|
SIGMA 21 (2025), 041, 41 pages arXiv:2410.08657
https://doi.org/10.3842/SIGMA.2025.041
Twisted Fusion Products and Quantum Twisted $Q$-Systems
Mingyan Simon Lin
Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, #01-01 CleanTech Two Block B, Singapore 636732, Republic of Singapore
Received October 14, 2024, in final form May 21, 2025; Published online June 10, 2025
Abstract
We obtain a complete characterization of the space of matrix elements dual to the graded multiplicity space arising from fusion products of Kirillov-Reshetikhin modules over special twisted current algebras defined by Kus and Venkatesh, which generalizes the result of Ardonne and Kedem to the special twisted current algebras. We also prove the conjectural identity of $q$-graded fermionic sums by Hatayama et al. for the special twisted current algebras, from which we deduce that the graded tensor product multiplicities of the fusion products of Kirillov-Reshetikhin modules over special twisted current algebras are both given by the $q$-graded fermionic sums, and constant term evaluations of products of solutions of the quantum twisted $Q$-systems obtained by Di Francesco and Kedem.
Key words: twisted $Q$-systems; quantum $Q$-systems; Kirillov-Reshetikhin modules; fusion products.
pdf (732 kb)
tex (46 kb)
References
- Ardonne E., Kedem R., Fusion products of Kirillov-Reshetikhin modules and fermionic multiplicity formulas, J. Algebra 308 (2007), 270-294, arXiv:math.RT/0602177.
- Ardonne E., Kedem R., Stone M., Fermionic characters and arbitrary highest-weight integrable $\widehat{\mathfrak{sl}}_{r+1}$-modules, Comm. Math. Phys. 264 (2006), 427-464, arXiv:math.RT/0504364.
- Berenstein A., Zelevinsky A., Quantum cluster algebras, Adv. Math. 195 (2005), 405-455, arXiv:math.QA/0404446.
- Chari V., On the fermionic formula and the Kirillov-Reshetikhin conjecture, Int. Math. Res. Not. 2001 (2001), 629-654, arXiv:math.QA/0006090.
- Chari V., Moura A., The restricted Kirillov-Reshetikhin modules for the current and twisted current algebras, Comm. Math. Phys. 266 (2006), 431-454, arXiv:math.RT/0507584.
- Chari V., Moura A., Kirillov-Reshetikhin modules associated to $G_2$, in Lie Algebras, Vertex Operator Algebras and Their Applications, Contemp. Math., Vol. 442, American Mathematical Society, Providence, RI, 2007, 41-59, arXiv:math.RT/0604281.
- Di Francesco P., Kedem R., Proof of the combinatorial Kirillov-Reshetikhin conjecture, Int. Math. Res. Not. 2008 (2008), rnn006, 57 pages, arXiv:0710.4415.
- Di Francesco P., Kedem R., $Q$-systems as cluster algebras. II. Cartan matrix of finite type and the polynomial property, Lett. Math. Phys. 89 (2009), 183-216, arXiv:0803.0362.
- Di Francesco P., Kedem R., Quantum cluster algebras and fusion products, Int. Math. Res. Not. 2014 (2014), 2593-2642, arXiv:1109.6261.
- Di Francesco P., Kedem R., Macdonald operators and quantum Q-systems for classical types, in Representation Theory, Mathematical Physics, and Integrable Systems, Progr. Math., Vol. 340, Birkhäuser, Cham, 2021, 163-199, arXiv:1908.00806.
- Di Francesco P., Kedem R., Macdonald duality and the proof of the quantum Q-system conjecture, Selecta Math. 30 (2024), 23, 100 pages, arXiv:2112.09798.
- Feigin B., Jimbo M., Kedem R., Loktev S., Miwa T., Spaces of coinvariants and fusion product. I. From equivalence theorem to Kostka polynomials, Duke Math. J. 125 (2004), 549-588, arXiv:math.QA/0205324.
- Feigin B., Kedem R., Loktev S., Miwa T., Mukhin E., Combinatorics of the $\widehat{\mathfrak{sl}}_2$ spaces of coinvariants, Transform. Groups 6 (2001), 25-52, arXiv:math-ph/9908003.
- Feigin B., Loktev S., On generalized Kostka polynomials and the quantum Verlinde rule, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl., Vol. 194, American Mathematical Society, Providence, RI, 1999, 61-79, arXiv:math.QA/9812093.
- Fourier G., Littelmann P., Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), 566-593, arXiv:math.RT/0509276.
- Hatayama G., Kuniba A., Okado M., Takagi T., Tsuboi Z., Paths, crystals and fermionic formulae, in MathPhys Odyssey, 2001, Prog. Math. Phys., Vol. 23, Birkhäuser, Boston, MA, 2002, 205-272, arXiv:math.QA/0102113.
- Hatayama G., Kuniba A., Okado M., Takagi T., Yamada Y., Remarks on fermionic formula, in Recent Developments in Quantum Affine Algebras and Related Topics, Contemp. Math., Vol. 248, American Mathematical Society, Providence, RI, 1999, 243-291, arXiv:math.QA/9812022.
- Hernandez D., The Kirillov-Reshetikhin conjecture and solutions of $T$-systems, J. Reine Angew. Math. 596 (2006), 63-87, arXiv:math.QA/0501202.
- Hernandez D., Kirillov-Reshetikhin conjecture: the general case, Int. Math. Res. Not. 2010 (2010), 149-193, arXiv:0704.2838.
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
- Kedem R., $Q$-systems as cluster algebras, J. Phys. A 41 (2008), 194011, 14 pages, arXiv:0712.2695.
- Kedem R., A pentagon of identities, graded tensor products, and the Kirillov-Reshetikhin conjecture, in New Trends in Quantum Integrable Systems, World Scientific Publishing, Hackensack, NJ, 2011, 173-193, arXiv:1008.0980.
- Kirillov A.N., Identities for the Rogers dilogarithmic function connected with simple Lie algebras, J. Sov. Math. 47 (1989), 2450-2459.
- Kirillov A.N., Reshetikhin N.Yu.,Representations of Yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras, J. Sov. Math. 52 (1990), 3156-3164.
- Kuniba A., Nakanishi T., Suzuki J., Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modern Phys. A 9 (1994), 5215-5266, arXiv:hep-th/9309137.
- Kuniba A., Suzuki J., Functional relations and analytic Bethe ansatz for twisted quantum affine algebras, J. Phys. A 28 (1995), 711-722, arXiv:hep-th/9408135.
- Kus D., Venkatesh R., Twisted Demazure modules, fusion product decomposition and twisted $Q$-systems, Represent. Theory 20 (2016), 94-127, arXiv:1409.1201.
- Lin M.S., Quantum $Q$-systems and fermionic sums—the non-simply laced case, Int. Math. Res. Not. 2021 (2021), 805-854, arXiv:1903.11492.
- Nakajima H., $t$-analogs of $q$-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259-274, arXiv:math.QA/0204185.
- Naoi K., Fusion products of Kirillov-Reshetikhin modules and the $X=M$ conjecture, Adv. Math. 231 (2012), 1546-1571, arXiv:1109.2450.
- Okado M., Schilling A., Scrimshaw T., Rigged configuration bijection and proof of the $X=M$ conjecture for nonexceptional affine types, J. Algebra 516 (2018), 1-37, arXiv:1707.04876.
- Scrimshaw T., A crystal to rigged configuration bijection and the filling map for type $D_4^{(3)}$, J. Algebra 448 (2016), 294-349, arXiv:1505.05910.
- Scrimshaw T., Uniform description of the rigged configuration bijection, Selecta Math. 26 (2020), 42, 84 pages, arXiv:1703.08945.
- Williams H., $Q$-systems, factorization dynamics, and the twist automorphism, Int. Math. Res. Not. 2015 (2015), 12042-12069, arXiv:1310.6624.
|
|