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Abstract. We study notions of isotopy and concordance for Riemannian metrics on mani-
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a rather complete picture in the case of surfaces.
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Dedicated to Jean-Pierre Bourguignon,
with gratitude and admiration,
on the occasion of his 75th birthday.

Jean-Pierre Bourguignon has been, for more than half a century, a prominent figure on the
mathematical scene. A student of Marcel Berger, his work combines the austerity and strive
for generality that characterized the Bourbaki movement (as we can see, for instance, in the
monumental treatise [9] on Einstein manifolds or in the earlier monograph [8], but even in the
style of some of his most celebrated research articles such as [10]) with an authentic interest for
physical phenomena and their rigorous description. Just to name a few towering contributions
in that direction, he has studied, over the years, central themes in fluid dynamics (see, e.g., [11]
with Brezis), Yang–Mills fields (as in [13] with Lawson), spinors and Dirac operators (as in [12]
with Gauduchon) . . .

On top of that, Bourguignon has been a strenuous, tireless advocate for mathematics, serving
in a variety of managing and institutional roles. Among them, he was for two decades the di-
rector of the Institut des Hautes Études Scientifiques in Paris, keeping its high, uncompromised
scientific standards in the post-Grothendieck era, before becoming, in 2014, chair of the Euro-
pean Research Council. In that position he was successful in defending the need of adequately
supporting scientific research with large-scale grants, aimed at funding ambitious projects in all
scientific fields, beyond the self-evident needs of experimental disciplines. There is no doubt
that such initiatives helped retain in Europe a number of early-career scientists that would have
otherwise opted for different paths, thereby forming, in turn, new generations of researchers. For
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all these reasons, and for his friendly presence over the years, it is a pleasure for us to dedicate
him this manuscript, with sincere admiration.

1 Introduction

One of the recurring themes in Bourguignon’s mathematical work is the study of scalar curva-
ture. In recent years, this field has flourished, with both significant advances on some classical
questions and the opening of new avenues (we refer interested readers to the survey [17] and
references therein). Among emerging trends, one can certainly include the study of positive
scalar curvature metrics on compact manifolds with boundary: in the last decade the empha-
sis has been shifted from collar-type (i.e., product) boundary conditions to local ones, such as
(typically) those defined by a binary constraint involving the mean curvature of the boundary
in question, or by the more restrictive requirements one can impose on the second fundamental
form.

In short, and oversimplifying things to the extreme, we have learnt (see [18, Section 3] and [6,
Section 4]) – among other things – that the study of spaces of positive scalar curvature (hence-
forth: PSC) metrics with mean-convex or minimal boundary conditions can be reduced (in
the sense of weak homotopy equivalence) to the study of spaces of PSC metrics with doubling
boundary condition over the same manifold, hence to spaces of PSC metrics with a reflectional
symmetry on closed manifolds, which inspired the definition of reflexive manifolds (see [18, 19]).
When the compact background manifold has dimension two or three, then these spaces of met-
rics, when not empty, are actually contractible (see, respectively, [21] and [19], the latter crucially
building on deep work by Bamler–Kleiner [5]). On the other hand, we note that such spaces are
not, in general, homotopically equivalent to the space of PSC metrics with collar boundary over
the same background manifold (see, e.g., Remark 41 in [6] for a simple yet enlightening example,
and the main results in [33] providing a thorough investigation in the high-dimensional regime).
The reader may want to compare these results (and, in fact, the discussion we are about to
present in this paper) with earlier works by Akutagawa–Botvinnik [3, 4] and Akutagawa [2] for
different yet partly related contributions, connected to the notion of relative Yamabe invariant.

That being said, and getting back – at least momentarily – to closed manifolds, another
interesting class of spaces of Riemannian metrics has clearly emerged in the influential work [29]
by Mantoulidis and Schoen, which in a way stems from classical ideas and methods dating back
to Schoen and Yau (see, in particular, [34]). Motivated by the basic problem of computing
the Bartnik quasi-local mass [7] for ample classes of examples, they studied the space of metrics
corresponding (extrinsically speaking) to those induced on (closed) stable, minimal hypersurfaces
inside an ambient manifold of positive scalar curvature. They ultimately exploited the flexibility
properties such a space enjoys to prove a fairly definitive result in the so-called minimal case
(namely for Bartnik triples with H ≡ 0): for any such triple, the value of the Bartnik quasi-local
mass equals the lower bound prescribed by the Riemannian Penrose inequality (see [14, 27] as
well as the recent, striking proof in [1]) and is actually never achieved, except when the data
correspond to a round sphere. Their construction, which also crucially contains a smoothing
procedure (albeit in spherical symmetry), has then been extensively studied and generalized
in different directions; the reader is refereed to the beautiful survey [15] for a broad-spectrum
account on this matter.

Our purpose here is to study analogous phenomena in the aforementioned case of manifolds
with boundary. To some extent we shall analyze how to properly extend the results in [29] to that
setting. We shall be concerned with some natural questions regarding the equivalence relations
of isotopy and concordance; in particular, we will see how a weak notion of minimal concordance
naturally arises when considering certain spaces of metrics defined by the corresponding stability
condition, but now in the category of free boundary minimal surfaces. The key definitions and
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some preliminary results are given in Sections 2 and 3, respectively, while in Section 4, we
introduce the spectral condition we are interested in, relate it to minimal concordance and
investigate the matter in the case of surfaces.

2 Setup and key definitions

Given n ≥ 2, we let Xn denote a compact manifold, of dimension equal to n, with possibly
non-empty boundary. Consistently with our previous work [19], we will denote by R = R(X)
the cone of smooth Riemannian metrics on X, and we shall be particularly concerned – at least
initially – with its topological subspaces defined by binary relations involving its scalar curvature
and the mean curvature of its boundary.

For a Riemannian metric h on X we let η = η(h) denote an outward-pointing unit normal
vector field along ∂X, take IIh to be the scalar-valued second fundamental form (with respect
to η) and Hh its trace (that is: the mean curvature of ∂X); throughout this article, we adopt
the convention that the unit sphere in R3 has mean-curvature equal to 2 and we will say –
for a Riemannian metric h on X – that (X,h) is mean-convex if the mean curvature of such
a manifold is greater or equal than zero, namely if Hh ≥ 0.

In particular, we let RR>0,H≥0 (respectively RR>0,H=0) denote the subspace of metrics with
positive scalar curvature and mean-convex (respectively, minimal) boundary.

Definition 2.1. In the setting above, given a topological subspace R∗(X) we will say that
h0, h1 ∈ R∗(X) are isotopic in R∗(X) if there exists h ∈ C0(I,R∗(X)) such that h(0, ·) = h0
and h(1, ·) = h1. (Throughout this article, we set I := [0, 1] ⊂ R.)

It is straightforward to check that the preceding definition determines an equivalence relation
in the space R∗(X). One can however consider different equivalence relations within a given
subspace of Riemannian metrics on a background manifold X. For the purposes of the present
article, the following two turn out to be especially significant. In the setting above, let (⋆) denote
a curvature condition, defined by a binary operator within the set {=,≥,≤, >,<}, on the mean
curvature for ∂X × I as part of the boundary of the cylinder X × I.

Definition 2.2. We will say that h0, h1 ∈ R∗(X) are PSC (⋆)-concordant if there exists a PSC
Riemannian metric g on X × I that

(i) satisfies condition (⋆);

(ii) restricts1 to h0 on X × {0}, and to h1 along X × {1};
(iii) is a product near both X × {0} and X × {1}.

In the special case when (⋆) is the condition that the mean curvature of ∂X × I in metric g be
identically zero (respectively, be non-negative), we will just say that h0, h1 ∈ R∗(X) are PSC
min-concordant (respectively, PSC mc-concordant).

As we are about to see and discuss, the previous definition (albeit natural) is too rigid for
certain purposes, and does not account for the natural interplay between scalar curvature and
boundary mean curvature that is apparent since at least [26] (cf. [23, 24]) and played a key role
in [18, 19]. So, here is the amendment we wish to propose:

Definition 2.3. We will say that h0, h1 ∈ R∗(X) are weakly PSC (⋆)-concordant if there exists
a PSC Riemannian metric g on X × I that

1Here, with slight abuse of terminology, when we refer to the restriction of g to X × {0} we really mean the
restriction to the corresponding tangent subspace to X × {0} at each given point, and similarly for X × {1}.
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(i) satisfies condition (⋆);

(ii) restricts to h0 on X × {0}, and to h1 along X × {1};
(iii) makes both X × {0} and X × {1} free boundary minimal surfaces.

In the special case when (⋆) is the condition that the mean curvature of ∂X × I in metric g be
identically zero (respectively, be non-negative), we will just say that h0, h1 ∈ R∗(X) are weakly
PSC min-concordant (respectively, weakly PSC mc-concordant).

Some comments are appropriate.

Remark 2.4. Item (iii) in Definition 2.2 forces the manifolds (X,h0), (X,h1) to have positive
scalar curvature and satisfy condition (⋆) along ∂X; in particular, when (⋆) is the requirement
H = 0 (respectively, H ≥ 0), then (X,h0) and (X,h1) will necessarily have positive scalar
curvature and minimal (respectively, mean-convex) boundary, so that a posteriori we are anyway
defining an equivalence relation in RR>0,H=0 (respectively, RR>0,H≥0). This is by no means true
in the case of the weaker requirement (iii) in Definition 2.3: to make a basic example, we will
see later (as a consequence of Corollary 4.10) that the flat metric on the unit disk D is weakly
PSC min-concordant to the hemispherical metric on the upper half of S2.

Remark 2.5. Already in the simpler closed case (so lifting the (⋆) requirement on the cylindrical
boundary) the resulting notion of weak PSC concordance does place both topological restrictions
on X and metric restrictions on h0, h1. On the former front, note that X × S1 would be forced
to support PSC metrics, so, for instance, when n = 2 we have that X must be a topological
sphere for the definition to have any content. The metric restrictions are a bit more subtle, but
already apparent from Lemma 3.1 below.

Remark 2.6. It is not obvious, but nevertheless true that weak PSC (⋆)-concordance is indeed
an equivalence relation in R(X); specifically, the fact that the relation in question is transitive
follows – as a simple special case – from our companion work [20] (in the spirit of Miao’s
smoothing theorem, see [30], which suffices to cover the case when X is a closed manifold).
In fact, the same deformation methods allow to show that h0, h1 ∈ RR>0,H=0 (respectively,
in RR>0,H≥0) are PSC min-concordant (respectively, PSC mc-concordant) if and only if they are
weakly PSC min-concordant (resp. weakly PSC mc-concordant). In other words, if one restricts
a priori to such subspaces, then it is equivalent to require, on top of conditions (i) and (ii), for
item (iii) that X×{0} and X×{1} meet ∂X× [0, 1] at a right angle and satisfy any of the (local)
geometric conditions in the following hierarchy: (doubling) ⇒ (totally geodesic) ⇒ (minimal),
or even that the metric be a Riemannian product in a neighborhood of the bases.

3 Isotopy in RR>0,H=0 vs. minimal concordance

The following lemma collects some basic slicing formulae concerning warped product metrics on
cylinders. (Here, and in the sequel, we will informally employ the word cylinder when referring
to any smooth manifold of the form X × J for any interval J ⊂ R; the cylindrical boundary is
by definition ∂X×J , while X×{α} and X×{β} will be refereed to as the bases of the cylinder,
if J = [α, β] for α < β ∈ R.)

Lemma 3.1. Let us consider on the manifold M = X × J a smooth metric of the form

g(x, t) = u(x, t)2dt2 + ht(x),

where u ∈ C∞(M) and the map J ∋ t 7→ ht(x) ∈ R(X) is also smooth. Then the following
equations hold:
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(1) 2nd fundamental form of the slice X × {t}

IIt(x) = (2u(x, t))−1 d

dt
ht(x);

(2) mean curvature of the slice X × {t}

Ht(x) = (2u(x, t))−1 trht
d

dt
ht(x);

(3) scalar curvature of the product manifold

Rg = 2u(x, t)−1

(
−∆htu+

1

2
Rhtu

)
− 2u(x, t)−1 d

dt
Ht(x)− (Ht(x))

2 − |IIt|2;

(4) mean curvature of the cylindrical boundary of the product manifold

Hg = (u(x, t))−1(Hhu+ ∂ηu).

Note that for the first two equations we have considered X × {t} as boundary of X × [0, t], i.e.,
we have worked with respect to the unit normal u−1∂t; Rht denotes, instead the scalar curvature
of the manifold (X,ht).

Proof. All formulae but the last one are part of Lemma A.1 of [28]. So let us briefly discuss
item (4). Said {τ1, . . . , τn−1} a local orthonormal frame for the tangent space to ∂X, we can
complete it to a local orthonormal frame for TM by adjoining a unit normal ν to X × {t}
and an outward unit normal η to the cylindrical boundary. In this proof, we will conveniently
write ⟨·, ·⟩ for the bilinear form corresponding to the metric g; let D denote the associated
Levi-Civita connection.

By definition of mean curvature, one has Hg =
∑n−1

i=1 ⟨Dτiη, τi⟩ + ⟨Dνη, ν⟩; here it is clear
that (with our notation, as in the statement) the first summand equals Hh so we are just left
with studying the second. Around a point p, let {x} be local coordinates for X, so with indices
i, j ∈ {1, 2, . . . , n}, and ν = u−1∂t, with t henceforth labelled with the index 0. All sums over
repeated indices are from now understood, as it is customary. Hence ⟨Dνη, ν⟩ = u−2⟨D∂0η, ∂0⟩,
and, once conveniently set φ := ⟨D∂0η, ∂0⟩, we have

φ = ∂0
(
ηi
)
⟨∂i, ∂0⟩+ ηi⟨D∂0∂i, ∂0⟩ = ηi⟨D∂0∂i, ∂0⟩,

where the second equality relies on the block form of the metric in question. We thus need to
compute certain Christoffel symbols for a warped product metric as above: indeed

⟨D∂0∂i, ∂0⟩ = Γ0
0ig00

and, in turn,

Γ0
0i =

1

2
g0ℓ(g0ℓ,i + giℓ,0 − g0i,ℓ) =

1

2
g00(g00,i + gi0,0 − g0i,0) =

1

2
g00g00,i

but g00 = u2(x, t), whence g00,i = 2u∂iu. Combining the previous equations we get

φ = ηiΓ0
0ig00 = ηi

1

2
g00g00,ig00 =

1

2
ηig00,i = ηiu∂iu

and so, at (x, t), there holds Hg = Hh + u−1∂ηu, as claimed. ■
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We can then get back to the relation between isotopy and concordance, in our setting. We
remark that the implication given in the following statement, in the special case when the base
manifold X is a closed manifold, goes back at least to Gromov–Lawson (see [25, Lemma 3]).

Proposition 3.2. Let (ht)t∈I be an isotopy connecting h0, h1 within RR>0,H=0 (respectively,
within RR>0,H≥0). Then h0, h1 are PSC min-concordant (respectively, PSC mc-concordant).

Proof. We claim it suffices to consider, on the product X × I, the class of metrics of the form
g(x, t) = A2dt2 + ht(x) for a suitable choice of (large) A > 0. First of all, by reparametrizing
the isotopy in question (without renaming) we can ensure that the map t 7→ ht is smooth (cf.,
e.g., [16, Proposition 2.1]), ht = h0 for t ∈ [0, 1/3] and ht = h1 for t ∈ [2/3, 1]. That being
said, Lemma 3.1 ensures that Hg = 0 if the given isotopy is in RR>0,H=0, or else Hg ≥ 0 if the
given isotopy occurs RR>0,H≥0 instead; moreover, for the scalar curvature there holds (say at
a point (x, t)) the equation Rg = Rht +Ω(x, t) where |Ω(x, t)| ≤ A−2C for a positive constant C
only depending of the C2-norm of I ∋ t 7→ ht, in fact just on ḣt, ḧt, so it suffices to require
A2 > Cρ−1 for ρ := inf(x,t)Rht(x) to ensure that the given concordance be PSC (i.e., that the
metric g on X × I has positive scalar curvature). ■

In particular, we wish to stress some remarkable consequences that come straight from the
main result obtained by the authors in [19]:

Corollary 3.3. Let X be a compact, orientable manifold of dimension 3. Then any two metrics
in RR>0,H=0 (respectively, within RR>0,H≥0) are PSC min-concordant (respectively, PSC mc-
concordant).

What is always known to be true, without any dimensional restriction, is what follows
(from [18, Section 3], [6, Section 4]):

Corollary 3.4. Let X be a compact, orientable manifold of dimension n ≥ 2. Then any
metric in RR>0,H=0 (RR>0,H≥0) is PSC min- (respectively, mc-) concordant to one with doubling
boundary condition.

We shall recall here that a smooth Riemannian metric g on a compact manifold with bound-
ary X can always be written, near the boundary ∂X in the local form g = ds2 + hs(x) (with s
denoting the distance, measured with respect to g, from the boundary in question), and g is
called doubling if[

∂(2ℓ+1)hs

∂s(2ℓ+1)

]
s=0

= 0 for all ℓ ∈ N

at each point (x, 0); note that when ℓ = 0 this is the requirement that the boundary be totally
geodesic.

So, in practice, by virtue of the previous corollary for any fixed (compact, orientable) manifold
the study of PSC min-concordance RR>0,H=0 may be reduced – whenever convenient – to the
study of the same relation within the smaller subclass given, e.g., by positive scalar curvature
metrics satisfying doubling boundary conditions, hence to the problem of PSC-concordance in
presence of an isometry of “reflection” type.

The question whether the preceding implication (in Proposition 3.2) can actually be reversed,
namely whether concordant metric are necessarily isotopic, is well-known (see, e.g., [31, 32] as
well as references therein) and is still open in its full generality even in the category of closed
(boundaryless, compact) manifolds. Here we wish to pose its natural counterpart in our setting:

Question 3.5. Is it always the case that PSC min-concordant metrics are in fact isotopic in
the space RR>0,H=0?
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Of course one can pose an analogous question under different “boundary conditions”, such as
the useful mean-convexity requirement, or more general constraints involving the mean curvature
of the boundaries in play. Exactly as for the closed case, the question above is to be understood
“modulo potential topological obstructions”, so for instance in the (important) special case when
the base manifold is simply connected.

4 Spaces of metrics defined by a spectral stability condition

In this section we wish to discuss how one can effectively design isotopies (and concordances)
of metrics in the case of surfaces, namely when n = 2. The reader may wish to compare,
in terms of results and methods, the discussion below with that presented in [21] by the first-
named author and Wu; the main theorem there provides a general criterion ensuring that certain
subspaces of R(X) be either empty or contractible. We note that this conclusion applies, in
particular, for RR>0,H≥0 and RR>0,H=0 (such spaces are not empty if and only if X is a disk;
of course R is twice the Gauss curvature while H is the geodesic curvature of the boundary),
see [21, Corollary 1.2].

As anticipated in the introduction, we will now introduce a different subspace of R(X),
defined by a spectral condition. Given any Riemannian metric h on X, for instance possibly the
one obtained by pull-back via an immersion in some ambient manifold, we consider the elliptic
eingenvalue problem with oblique boundary conditions:{

−∆hu+ 1
2Rhu = λu on X,

∂ηu+Hhu = 0 on ∂X,
(4.1)

where η denotes the outward-pointing unit vector field along the boundary ∂X and Hh is com-
puted consistently with this choice. Then we set

M := {h ∈ R(X) : λ1 > 0, where λ1 is the principal eigenvalue for (4.1)} (4.2)

and explicitly note that such a principal eigenvalue admits the variational characterization:

λ1 = inf
u̸=0

∫
X

(
|∇Xu|2 + 1

2Rhu
2
)
dvolh +

∫
∂X Hhu

2dvol∂h∫
X u

2dvolh
, (4.3)

where, with slightly unconventional notation, we have denoted by dvolh the Riemannian volume
element in metric h, and dvol∂h the (n − 1)-dimensional Riemannian volume element induced,
by the same metric, on the boundary ∂X. When we wish to stress the dependence on the

background metric, for instance to avoid ambiguities, we will write λ
(h)
1 .

Furthermore, we shall remark that condition (4.1) implies, for h ∈ M , that one can employ
the associated first eigenfunction to design a Riemannian metric on X × I satisfying peculiar
curvature conditions.

Lemma 4.1. In the setting above, let u = u(x) > 0 denote a first eigenfunction for the oblique
eigenvalue problem (4.1), and let λ1 denote the corresponding eigenvalue. If h ∈ M , then the
metric g = u(x)2dt2 + h on X × I has positive scalar curvature (equal to 2λ1) and minimal
boundary.

Proof. This is straightforward from the formulae collected in Lemma 3.1, since by construction
all slices X × {t} of the cylinder in question are totally geodesic. ■

The introduction of the space M is justified by the following statement, whose proof is an
application of the Schoen–Yau rearrangement trick.
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Lemma 4.2. Let
(
Mn+1, g

)
be a Riemannian manifold with non-negative scalar curvature

(Rg ≥ 0), weakly mean-convex boundary (Hg ≥ 0), and such that

inf
M
Rg + inf

∂M
Hg > 0. (4.4)

If X is a compact, connected, properly embedded, two-sided stable free boundary minimal hyper-
surface, then the induced metric h = gX (on the corresponding tangent bundle to X) belongs
to M = M (X). Furthermore, when n = 2, then Σ is a topological disk.

Proof. In the context of the statement, the stability inequality reads∫
X
|∇Xu|2dvolh ≥

∫
X

(
| IIh |2 +Ricg(ν, ν)

)
u2dvolh

+

∫
∂X

IIg(ν, ν)u
2dvol∂h, ∀u ∈ C∞

c (X),

where IIg denotes the (scalar-valued) second fundamental form of ∂M , IIh is as above, and ν is
a choice of the unit normal to X insideM . Such an inequality can be conveniently rearranged to∫

X

(
|∇Xu|2 +

1

2
Rhu

)
udvolh +

∫
∂X

Hhu
2 dvol∂h

≥
∫
X

1

2

(
Rg + | IIh |2

)
u2dvolh +

∫
∂X

(trg IIg)u
2dvol∂h, ∀u ∈ C∞

c (X).

At this stage, the assumption (4.4) (noting that trg IIg = Hg) together with the very defini-
tions (4.2) and (4.3) implies the first conclusion. Instead, the second claim (corresponding
to n = 2) follows from taking u = 1 in the previous inequality and appealing to the Gauss–
Bonnet theorem since the Euler characteristic of X is forced to be strictly positive. ■

We note that the previous statement can actually by upgraded to a characterization:

Proposition 4.3. Let Xn be a compact manifold with boundary. Then the metrics lying
in M (X) are all and only those induced by the embedding of X as a stable, free boundary
minimal hypersurface in a manifold

(
Mn+1, g

)
satisfying Rg ≥ 0, Hg ≥ 0 and (4.4).

Proof. One implication has been discussed in Lemma 4.2, so let us see the converse. Given
h ∈ M (X), consider the manifold M = X × S1 endowed with the metric g = u2dt2 + h where
u = u(x) > 0 is a first eigenfunction for (4.1). As we have seen above, in Lemma 4.1, the metric g
has positive scalar curvature and minimal boundary, so condition (4.4) is certainly satisfied
(thanks to the compactness of X). Furthermore, fixed any t0 ∈ S1 one has that X×{t0} is a two-
sided totally geodesic hypersurface, meeting the boundary of the ambient metric orthogonally;
its stability follows, e.g., from Barta’s criterion (cf. [22, Lemma 1.36]) since the function ≡ 1
patently lies in the kernel of its Jacobi operator. ■

Next, we prove that M (X) – when not empty – has the simplest possible homotopy type:

Theorem 4.4. Let X = D2. Then the space M (X) is contractible.

Proof. We will verify that the space M (X) satisfies the assumptions of the aforementioned
Theorem 1.1 in [21]. That this space is invariant under diffeomorphism is obvious, so our task is
rather to check that the condition defining this space of metrics is “is convex along the fibers”
in the sense of condition (1) therein. So, let h1 = e2w1h∗ and h2 = e2w2h∗ both belong to M (X)
and we want to prove that ht = e2(t1w1+t2w2)h∗ also belongs to M (X) for any non-negative t1, t2
such that t1+ t2 = 1; here h∗ simply denotes a background metric on the disk (under no further
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specifications). In view of (4.1) and (4.3), we have to find a positive lower bound for the bilinear
form

Bt(u, u) =

∫
X

(∣∣∇ht
X u

∣∣2
ht

+
1

2
Rhtu

2

)
dvolht +

∫
∂X

Hhtu
2dvol∂ht

over the Hilbert sphere
∫
X u

2dvolht = 1. If we exploit the well-known formulae for the conformal
change of Gauss curvature and geodesic curvature we can rewrite (with the obvious notation ∗
referring to all sorts of geometric quantities computed in metric h∗)

Bt(u, u) =

∫
X

(
|∇∗

Xu|2h∗ + (K∗ −∆∗(t1w1 + t2w2))u
2
)
dvolh∗

+

∫
∂X

(κ∗ + η∗(t1w1 + t2w2))u
2dvol∂h∗ ,

which in turn one can rearrange as

Bt(u, u) = t1

(∫
X

(
|∇∗

Xu|2h∗ + (K∗ −∆∗w1)u
2
)
dvolh∗ +

∫
∂X

(
κ∗ + η∗(w1)u

2
)
dvol∂h∗

)
+ t2

(∫
X

(
|∇∗

Xu|2h∗ + (K∗ −∆∗w2)u
2
)
dvolh∗ +

∫
∂X

(
κ∗ + η∗(w2)u

2
)
dvol∂h∗

)
.

As a result, if we let ρ = e−2w for w = maxi=1,2 supX |wi|, we have

Bt(u, u) ≥ t1λ
(h1)
1

∫
X
u2dvolh1 + t2λ

(h2)
1

∫
X
u2dvolh2

= t1λ
(h1)
1

∫
X
u2e2w1dvolh∗ + t2λ

(h2)
1

∫
X
u2e2w2dvolh∗

≥ ρ

(
t1λ

(h1)
1

∫
X
u2dvolht + t2λ

(h2)
1

∫
X
u2dvolht

)
and so we can bound from below this quantity with the corresponding convex combinations of
the bilinear forms for the metrics h1, h2:

Bt(u, u) ≥ ρ
(
t1λ

(h1)
1 + t2λ

(h2)
1

)
≥ ρmin

{
λ
(h1)
1 ;λ

(h2)
1

}
> 0.

Thus we obtain the desired conclusion. ■

This argument applies, as a special case, when X is a closed surface
(
i.e., S2, RP2

)
and thus

strengthens [29, Proposition 1.1], cf. [32, Theorem 3.4] and [4, Section 7].
One can in fact further refine the isotopies above and employ Moser’s trick to ensure “con-

stancy of the area form”. Here is the relevant statement:

Lemma 4.5. Let X be a compact manifold with boundary, and let R∗(X) be a subspace of R(X)
that is invariant under dilations, as well as under diffeomorphisms. Then the following holds:
given any isotopy (ht)t∈I in R∗(X) connecting two metrics having the same volume, meaning
that

∫
X dvolh0 =

∫
X dvolh1, there exists an isotopy

(
h̃t
)
t∈I also lying in R∗(X), connecting the

same metrics (i.e., with the same endpoints) possibly modulo the action of a pull-back through
a diffeomorphism on h1 and such that, in addition, d

dtdvolh̃t = 0 for all t ∈ I.

Proof. Fix σt > 0 such that σ0 = σ1 = 1 and

d

dt
volσtht(X) = 0, t ∈ I;
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it is clear that these numbers are a continuous function of t ∈ I and are in fact smooth if so is
the path t 7→ ht (which by regularization we may and shall assume, without loss of generality);
we further note that∫

X

(
1

2
trσtht

d

dt
(σtht)

)
dvolσtht =

d

dt
volσtht(X) = 0.

Thus, for any t ∈ I we can define ft : X → R to be the unique (null mean) solution to
∆σthtft = −1

2
trσtht

d

dt
(σtht) in X,

∂ft
∂ηt

= 0 on ∂X,

for ηt is the outward pointing unit normal vector field along ∂X. Consider then the corresponding
gradient vector field, Wt = ∇σthtft: the Neumann condition imposed on ft guarantees that Wt

is tangential to ∂X along the boundary. Thus, if we let Ψ = Ψ(x, t) to be the integral flow of
the vector field Wt, then, set ψt(x) = Ψ(x, t), (ψt) is a smooth family of boundary-preserving
diffeomorphisms of X, isotopic to the identity, such that

ψ0 = Id,
d

dt
dvolψ∗

t (σtht)
= 0.

Indeed, the relevant computation reads as follows:

d

dt
dvolψ∗

t (σtht)
= ψ∗

t

[
d

dt
dvolσtht + Lψ̇t

dvolσtht

]
= ψ∗

t

[(
1

2
trσtht

d

dt
(σtht) + divσthtψ̇t

)
dvolσtht

]
= 0,

where the last equality relies on the fact that, by construction, ψ̇t =Wt = ∇σthtft and the very
definition of ft.

(The desired computation is local, in particular it does not involve integration by parts, so
that the boundary plays no role here; thus, one can just follow that given in the proof of [29,
Lemma 1.2].) Hence, if we simply set h̃t = ψ∗

t (σtht) the desired conclusion follows. ■

Corollary 4.6. Let X be a compact manifold with boundary, and let M (X) be defined as above.
Given any isotopy (ht)t∈I in M (X) connecting two metrics having the same volume, meaning
that

∫
X dvolh0 =

∫
X dvolh1, there exists an isotopy

(
h̃t
)
t∈I also lying in M (X), connecting the

same metrics (i.e., with the same endpoints) possibly modulo the action of a pull-back (through
a diffeomorphism) on h1 and such that, in addition, d

dtdvolh̃t = 0 for all t ∈ I.

When dealing with surfaces, one can further specify and strengthen the result.

Corollary 4.7. Let X = D2. For any h ∈ M (X) there exists an isotopy (ht) satisfying the
following properties:

(1) h0 = h and h1 is diffeomorphic to the standard metric on the unit disk in Euclidean R2;

(2) ḣt = 0 on [0, 1/3] ⊔ [2/3, 1];

(3) d
dtdvolht = 0.

Proof. First of all, by the uniformization theorem we can write h0 = e2wh∗ where h∗ is homo-
thetic to the standard metric on the unit disk in Euclidean R2; since patently h∗ ∈ M (X) it
follows, as a special case, from the argument given in the proof of Theorem 4.4 that the whole
segment e2twh∗, t ∈ I lies within M (X). Note that h∗ is chosen so to assign X the same volume
(in fact: area) as in metric h = h0.

By reparametrizing we can certainly ensure that condition (2) above is met as well. At this
stage we apply to this isotopy, seen as input, the construction presented in Lemma 4.5. ■
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The task of properly understanding the space M (X) when the underlying manifold X has
dimension at least three looks rather challenging. One possible approach – arguably not the
only one – consists in first relating it to other spaces of Riemannian metrics whose topology
(specifically: homotopy type) we understand comparatively well. In particular, in view of the
main results in [18, 19] we wish to ask the following question:

Question 4.8. Let X be a compact manifold of dimension equal to three. Is it true that the
space M (X) is either empty or contractible?

This question is particularly intriguing, especially on the analytic side, because the definition
of M (X) involves a non-local condition; when n ≥ 4 the answer to the question above should
(often) be negative, although the landscape is at the moment still largely unexplored.

We now get back to surfaces, and turn from the design of isotopies to the design of suitable
concordances.

Theorem 4.9. Let X be a compact manifold with boundary. If two metrics in M (X) are
isotopic, then they are weakly PSC min-concordant.

Proof. Let (ht) denote an isotopy within M (X), which we can always smoothly reparametrize
so that ḣt = 0 on [0, 1/3] ⊔ [2/3, 1]. Now we consider on M = X × I metrics of the form
g = A2u2tdt

2 + ht where ut > 0 is a first eigenfunction for (4.1)
(
normalized so that, say,∫

X u
2
t dvolht = 1

)
and A > 0 is a constant to be chosen suitably large at a later stage of the

proof. (A functional analytic argument, along the lines of [29, Appendix A], ensures that the
map t 7→ ut ∈ C∞(X;R) can be chosen to be itself smooth). Note that the free boundary
condition holds because of the block structure of the metric g. From the first item of Lemma 3.1
the bases of the cylinder are minimal (in fact totally geodesic); from the last item in the same
statement and the oblique boundary condition imposed on ut it follows that the requirement that
the cylindrical boundary ofM be minimal is also certainly met. Concerning the scalar curvature
of M , we look at the third item therein, and thus observe that (cf. proof of Proposition 3.2)
Rg = 2λ

(t)
1 +O

(
A−2

)
where λ

(t)
1 is the principal eigenvalue associated to the eigenfunction ut,

t ∈ I. Hence, said 0 < λ∗ = inft∈I λt we take A large enough to guarantee that the remainder
term above be less that λ∗. ■

In particular, because of Theorem 4.4 (just at the π0 level) when X = D2 any two metrics
in M (X) are automatically weakly PSC min-concordant. In particular, we wish to spell out
what follows:

Corollary 4.10. Let X = D2. Any h ∈ M (X) is weakly PSC min-concordant to the standard
metric on the unit disk in Euclidean R2.

It is clear that the previous statement cannot possibly hold, and does not even make sense,
in view of Remark 2.4, for (strong) PSC min-concordance.

Remark 4.11 (outward-bending in the sense of Mantoulidis–Schoen). For future reference,
we discuss here in what terms and how one can modify the construction of (isotopies and)
concordances, so to obtain a conclusion similar to those collected in [29, Lemma 1.3], that being
the crucial ancillary step before gluing to exterior Schwarzschild in order to estimate the Bartnik
mass of minimal triples.

Let us consider, for X a compact manifold with boundary and M (X) defined as above, an
isotopy as produced by Corollary 4.6, so a path of metrics in M (X) preserving the volume form
at each point and each time. Then we can place on M := X × I a Riemannian metric g of the
form

g = A2u2tdt
2 +

(
1 + εt2

)
ht
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and, for ε > 0 sufficiently small and A > 0 sufficiently large (only depending on (ht)t∈I), we
claim that the following statements hold:

(i) the scalar curvature of (M, g) is positive;

(ii) the mean curvature of the cylindrical boundary of (M, g) is identically equal to zero;

(iii) the slice X × {0} is minimal, and all slices X × {t0}, t0 ∈ (0, 1] are strictly mean-convex.

(Besides, let us also note that all slices X × {t}, t ∈ [0, 1] will also satisfy the free boundary
condition, namely each of them will meet the ambient boundary orthogonally.) Given the
Ansatz above, the computations are exactly as in the closed case (for which we refer the reader
to [29, pp. 5–6]) except for the study of the cylindrical boundary. In that respect, if we simply
set kt =

(
1 + εt2

)
ht, vt = Aut one can write g = v2t dt

2 + kt and we are in the setting of

Lemma 3.1, hence in particular Hg = (v(x, t))−1(Hkv + ∂ηv) for η = η(k) the outward-pointing
normal in metric g. Since such a vector is patently orthogonal to ∂t there holds (with obvious
meaning of the symbols) η(k) =

(
1 + εt2

)−1/2
η(h), and – by appealing to the standard formula

for the conformal change of mean curvature – Hk =
(
1 + εt2

)−1/2
Hh. Thus, it follows that

Hg =
(
1 + εt2

)−1/2
(u(x, t))−1

(
Hhu+ ∂η(h)u

)
= 0, where the last equality relies on the boundary

conditions imposed on the eigenfunction u. Therefore, the conclusion follows.
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[10] Bourguignon J.-P., Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont
d’Einstein, Invent. Math. 63 (1981), 263–286.

[11] Bourguignon J.-P., Brezis H., Remarks on the Euler equation, J. Funct. Anal. 15 (1974), 341–363.
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