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Abstract. We use a Mellin–Barnes integral representation for the Lerch transcendent
Φ(z, s, a) to obtain large z asymptotic approximations. The simplest divergent asymptotic
approximation terminates in the case that s is an integer. For non-integer s the asymptotic
approximations consists of the sum of two series. The first one is in powers of (ln z)−1 and
the second one is in powers of z−1. Although the second series converges, it is completely
hidden in the divergent tail of the first series. We use resummation and optimal truncation
to make the second series visible.
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1 Introduction and summary

This paper is in memory of Richard Paris. He was an expert in special functions and asymptotics,
especially the use of Mellin–Barnes integral representations. Most of the techniques that we
use in this paper are all coming from his book [12] (co-authored by David Kaminski). Note
that in [11] Richard discusses the large a asymptotics for the Lerch transcendent, and he uses
a Mellin–Barnes integral representation that is with respect to a, whereas (1.5) is with respect
to z.

The Lerch transcendent is defined via

Φ(z, s, a) =
∞∑
n=0

zn

(a+ n)s
, |z| < 1, (1.1)

and via analytic continuation (see (1.2)) elsewhere in the complex z plane. If s is not an integer
then | arg a| < π; if s is a positive integer then a ̸= 0,−1,−2, . . .; if s is a non-positive integer
then a can be any complex number. The Lerch transcendent has a branch-point at z = 1, which
follows from the expansion (see [3, Section 1.11 (8)])

Φ(z, s, a) = Γ(1− s)z−a(− ln z)s−1 + z−a
∞∑
n=0

ζ(s− n, a)

n!
(ln z)n,

| ln z| < 2π, s ̸= 1, 2, 3, . . ., a ̸= 0,−1,−2, . . ., in which ζ(s, a) = Φ(1, s, a) is the Hurwitz zeta
function. The principle branch for Φ(z, s, a) is the sector | arg(1− z)| < π.

In several publications the main tool to obtain asymptotic expansions is the integral repre-
sentation

Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

xs−1e−ax

1− ze−x
dx, Re s > 0, Re a > 0. (1.2)
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The small and large a asymptotics is discussed in [2, 4, 11] (and [6] for the case z = 1), and the
asymptotics as Re s → −∞ is discussed in [5]. In [4], the large z asymptotics is also discussed,
and the authors obtain

Φ(−z, s, a) ∼ 1

Γ(s)

∞∑
n=1

An(z, s, a)

(−z)n
+

(ln z)s

zaΓ(s)

∞∑
n=0

Bn(s, a)

(ln z)n+1
(1.3)

as z → ∞, with

An(z, s, a) =
Γ(s, (a− n) ln z)− Γ(s)

(a− n)s
=

−(ln z)s

s
M(s, s+ 1; (a− n) ln z), (1.4)

and

B0(s, a) =
ψ
(
a+1
2

)
− ψ

(
a
2

)
2

,

Bn(s, a) =
n!
(
s−1
n

)
2n+1

(
ζ
(
n+ 1,

a

2

)
− ζ

(
n+ 1,

a+ 1

2

))
,

n = 1, 2, 3, . . .. The second representation for An(z, s, a) in (1.4) is in terms of the Kummer M
confluent hypergeometric function (see [10, equation (13.2.2)]), and is more convenient from an
analytical/numerical point of view. In [4], they do truncate the two sums in (1.3) and give sharp
error bounds for each truncated sum. It seems not possible to combine the two error bounds
to obtain an approximation that is correct up to a combined error estimate of, say, O

(
z−N

)
,

especially because the second sum in (1.3) is divergent, and its terms completely dominate the
combined asymptotics. The incomplete gamma function in the first series seems misplaced,
because for each n we have Γ(s,(a−n) ln z)

(a−n)s(−z)n = O
( (ln z)s

za

)
as z → ∞. Hence, it seems that the

incomplete gamma function should be incorporated in the second series of (1.3). However, we
do observe that the advantage of definition (1.4) is that in this way the An(z, s, a) are bounded
as a→ n.

Below, we will show that the large z asymptotics simplifies dramatically when s is an integer.
It will take a considerable amount of work to obtain that result from (1.3).

It is very surprising that it is not well known that the Lerch transcendent has a simple
Mellin–Barnes integral representation. This is a more obvious tool to obtain asymptotics. For
the moment we take Re a > 0. In this case, we have the Mellin–Barnes integral representation
(see [13, equation (3.11)])

Φ(−z, s, a) = 1

2πi

∫
L

Γ(1 + t)Γ(−t)zt

(a+ t)s
dt, (1.5)

in which L is a contour from −i∞ to i∞ which crosses the real t axis somewhere in the inter-
val (max(−Re a,−1), 0). When we push this contour to the right we will get contributions from
the poles of Γ(−t) and this results in expansion (1.1). Integral representation (1.5) supplies an
analytic continuation to the sector | arg z| < π.

We write for the moment z = ρeiθ and observe that for the dominant factor of the integrand
in (1.5) we have

∣∣Γ(1 + t)Γ(−t)zt
∣∣ ∼ 2πρRe te(∓π−θ) Im t as Im t → ±∞. The factor ρRe t can

be used to analytically continue integral representation (1.5). In the case 0 < ρ < 1, we bent
contour L to the right (say we go from (1 − i)∞ to (1 + i)∞) and with this choice for L
integral representation (1.5) is also valid for z ∈ (−1, 0). In the case that ρ > 1, we bent
contour L to the left (say we go from (−1− i)∞ to (−1+i)∞) and with this choice for L integral
representation (1.5) is valid across the z-branch-cut (−∞,−1).

To obtain a large z asymptotic expansion all that we have to do is to push L to the left. This
is what they do in [13], but somehow they do miss the fact that there will also be contributions
from the branch-point at t = −a.
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In Section 2, we will study the large z asymptotics by pushing contour L to the left. The
contributions of the poles of Γ(1 + t) will give us a simple convergent asymptotic expansion
in powers of z−1 that can be expressed in terms of a Lerch transcendent. The contribution of
the branch-point at t = −a is more complicated. In the case that s = S is an integer, this
contribution is just a finite sum in powers of 1/ ln z, and we obtain

Φ(−z, s, a) = 2πi

za

S−1∑
n=0

bn
Γ(S − n)(ln z)n−S+1

−
∞∑
n=1

(−z)−n

(a− n)S
, (1.6)

in which the first sum is zero in the case that S is a non-positive integer. The coefficients bn
are the Taylor coefficients of i

2 cscπ(t− a) about t = 0. This result has already been used in [7,
Lemma 3].

In the case that s is not an integer, the first series in (1.6) does not terminate and it is
a divergent series. We will use resummation and optimal truncation to obtain an approximation
for Φ(−z, s, a) that is accurate up to order O

(
z−N−1

)
:

Theorem 1. We take | arg(1 + z)| ≤ π, a and s bounded complex numbers, Re a > 0. Let N
be a fixed integer with N > Re a. Take |z| large and let M be a positive integer such that
|M − s+ 1| ≈ |(N + 1− a) ln z|. Then

Φ(−z, s, a) =
N∑

n=0

(−z)nΓ(s, (a+ n) ln z)

(a+ n)sΓ(s)
+

2πi

za

M−1∑
m=0

bm,N

Γ(s−m)(ln z)m−s+1

+
1

Γ(s)

N∑
n=1

An(z, s, a)

(−z)n
+O

(
z−N−1

)
,

as z → ∞ uniformly with respect to arg z ∈ [−π, π]. The An(z, s, a) are defined in (1.4) and

b0,N =
(−1)N

4πi

(
ψ

(
N + 1 + a

2

)
− ψ

(
N + 2 + a

2

)
−ψ

(
N + 1− a

2

)
+ ψ

(
N + 2− a

2

))
,

bn,N =
(−1)N

2n+2πi

(
ζ

(
n+ 1,

N + 2 + a

2

)
− ζ

(
n+ 1,

N + 1 + a

2

)
+(−1)nζ

(
n+ 1,

N + 1− a

2

)
− (−1)nζ

(
n+ 1,

N + 2− a

2

))
, (1.7)

n = 1, 2, 3, . . ..

We numerically verify this result in Table 1. Observe above that theM does depend on z. In
them-series we do take an optimal number of terms. Hence, its remainder will be ‘exponentially-
small’. In the proof below we do show that it is O

(
e−(N+1)|x|), with x = ln z.

Often when one encounters divergent Poincaré asymptotic series, it is possible to convert it to
a convergent factorial series. In the case that s is not an integer it would be convenient to replace
the first series in (1.6) (which diverges) by a convergent factorial series and in that way we can
also incorporate in our approximation the full second series of (1.6). We do create a convergent
factorial-type series in Section 3. As usual with these types of series, the convergence is very
slow, and it is not easy to obtain sharp error estimates.
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2 Large z asymptotics

We start with 0 < a < 1 and we can use analytic continuation afterwards. We take |z| > 1 in
the sector | arg(1 + z)| ≤ π and push L to the left and obtain

Φ(−z, s, a) = B(z, s, a) + I(z, s, a). (2.1)

The first term is the contribution of the branch-point at t = −a

B(z, s, a) =
1

2πi

∫ (−a+)

−(1+i)∞

Γ(1 + t)Γ(−t)zt

(a+ t)s
dt, (2.2)

in which the contour begins at −(1 + i)∞, circles t = −a once in the positive direction, and
returns to −(1+i)∞. We did observe in the second paragraph below (1.5) that in the case |z| > 1
the integrals converge across the z-branch cuts arg z = ±π. The second term in (2.1) is the sum
of the residue contributions of the poles of Γ(1 + t)

I(z, s, a) = −e−πis
∞∑
n=1

(−z)−n

(n− a)s
= e−2πisa−s − e−πisΦ(−1/z, s,−a). (2.3)

The infinite series representation of I(z, s, a) is already a large z asymptotic expansion. Hence,
all we need is an asymptotic expansion for B(z, s, a). We modify integral representation (2.2) as

B(z, s, a) = z−a

∫ (0+)

−(1+i)∞
et ln zt−sg(t) dt, (2.4)

with

g(t) =
i

2 sinπ(t− a)
= lim

N→∞

i

2π

N∑
n=−N

(−1)n

t− a− n
. (2.5)

We use this sum representation of g(t) in (2.4) and obtain the expansion

B(z, s, a) = lim
N→∞

N∑
n=−N

(−z)n

(a+ n)sΓ(s)
Γ(s, (a+ n) ln z), (2.6)

in terms of the incomplete gamma function. This expansions converges slowly, but has no
asymptotic property as z → ∞.

To obtain a simple Poincaré asymptotic expansions in inverse powers of ln z, we have to
expand g(t) about the origin. Let

g(t) =
∞∑
n=0

bnt
n, b0 =

1

2i sinπa
, b1 = 2πib20 cosπa. (2.7)

The reader can check that g(t)g′′(t) = 2g′2(t) + π2g2(t), from which we obtain the recurrence
relation

(n+ 2)(n+ 1)b0bn+2 =
n∑

m=0

(
2(m+ 1)(n−m+ 1)bm+1bn−m+1 + π2bmbn−m

)
−

n−1∑
m=0

(m+ 2)(m+ 1)bm+2bn−m, n ≥ 0.

Hence, the computation of the coefficients is straightforward.



Lerch Φ Asymptotics 5

To obtain an asymptotic expansion for the right-hand side of (2.4), we will use Watson’s
lemma for loop integrals. See [9, Section 4.5.3]. We substitute (2.7) into (2.4) and obtain the
asymptotic expansion

B(z, s, a) ∼ 2πi

za

∞∑
n=0

bn
Γ(s− n)(ln z)n−s+1

, (2.8)

as z → ∞.
In the case that s = S is an integer, the infinite series on the right-hand side of (2.8)

terminates. If S is a non-positive integer, then B(z, S, a) = 0, and if S is a positive integer, we
have

B(z, S, a) =
2πi

za

S−1∑
n=0

bn
Γ(S − n)(ln z)n−S+1

.

However, in the case that s is not an integer (2.8) is a divergent asymptotic expansion. For
modestly large |z|, the ln z in this expansion is not very large, and the optimal number of
terms will be small. In Section 3, we will obtain another type of asymptotic approximation
for B(z, s, a). Here we are going to combine the three expansions (2.8), (2.3) and (2.6).

First, we observe that when we take an optimal number of terms in (2.8) the smallest term
will still be bigger than the first term in (2.3). The optimal number of terms is connected to the
distance between the origin and the nearest pole of g(t). By incorporating in the expansion the
poles of g(t) that are near the origin, we ‘slow down’ the divergence of (2.8).

Proof of Theorem 1. In (2.1), we write Φ(−z, s, a) = B(z, s, a)+I(z, s, a) and for I(z, s, a) we
have the convergent asymptotic expansion (2.3). Hence, we need an asymptotic approximation
for B(z, s, a) with the correct remainder estimate. Let N be a fixed positive integer and take

gN (t) = g(t)− i

2π

N∑
n=−N

(−1)n

t− a− n
,

compare (2.5). Then

B(z, s, a) =
N∑

n=−N

(−z)n

(a+ n)sΓ(s)
Γ(s, (a+ n) ln z) + z−a

∫ (0+)

−(1+i)∞
et ln zt−sgN (t) dt.

We have

gN (t) =

∞∑
n=0

bn,N t
n,

with

bn,N = bn +
i

2π

N∑
m=−N

(−1)m

(a+m)n+1
. (2.9)

A numerical more stable presentation for the bn,N is (1.7).
For large n, the bn,N will be of the size of the first omitted terms in (2.9), that is, for the

case 0 < a < 1, the term with m = −N − 1. Thus bn,N ∼ i
2π (−1)N (a−N − 1)−n−1 as n→ ∞.

We will estimate the remainder in

z−a

∫ (0+)

−(1+i)∞
et ln zt−sgN (t) dt =

2πi

za

M−1∑
m=0

bm,N

Γ(s−m)(ln z)m−s+1
+R

(B)
M (z)
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via the machinery in [8, Section 4], because the integrals are exactly of the same form as the
ones discussed in that paper. We want the remainder after taking the optimal number of terms.
Hence, M will be large. We have∣∣∣R(B)

M (z)
∣∣∣ = O

(
z−a(ln z)s−M

(N + 1− a)M
F (1)

(
(a−N − 1) ln z;

M − s+ 1

1

))
= O

(
z−aΓ(M − s+ 1)

√
M − s+ 1

((N + 1− a) ln z)M−s+1

)
, (2.10)

in which both M and z are large. For the first hyperterminant F (1) see [1, Appendix A].
The second equal sign in (2.10) follows from [1, Proposition B.1]. It follows that for the opti-
mal M =Mopt, we have |Mopt − s+ 1| ∼ |(N + 1− a) ln z|. With this choice for M , we have

∣∣R(B)
M (z)

∣∣ = O

(
z−aΓ(M − s+ 1)

(M − s+ 1)M−s+ 1
2

)
= O

(
z−aes−M−1

)
= O

(
z−N−1

)
,

as z → ∞.
Combining the results above, we have the approximation

Φ(−z, s, a) =
N∑

n=−N

(−z)nΓ(s, (a+ n) ln z)

(a+ n)sΓ(s)
+

2πi

za

Mopt−1∑
m=0

bm,N

Γ(s−m)(ln z)m−s+1

− e−πis
N∑

n=1

(−z)−n

(n− a)s
+RN (z),

=
N∑

n=0

(−z)nΓ(s, (a+ n) ln z)

(a+ n)sΓ(s)
+

2πi

za

Mopt−1∑
m=0

bm,N

Γ(s−m)(ln z)m−s+1

+
1

Γ(s)

N∑
n=1

An(z, s, a)

(−z)n
+RN (z), (2.11)

with RN (z) = O
(
z−N−1

)
, as z → ∞ uniformly with respect to arg z ∈ [−π, π]. The second

presentation in our main result (2.11) has the advantage that it is obvious that there are no
issues when a approaches a positive integer. ■

In Table 1, we do illustrate that the implied constant in the order estimate (2.11) seems very
reasonable in the full z-sector. Note that the final result in Table 1, is for z very close to the
boundary of the sector | arg(1 + z)| ≤ π.

3 A factorial series expansion

In this section, we will assume that
∣∣1 − e−2πia

∣∣ > 1, which is the case when, for example,
a ∈

(
1
6 ,

5
6

)
. We present g(t) as

g(t) =
1

eπi(a−t) − eπi(t−a)
=

eπi(a−t)(
e2πia − 1

)(
1− 1−e−2πit

1−e−2πia

) .
With the above assumption on a we guarantee that the geometric progression

g(t) = eπi(a−t)
∞∑
n=0

e2πian(
e2πia − 1

)n+1

(
1− e−2πit

)n
, (3.1)
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z = 5, Mopt = 9 z = 10, Mopt = 13

Φ(−z, s, a) 1.3421782 1.0889334

approx (2.11) 1.3421692 1.0889332∣∣zN+1RN (z)
∣∣ 0.140 0.158

z = 100, Mopt = 27 z = 1000, Mopt = 40

Φ(−z, s, a) 0.50810464209509 0.2350035297496389971

approx (2.11) 0.50810464209489 0.2350035297496389969∣∣zN+1RN (z)
∣∣ 0.200 0.197

z = 10i, Mopt = 16 z = −10 + 0.01i, Mopt = 22

Φ(−z, s, a) 0.98125249− 0.54864116i 0.52526675− 1.04285831i

approx (2.11) 0.98125270− 0.54864133i 0.52526654− 1.04285810i∣∣zN+1RN (z)
∣∣ 0.269 0.297

Table 1. Approximation (2.11) for the case a = 0.3, s = 3
4 and N = 5.

converges uniformly for t along the contour in (3.2). Using (3.1) in (2.4) gives us the expansion

B(z, s, a) =
eπia

za

∞∑
n=0

e2πian(
e2πia − 1

)n+1

∫ (0+)

−i∞
e(ln(z)−πi)tt−s

(
1− e−2πit

)n
dt, (3.2)

which after taking τ = 2πit and x = 1
2 − ln z

2πi becomes

B(z, s, a) =
eπia(2πi)s−1

za

∞∑
n=0

e2πian(
e2πia − 1

)n+1 pn(x, s), (3.3)

with

pn(x, s) =

∫ (0+)

∞
e−xττ−s

(
1− e−τ

)n
dτ. (3.4)

If we assume that Re s < 1, we can collapse the loop contour

pn(x, s) =
(
e−2πis − 1

) ∫ ∞

0
e−xττ−s

(
1− e−τ

)n
dτ.

Convergent expansion (3.3) is the main result of this section. It is a factorial-type expansion
because pn(x, s) is a generalisation (a fractional integral) of∫ ∞

0
e−xτ

(
1− e−τ

)n
dτ = B(n+ 1, x) =

n!

x(x+ 1)(x+ 2) · · · (x+ n)
.

We still have to discuss the large x asymptotic behaviour of pn(x, s), and an alternative method
to evaluate this function.

We use the expansion

τ−s =
∞∑

m=0

cm
(
1− e−τ

)m−s
,
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which is the generating function for its coefficients cm,1 and obtain

pn(x, s) =
(
e−2πis − 1

) ∞∑
m=0

cm

∫ ∞

0
e−xτ

(
1− e−τ

)n+m−s
dτ

=
(
e−2πis − 1

) ∞∑
m=0

cmB(n+m− s+ 1, x)

∼
(
e−2πis − 1

)
Γ(n− s+ 1)xs−n−1, (3.5)

as x → ∞. Hence, p0(x, s), p1(x, s), p2(x, s), . . . is definitely an asymptotic sequence. These
infinite series are conditionally convergent!

The binomial expansion of
(
1− e−τ

)n
in (3.4) will give us

pn(x, s) =
−2πie−πis

Γ(s)

n∑
m=0

(
n

m

)
(−1)m(x+m)s−1, (3.6)

a finite sum. For modestly large z, our x will not be large at all, and there is no issue computing
the pn(x, s) via (3.6). In this case, (3.3) will still converge, but it can not be regarded an
asymptotic expansion. However, in the case that x is large and comparing the terms in (3.6)
with estimate (3.5) it follows that the terms in (3.6) are of the wrong size, hence cancellations.
We can deal with these cancellations via the identity

(1 + δ)ℓ =
n−1∑
k=0

(
ℓ

k

)
δk +

(−ℓ)n(−δ)n

n!
2F1

(
n− ℓ, 1

n+ 1
;−δ

)
.

This leads to

pn(x, s) =
−2πie−πis

Γ(s− n)
xs−n−1

n∑
m=0

(−1)mmn

m!(n−m)!
2F1

(
n− s+ 1, 1

n+ 1
;−m/x

)
.

Now the terms are of the correct size.
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