

ΛcaCca

� m
¸

bPIr,c�a

δcat
_
a Cca � 2m

¸
cPIr

ΛacCca � 4mΛaa

� �2mδt_a � 4mΛaa. (5.8)

Again, the last two equalities in (5.8) follows from the fact that Λ is symmetric, along with the
equality ΛC � δT_. Thus, by (5.3)–(5.8), we have

2 pF ppdq � pLppdq � 2Λaa � 2 pF ppsq � pLppsq � 2 pF ppkq � pLppkq � 2δt_a � 2mδt_a ,

which implies that (5.2) reduces to

M
λ,pd

�
q�1

�
�Mλ,ps

�
q�1

�
� q�t_a mM

λ,pk
�
q�1

�
,

or equivalently,

M
λ,pdpqq �Mλ,pspqq � qt

_
a mM

λ,pkpqq.

As Mλ,pnpqq is the graded multiplicity of V
�
λ
�
for all dominant gσ-weights λ, we have

chq F�
pd � chq F�

ps � qt
_
a m chq F�

pk . (5.9)

Theorem 1.3 now follows from (5.9). ■

Remark. Kus and Venkatesh [27, Proposition 7.3] obtained a short exact sequence of fusion
product of KR-modules over grtsσ that generalizes the X

pκq
m Q-system relations (1.1) as follows:

0 ÝÑ pKσ
a,mq

� ÝÑ KRσ
a,m �KRσ

a,m ÝÑ KRσ
a,m�1 �KRσ

a,m�1 ÝÑ 0.

By applying the character map to the above exact sequence, we see that the resulting identity
of characters coincides with the identity stated in Theorem 1.3 when q � 1.
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