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Equation

Hans VOLKMER

Department of Mathematical Sciences, University of Wisconsin - Milwaukee, USA

E-mail: volkmer@uwm.edu

Received July 25, 2023, in final form March 08, 2024; Published online March 16, 2024

https://doi.org/10.3842/SIGMA.2024.021

Abstract. Lamé’s differential equation is a linear differential equation of the second or-
der with a periodic coefficient involving the Jacobian elliptic function sn depending on the
modulus k, and two additional parameters h and ν. This differential equation appears in
several applications, for example, the motion of coupled particles in a periodic potential.
Stability and existence of periodic solutions of Lamé’s equations is determined by the value
of its Hill discriminant D(h, ν, k). The Hill discriminant is compared to an explicitly known
quantity including explicit error bounds. This result is derived from the observation that
Lamé’s equation with k = 1 can be solved by hypergeometric functions because then the
elliptic function sn reduces to the hyperbolic tangent function. A connection relation be-
tween hypergeometric functions then allows the approximation of the Hill discriminant by
a simple expression. In particular, one obtains an asymptotic approximation of D(h, ν, k)
when the modulus k tends to 1.
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1 Introduction

Kim, Levi and Zhou [4] consider two elastically coupled particles positioned at x(t), y(t) in
a periodic potential V (x). The system is described by

ẍ+ V ′(x) = γ(y − x), ÿ + V ′(y) = γ(x− y),

where γ denotes the coupling constant. Let x(t) = y(t) = p(t) be a synchronous solution. If we
linearize the system around this synchronous solution, x = p+ ξ, y = p+ η, and set u = ξ + η,
w = ξ − η, then we obtain

ü+ V ′′(p)u = 0,

ẅ + (2γ + V ′′(p))w = 0. (1.1)

These are Hill equations [5], that is, they are of the form

ẅ + q(t)w = 0 (1.2)

with a periodic coefficient function q(t), say of period σ > 0. In this and many other applications
the Hill discriminant D associated with (1.2) plays an important role. The discriminant D is
defined as the trace of the endomorphism w(t) 7→ w(t+σ) of the two-dimensional solution space
of (1.2) onto itself. It is well known [5] that equation (1.2) is stable if |D| < 2 and unstable
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if |D| > 2. The condition D = 2 is equivalent to the existence of a nontrivial solution with
period σ while D = −2 is equivalent to the existence of a nontrivial solution with semi-period σ.

In this work, we are interested in the special case V (x) = − cosx. Then p(t) is a solution of
the differential equation p̈+sin p = 0 of the mathematical pendulum. We get [7, Section 22.19 (i)]

p(t, E) = 2 am

(
t

k
, k

)
, where k2 =

2

E + 2
,

E denotes energy, and am is Jacobi’s amplitude function [7, Section 22.16 (i)]. Then equa-
tion (1.1) becomes

d2w

dt2
+

(
2γ + 1− 2 sn2

(
t

k
, k

))
w = 0,

where sn(x, k) = sin am(x, k) is one of the Jacobian elliptic functions [7, Section 16]. If we
substitute t = ks, we obtain Lamé’s equation [7, Section 29]

d2w

ds2
+
(
h− ν(ν + 1)k2 sn2(s, k)

)
w = 0 (1.3)

with parameters h = k2(2γ + 1) and ν = 1. There is no explicit formula for the corresponding
Hill discriminant D = D(h, ν, k). However, in [4] a remarkable asymptotic formula for this Hill
discriminant as E → 0 (or k → 1) is given. It is shown that

D(h, 1, k) = a cos (ω ln E − ϕ) + o(E) as E → 0, (1.4)

where ω2 = 2γ − 1.
The main result of this paper is Theorem 5.1 which improves on (1.4) in three directions.

1. We allow any real ν in place of ν = 1. Since we may replace ν by −1 − ν we assume
ν ≥ −1

2 without loss of generality.

2. We provide explicit values for the amplitude a and the phase shift ϕ in (1.4)

3. We give explicit error bounds. This makes it possible to prove stability of the Lamé
equation in some cases.

The idea behind the proof of Theorem 5.1 is the observation that Lamé’s equation (1.3) with
k = 1 can be solved in terms of the hypergeometric function F (a, b; c, x). Then well-known
connection relations between hypergeometric functions play a crucial role.

As a preparation, we present some elementary results on linear differential equations of the
second order in Section 2. In Section 3, we give a quick review of the Lamé equation. In
Section 4, we consider the special case of the Lamé equation when k = 1. In Section 5 we
combine our results to obtain Theorem 5.1.

2 Lemmas on second order linear equations

Let u be the solution of the initial value problem

u′′ + q(t)u = r(t), u(a) = u′(a) = 0,

where q, r : [a, b] → R are continuous functions. By the variation of constants formula [2, Sec-
tion 2.6],

u(t) =

∫ t

a
L(t, s)r(s) ds, u′(t) =

∫ t

a
∂1L(t, s)r(s) ds,
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where y(t) = L(t, s) is the solution of

y′′ + q(t)y = 0 (2.1)

determined by the initial conditions y(s) = 0, y′(s) = 1. Let L1, L2 be constants such that

|L(t, s)| ≤ L1, |∂1L(t, s)| ≤ L2 for a ≤ s ≤ t ≤ b. (2.2)

Then it follows that

∥u∥∞ ≤ L1

∫ b

a
|r(s)| ds, ∥u′∥∞ ≤ L2

∫ b

a
|r(s)|ds, (2.3)

where ∥f∥∞ := maxt∈[a,b] |f(t)|.

Lemma 2.1. Let p, q : [a, b] → R be continuous. Let L1, L2 be as in (2.2). Let y be a solution
of (2.1) and w a solution of w′′ + p(t)w = 0 with y(a) = w(a) and y′(a) = w′(a). Then

∥y − w∥∞ ≤ L1∥w∥∞
∫ b

a
|p(s)− q(s)|ds,

∥y′ − w′∥∞ ≤ L2∥w∥∞
∫ b

a
|p(s)− q(s)| ds.

Proof. For u = y − w, we have

u′′(t) + q(t)u(t) = (p(t)− q(t))w(t).

The desired result follows from (2.3). ■

Lemma 2.2. Let q : [a, b] → (0,∞) be continuously differentiable and monotone. Set

m := min
t∈[a,b]

q(t) > 0, M := max
t∈[a,b]

q(t).

Let y1, y2 be the solutions of (2.1) determined by y1(a) = y′2(a) = 1, y′1(a) = y2(a) = 0. If q is
nondecreasing, then

∥y1∥2∞ ≤ 1, ∥y′1∥2∞ ≤ M, ∥y2∥2∞ ≤ 1

m
, ∥y′2∥2∞ ≤ M

m
,

and, if q is nonincreasing,

∥y1∥2∞ ≤ M

m
, ∥y′1∥2∞ ≤ M, ∥y2∥2∞ ≤ 1

m
, ∥y′2∥2∞ ≤ 1.

Proof. Suppose first that q is nondecreasing. Set

uj(t) := yj(t)
2 +

1

q(t)
y′j(t)

2.

Then

u′j(t) = − q′(t)

q(t)2
y′j(t)

2 ≤ 0,

so uj(t) ≤ uj(a) for all t ∈ [a, b]. Now u1(a) = 1 and u2(a) =
1
m imply y1(t)

2 ≤ 1, y′1(t)
2 ≤ M ,

y2(t)
2 ≤ 1

m , y′2(t)
2 ≤ M

m . If q is nonincreasing, we argue similarly using vj(t) = y′j(t)
2+q(t)yj(t)

2

in place of uj . ■
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3 Lamé’s equation

For h ∈ R, ν ≥ −1
2 , k ∈ (0, 1), we consider the Lamé equation [1, Section IX] and [3, Section XV]

y′′ +
(
h− ν(ν + 1)k2 sn2(t, k)

)
y = 0. (3.1)

This is a Hill equation with period 2K(k), where K = K(k) is the complete elliptic integral of
the first kind:

K =

∫ 1

0

dt√
1− t2

√
1− k2t2

.

Equation (3.1) also makes sense for k = 1 [7, Section 22.5 (ii)] when it becomes

y′′ +
(
h− ν(ν + 1) tanh2 t

)
y = 0. (3.2)

Of course, this is not a Hill equation anymore. Let

y1(t) = y1(t, s, h, ν, k) and y2(t) = y2(t, s, h, ν, k)

be the solutions of (3.1) determined by the initial conditions

y1(s) = y′2(s) = 1, y′1(s) = y2(s) = 0.

Set q(t) := h − ν(ν + 1)k2 sn2(t, k). This function is increasing on [0,K] if −1
2 ≤ ν < 0 and

decreasing on [0,K] if ν > 0. We assume that h > 0 and h > ν(ν + 1)k2. Then q(t) > 0 for

t ∈ [0,K]. We define H :=
(
h− ν(ν + 1)k2

)1/2
and

C1(h, ν, k) :=

{
1 if ν < 0,

h1/2H−1 if ν ≥ 0,
C ′
1(h, ν, k) :=

{
H if ν < 0,

h1/2 if ν ≥ 0,

C2(h, ν, k) :=

{
h−1/2 if ν < 0,

H−1 if ν ≥ 0,
C ′
2(h, ν, k) :=

{
h−1/2H if ν < 0,

1 if ν ≥ 0.

Lemma 3.1. Suppose that h > 0 and h− ν(ν + 1)k2 > 0. Then, for 0 ≤ s ≤ t ≤ K,

|y1(t, s)| ≤ C1, |y′1(t, s)| ≤ C ′
1, |y2(t, s)| ≤ C2, |y′2(t, s)| ≤ C ′

2.

If k = 1, this is true for all 0 ≤ s ≤ t.

Proof. This follows from Lemma 2.2. ■

In the next theorem, we use the complete elliptic integral E = E(k) of the second kind:

E =

∫ 1

0

√
1− k2t2√
1− t2

dt.

Theorem 3.2. Suppose that h > 0 and h− ν(ν + 1) > 0. Then

|y1(K, 0, h, ν, k)− y1(K, 0, h, ν, 1)| ≤ C1C2|ν|(ν + 1)(E(k)− tanhK(k)),

|y′2(K, 0, h, ν, k)− y′2(K, 0, h, ν, 1)| ≤ C2C
′
2|ν|(ν + 1)(E(k)− tanhK(k)),

where the constants C are formed with k = 1.
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Proof. We apply Lemma 2.1 with

q(t) = h− ν(ν + 1)k2 sn2(t, k), p(t) = h− ν(ν + 1) tanh2 t,

and

y(t) = y1(t, 0, h, ν, k), w(t) = y1(t, 0, h, ν, 1)

on the interval t ∈ [0,K]. We note that [8, formula (4.4)]

k sn(t, k) ≤ tanh t ≤ sn(t, k) for t ∈ [0,K].

Therefore,∫ K

0
|p(s)− q(s)| ds = |ν|(ν + 1)

∫ K

0

(
tanh2 s− k2 sn2(s, k)

)
ds

= |ν|(ν + 1)

∫ K

0

(
dn2(s, k)− 1 + tanh2 s

)
ds.

Using
∫K
0 dn2(s, k) ds = E [9, p. 518], we get∫ K

0
|p(s)− q(s)| ds = |ν|(ν + 1)(E − tanhK).

By Lemma 3.1, |w(t)| ≤ C1 and we can choose L1 = C2. This gives the desired estimate for y1.
The estimate for y′2 is proved similarly. ■

Note that∫ K

0

(
tanh2 s− k2 sn2(s, k)

)
ds ≤

(
1− k2

) ∫ K

0
sn2(s, k) ds ≤ k′2K,

where k′ =
√
1− k2, so

E − tanhK ≤ k′2K.

Also note that [7, formula (19.9.1)]

K(k) ≤ π

2
− ln k′,

so E(k)− tanhK(k) = O((1− k) ln(1− k)) as k → 1.

4 The Lamé equation for k = 1

Let w1, w2 be the solutions of (3.2) determined by initial conditions w1(0) = w′
2(0) = 1,

w′
1(0) = w2(0) = 0. Then wj(t) = yj(t, 0, h, ν, 1) using the notation of the previous section. We

assume that ν ≥ −1
2 and h > ν(ν + 1), and set

µ :=
√
ν(ν + 1)− h = iω, where ω > 0. (4.1)

The substitution x = tanh t transforms (3.2) to the associated Legendre equation [7, for-
mula (14.2.2)] of degree ν and order µ. According to [6, Section 5, formula (15.09)], we express wj

in terms of the hypergeometric function F (a, b; c; z) as follows:

w1(t) = coshµ tF
(
−1

2(µ+ ν), 12(1− µ+ ν); 12 ; tanh
2 t
)
,

w2(t) = tanh t coshµ tF
(
1
2(1− µ− ν), 12(2− µ+ ν); 32 ; tanh

2 t
)
.
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This can be confirmed by direct computation. In order to determine the behaviour of the
functions wj(t) as R ∋ t → ∞, we use the connection formula [7, formula (15.8.4)] and find
wj(t) = Re(vj(t)), where

v1(t) =
A1

(2 cosh t)−µ
F
(
−1

2(µ+ ν), 12(1− µ+ ν); 1− µ; cosh−2 t
)
,

v2(t) =
A2 tanh t

(2 cosh t)−µ
F
(
1
2(1− µ− ν), 12(2− µ+ ν); 1− µ; cosh−2 t

)
,

and

A1 =
21−µπ1/2Γ(µ)

Γ
(
1
2(1 + µ+ ν)

)
Γ
(
1
2(µ− ν)

) ,
A2 =

2−µπ1/2Γ(µ)

Γ
(
1
2(2 + µ+ ν)

)
Γ
(
1
2(1 + µ− ν)

) .
We set

zj(t) = Re
(
Aje

iωt
)
, j = 1, 2.

Theorem 4.1. Suppose h > 0 and h > ν(ν + 1). Then, for all t ≥ 0,

|w1(t)− z1(t)| ≤ ω−1C1|ν|(ν + 1)(1− tanh t),

|w′
2(t)− z′2(t)| ≤ C2|ν|(ν + 1)(1− tanh t),

where C1, C2 are formed with k = 1.

Proof. Since F (a, b; c; 0) = 1, the representation wj(t) = Re(vj(t)) yields

lim
t→∞

wj(t)− zj(t) = lim
t→∞

Re(Aj

(
2 cosh t)iω −Aje

iωt
)
= 0. (4.2)

Similarly, we have

lim
t→∞

w′
j(t)− z′j(t) = 0. (4.3)

The function uj = wj − zj satisfies

u′′j + ω2uj = gj(t), gj(t) := ν(ν + 1)
(
tanh2 t− 1

)
wj(t).

Let t0, t ≥ 0. Then

uj(t) = uj(t0) cos(ω(t− t0)) + u′j(t0)
sin(ω(t− t0))

ω
+

∫ t

t0

sin(ω(t− s))

ω
gj(s) ds.

Letting t0 → ∞, using (4.2), (4.3) and Lemma 3.1, we obtain

|u1(t)| ≤ ω−1

∫ ∞

t
|g1(s)| ds ≤ ω−1C1|ν|(ν + 1)(1− tanh t)

as desired. The estimate for u′2 is derived similarly. ■

The constant Wronskian of z1, z2 is

z1(t)z
′
2(t)− z′1(t)z2(t) = ω Im

(
A1Ā2

)
.
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The reflection formula for the gamma function

Γ(x)Γ(1− x) =
π

sin(πx)

gives

ωA1Ā2 = − sin(νπ)

sinh(ωπ)
+ i. (4.4)

Therefore,

z1(t)z
′
2(t)− z′1(t)z2(t) = 1.

Moreover,

z1(t)z
′
2(t) + z′1(t)z2(t) = 2z1(t)z

′
2(t)− 1 = Re

(
Be2iωt

)
, (4.5)

where B = iωA1A2. Using the duplication formula for the gamma function

2x−1Γ
(
1
2x

)
Γ
(
1
2(x+ 1)

)
= π1/2Γ(x)

we see that

B =
Γ(1 + µ)Γ(µ)

Γ(1 + µ+ ν)Γ(µ− ν)
. (4.6)

If ν ∈ N0, then

B =
(iω − 1)(iω − 2) · · · (iω − ν)

(iω + 1)(iω + 2) · · · (iω + ν)
,

so |B| = 1. If ν = 1, then

B =
iω − 1

iω + 1
=

ω2 − 1 + i2ω

ω2 + 1

and

Re
(
Be2iωt

)
=

1

ω2 + 1

((
ω2 − 1

)
cos(2ωt)− 2ω sin(2ωt)

)
.

By (4.4),

|B|2 =
∣∣ωA1Ā2

∣∣2 = 1 +
sin2 νπ

sinh2 ωπ
.

So |B| > 1 if ν is not an integer.

5 Hill’s discriminant of Lamé’s equation

The Hill discriminant D(h, ν, k) of Lamé’s equation is given by [5, p. 8]

D(h, ν, k) = 2(y1(K)y′2(K) + y′1(K)y2(K)) = 2(2y1(K)y′2(K)− 1), (5.1)

where yj(t) = yj(t, 0, h, ν, k) in the notation of Section 3. By combining Theorems 3.2 and 4.1,
we obtain the following main theorem of this work.
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Theorem 5.1.

(a) Suppose ν ≥ 0 and h > ν(ν + 1). Then, for all k ∈ (0, 1),∣∣D(h, ν, k)− 2Re
(
Be2iωK(k)

)∣∣ ≤ 8h1/2ω−2ν(ν + 1)(E(k) + 1− 2 tanhK(k)).

(b) Suppose ν ∈ [−1
2 , 0) and h > 0. Then, for all k ∈ (0, 1),∣∣D(h, ν, k)− 2Re

(
Be2iωK(k)

)∣∣ ≤ 8ωh−1|ν|(ν + 1)(E(k) + 1− 2 tanhK(k)).

The constants ω and B are given in (4.1) and (4.6), respectively.

Proof. Using (4.5) and (5.1), we have

D(h, ν, k)− 2Re
(
Be2iωK

)
= 4(y1(K)y′2(K)− z1(K)z′2(K)).

Using Lemma 3.1, we estimate∣∣D(h, ν, k)− 2Re
(
Be2iωK(k)

)∣∣
≤ 4|y1(K)||y′2(K)− z′2(K)|+ 4|z′2(K)||y1(K)− z1(K)|
≤ 4C1|y′2(K)− z′2(K)|+ 4C ′

2|y1(K)− z1(K)|.

In fact, |w′
2(t)| ≤ C ′

2 implies |z′2(t)| ≤ C ′
2 because of (4.3). Now we use Theorems 3.2 and 4.1 to

estimate

|y1(K)− z1(K)| ≤ |y1(K)− w1(K)|+ |w1(K)− z1(K)|
≤ C1C2|ν|(ν + 1)(E − tanhK) + ω−1C1|ν|(ν + 1)(1− tanhK),

and

|y′2(K)− z′2(K)| ≤ |y′2(K)− w′
2(K)|+ |w′

2(K)− z′2(K)|
≤ C2C

′
2|ν|(ν + 1)(E − tanhK) + C2|ν|(ν + 1)(1− tanhK).

This gives the desired statements (a) and (b) substituting the values for Cj and C ′
j . ■

We may use K(k) = ln(4/k′) + O
(
k′2 ln k′

)
[7, formula (19.12.1)] and

∣∣eis − eit
∣∣ ≤ |s − t| for

s, t ∈ R to obtain

D(h, ν, k) = 2Re
(
Be2iω ln(4/k′)

)
+O((1− k) ln(1− k)) as k → 1.

As an illustration, take h = 6, ν = 1
2 and k = 1 − e−τ . Figure 1 depicts the graphs of

τ 7→ D
(
6, 12 , k

)
(red) and τ 7→ 2Re

(
Be2iωK

)
(black). These graphs are hard to distinguish for

τ > 2. The Hill discriminant D
(
6, 12 , k

)
is computed using (5.1). The values of y1(K) and y′2(K)

are found by numerical integration of Lamé’s equation (1.3) using the software Maple.
If τ = 5, then k = 0.993262 . . . and 2Re

(
Be2iωK

)
= −1.274528 . . . . Theorem 5.1 gives∣∣D(

6, 12 , k
)
− 2Re

(
Be2iωK

)∣∣ ≤ 0.066641. Therefore, |D(6, 1, k)| < 2 and so Lamé’s equation is
stable for h = 6, ν = 1

2 , k = 1− e−5.

6 Discussion and further work

In Theorem 5.1, we presented an asymptotic formula describing the behavior of the discriminant
of the Lamé equation (1.3) as k → 1. The proof is based on the fact that the Lamé equation
approaches the associated Legendre (a special case of the hypergeometric) differential equation,
and the known behavior of the hypergeometric function as the independent variable tends to 1.
As we know from [4] a less precise formula describing the asymptotic behavior as E → 0 also
exists for more general potentials in (1.1). It is an interesting research question whether there
exist other potentials that allow an explicit determination of the amplitude and phase shift in
this asymptotic formula.
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Figure 1. Illustration to Theorem 5.1.
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