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1 Introduction

The mathematical theory of quantum cohomology and Gromov–Witten theory on symplectic
manifolds was first developed by Y. Ruan and G. Tian [19] in the semi-positive case. This
foundational work was extended later by K. Fukaya and the second named author [12], as well
as J. Li and G. Tian [13], Y. Ruan [18] and B. Siebert [21]. W. Chen and Y. Ruan [3] extended
the theory further to the case of symplectic orbifolds, where the object called twisted sectors or
inertia orbifolds plays a significant role.

The inception of the theory, now known as Floer theory, is attributed to A. Floer. In [5],
he laid the groundwork for the application to Lagrangian intersections, which became known
as Lagrangian Floer theory. After the study in the case of monotone symplectic manifolds
due to Y.-G. Oh [15, 16], K. Fukaya, Y.-G. Oh, H. Ohta and the second named author [6, 7]
constructed Lagrangian Floer theory for general Lagrangian submanifolds. In the case that
Lagrangian submanifolds do not intersect the orbifold loci in a symplectic orbifold, Lagrangian
Floer theory was developed by C.-H. Cho and M. Poddar [4].

However, when considering Lagrangians that may intersect the orbifold loci, complications
arise. To address this issue, we need to explore a specific class of Lagrangians and a variant
of twisted sectors termed “dihedral twisted sectors”. These concepts are crucial for handling
Lagrangian Floer theory. Since the diagonal in the product of two copies of an orbifold intersect
the orbifold loci, we would like to treat the case that Lagrangians may intersect the orbifold loci.

This paper is a contribution to the Special Issue on Differential Geometry Inspired by Mathemati-
cal Physics in honor of Jean-Pierre Bourguignon for his 75th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Bourguignon.html
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The main objective of this article is to present and elucidate these important concepts, demon-
strating their significance in the context of Lagrangian Floer theory on symplectic orbifolds.

The contents are as follows. In Section 2, we briefly review Gromov–Witten theory and
Lagrangian Floer theory on symplectic manifolds. Moving on to Section 3, we delve into fun-
damental notions concerning orbifolds and twisted sectors within the framework of orbifold
Gromov–Witten theory. In Section 4, we introduce the notion of Lagrangians and their dihedral
twisted sectors. In Section 5, we give a brief discussion on the filtered A∞-algebra associated
with a Lagrangian in a closed symplectic orbifold.

2 The case of symplectic manifolds

In this section, we recall the framework of Gromov–Witten theory and Lagrangian Floer theory
on symplectic manifolds. We use the construction over the universal Novikov ring, which is
defined by

Λ0 =

{ ∞∑
i=1

aiT
λi | ai ∈ C, λi ∈ R≥0, λi → ∞ for i→ ∞

}
.

Its unique maximal ideal Λ+ is defined by replacing the condition λi ∈ R≥0 by λi > 0. The field
of fractions of Λ0 is denoted by Λ, which is called the universal Novikov field. Let (X,ω) be a
closed symplectic manifold and J an almost complex structure compatible with ω. A J-holo-
morphic map from a nodal Riemann surface C equipped with distinct ordered ℓ marked points
x⃗ = (x1, . . . , xℓ) away from nodes to (X, J) is called a stable map, if the automorphism group of
f : (C, x⃗) → X is finite, i.e., the number of automorphisms φ of (C, x⃗) with f ◦ φ = f is finite.

For A ∈ H2(X;Z), we denote by Mg,ℓ(X;A) the moduli space of stable maps of genus g, ℓ
marked points and representing A. It is a compact metrizable space and carries the virtual
fundamental class [Mg,ℓ(X;A)]vir. Then the Gromov–Witten invariant is defined by

GWg,ℓ,A : H∗(X;Q)⊗
ℓ → Q, (α1, . . . , αℓ) 7→

∫
[Mg,ℓ(X;A)]vir

ev∗1α1 ∧ · · · ∧ ev∗ℓαℓ

and it satisfies Kontsevich–Manin’s axiom.1 In particular, using genus 0 Gromov–Witten in-
variant, one obtains quantum cup product ∗c parametrized by c ∈ H∗(X; Λ0), i.e., the quantum
cohomology ring of (X,ω).

For a Lagrangian submanifold L in (X,ω), one can also consider J-holomorphic maps from
bordered nodal Riemann surfaces Σ with marked points to (X, J) which map the boundary ∂Σ
of Σ to L. Here nodes and marked points are of two types, i.e., (1) on the interior of Σ, (2) on
the boundary ∂Σ. Boundary marked points z⃗ = (z0, . . . , zk) are disjoint from boundary nodes
and interior marked points x⃗ = (x1, . . . , xℓ) are disjoint from interior nodes. A holomorphic
map u : (Σ, ∂Σ; z⃗, x⃗) → (X,L) is called a bordered stable map, if the automorphism is finite.
For β ∈ H2(X,L;Z), denote by Mk+1,ℓ(X,L;β) the moduli space of bordered stable maps
of genus 0 and with k + 1 boundary marked points, ℓ interior marked points and connected
boundary ∂Σ, representing β. For k ≥ 0,2 the moduli space Mk+1,ℓ(X,L;β) is a compact
metrizable space. A spin structure of L, if exists, determines orientation on Mk+1,ℓ(X,L;β)
and one can construct a virtual fundamental chain. Using the case that ℓ = 0, we define

a filtered A∞-algebra structure on the de Rham complex Ω∗(L)⊗̂CΛ0 by mk =
∑

mk,βT
∫
β ,ω,

where mk,β : Ω(L)
k → Ω(L) is given by

mk,β(ξ1, . . . , ξk) = (−1)∗(ev0)!(ev
∗
1ξ1 ∧ · · · ∧ ev∗kξk), unless (k, β) = (0, 0), (1, 0),

m0,0 = 0, m1,0 = d (de Rham differential).

1Except motivic axiom in symplectic case.
2M0,ℓ(X,L;β) may not be compact, unless we add stable map attached with a constant disk.
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Here (ev0)! is the integration along fibers, if ev0 is a proper submersion. In general, it is defined
using the theory of Kuranishi structures [11].

Using cases of all ℓ, we defined operators p, q (open-closed map, closed-open map) and bulk
deformations of filtered A∞-structure by a cycle in X with Λ+-coefficients.

For a cleanly intersecting pair (L0, L1) of spin Lagrangian submanifolds, we can construct
a filtered A∞-bimodule over the filtered A∞-algebras associated to L0 and L1. We can ex-
tend these constructions for relatively spin Lagrangian submanifolds and relatively spin pair of
Lagrangian submanifolds. For the definition and discussion on relative spin structures, see [7,
Section 8.1.1]. The diagonal ∆X ⊂ (X,−ω) × (X,ω) is not necessary spin but relatively spin.
Set ξ1 ∪Q ξ2 = (−1)deg ξ1(deg ξ2+1)m2(ξ1, ξ2), Then we have the following.

Theorem 2.1 ([8]). There is an isomorphism

I : (H∗(X; Λ0), ∗0) ∼= (H∗(∆X ; Λ0),∪Q).

This statement must be plausible by naive comparison between the moduli spaces used for
the product structures ∗0, i.e., the small quantum product, and ∪Q. However, the stable map
compactifications of these moduli spaces have different boundary structures. To rectify such
a discrepancy, a variant of the operation p mentioned above is used in the proof [8].

3 Orbifolds

3.1 Presentation of an orbifold by a proper étale Lie groupoid

A manifold is a geometric object locally modelled by a Euclidean space. A geometric object
locally modelled by a quotient space of a Euclidean space by a finite group action3 is called
an orbifold, which is a V-manifold4 introduced by Satake [20]. Namely, for each point p on an
n-dimensional orbifold X, there is a neighborhood U of p such that U ∼= Bn/Γp, where B

n is
an open ball Bn ⊂ Rn and Γp is a finite group acting on Rn linearly. We call Bn → Bn/Γp ∼= U
a local uniformizing cover. In the case of manifolds, there are coordinate changes among local
coordinate neighborhoods. On an orbifold, there are equivariant diffeomorphisms among suitably
shrunk local uniformization covers, which satisfy suitable compatibility condition.

We can define notions of (co)tangent vector bundles, more generally vector bundles, in a nat-
ural way. Differential forms and vector fields are defined as those on uniformization covers,
which are invariant under the action of the finite groups Γp. For morphisms between orbifolds,
if one defines it as a continuous map between the underlying topological spaces of orbifolds
such that it is lifted to a smooth equivariant map between uniformization covers, one may still
pull back differential forms. But this is not enough for pulling back vector bundles, in general.
W. Chen and Y. Ruan introduced the notion of good maps. Here we review the notion using
the terminology of groupoids, e.g., [14, Section 5.6].

A groupoid is a category C = (C0, C1, s, t,m, u, i) such that all morphisms are invertible.
Here C0 is the set of objects, C1 is the set of morphisms, s (resp. t) : C1 → C0 is a map as-
signing the source (resp. target) to a morphism, m : C1s ×C0 tC1 → C1 is the composition of
morphisms. Here C1s ×C0 tC1 = {(f, g) ∈ C1 × C1 | s(f) = t(g)} and the composition m enjoys
the associativity. From now on, we may write m(f, g) = f ◦g. i : C1 → C1 is a map assigning the
inverse of a morphism, u : C0 → C1 is the map assigning the unit morphism to an object in C0.

For x, y ∈ C0, we define x∼C y if and only if s−1(x)∩t−1(y) ̸= ∅, namely, there is a morphism
from x to y. Then ∼C is an equivalence relation. Suppose that C0, C1 are manifolds, s, t are
smooth maps such that s (or equivalently, t) is a submersion, C1s×C0 tC1 has also a structure
of a manifold. When m, u, i are also smooth maps, C is called a Lie groupoid.

3We consider the action is effective in this article.
4T. Takakura asked Professor Satake what “V” stands for. His answer was Verzweigung.
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Definition 3.1.

(1) The quotient space of C0 by the equivalence relation ∼C is called the coarse space of C,
which is denoted by |C|.

(2) A groupoid C is called a proper groupoid if s× t : C1 → C0 × C0 is proper.

(3) A Lie groupoid C is called a étale Lie groupoid, if s (or, equivalently, t) is a local diffeo-
morphism.

Roughly speaking, for an orbifold X, we can construct a proper étale Lie groupoid X with
an identification |X | ∼= X of the coarse space of X and the underlying topological space of the
orbifold X. Namely, X0 is the disjoint union of local uniformization covers and X1 being the
space of germs [ψ] of local equivariant diffeomorphisms ψ between suitable open subsets of local
uniformization covers such that ψ induces the identity on an open subset of |X | ∼= X. Denote
by π : X0 → |X | the projection from the space of objects to the coarse space.

A proper étale Lie groupoid is locally described by an action groupoid (or translation groupoid)
below [14, Proposition 5.30].

Definition 3.2. Let Γ be a group acting on U . We set C0 = U , C1 = Γ × U , s = pr2 (the
projection to the second factor), t : C1 = Γ×U → U the action of Γ on U , u(x) = (id, x), i(γ, x) =(
γ−1, γ · x

)
. Define m((γ, x), (σ, y)) = (γ · σ, y), when x = σ · y. Then C = (C0, C1, s, t,m, u, i) is

a groupoid, which is called an action groupoid and is denoted by Γ⋉U . When U is a manifold
and a finite group Γ acts on U smoothly, C is a proper étale Lie groupoid.

From now on, we use the presentation of an orbifold X by a proper étale Lie groupoid X in
the following arguments.

Definition 3.3.

(1) A differential form on an orbifold X presented by a proper étale Lie groupoid X is a pair
of differential forms η0, η1 on X0 and X1, respectively, such that η1 = s∗η0 = t∗η0.
In particular, a symplectic form on X is a pair of symplectic forms ω0, ω1 on X0, X1,
respectively, such that ω1 = s∗ω0 = t∗ω0.

(2) An almost complex structure on orbifold X is a pair of almost complex structures J0, J1
on X0, X1, respectively, such that s∗ ◦ J1 = J0 ◦ s∗, t∗ ◦ J1 = J0 ◦ t∗.

(3) A vector bundle E on an orbifold X is a pair of vector bundles E0, E1 on X0, X1,
respectively, equipped with consistent isomorphisms5 s∗E0

∼= E1, t
∗E0

∼= E1. Principal
bundles on an orbifold is defined in the same manner.

Next, we discuss the notion of morphisms between orbifolds. Let X and Y be proper étale
Lie groupoids representing orbifolds X and Y . Since a groupoid is a category, it is natural to
consider a functor F = (F0, F1) such that Fi : Xi → Yi, i = 0, 1 are smooth (smooth functor).
We call such a functor a strict smooth morphism from X to Y. It is, however, not sufficient,
since, even in the case of smooth maps between manifolds, the image of a coordinate chart of X
is not necessarily contained in a coordinate chart in Y . Therefore, we need to take a refinement
of a groupoid.

Definition 3.4. A refinement of a proper étale Lie groupoid X associated with an open covering{
U (j)

}
of X0 is a proper Lie groupoid with U0 =

⊔
j U

(j), U1 =
⊔
i,j t

−1
(
U (j)

)
∩ s−1

(
U i

)
such

that the structure maps s, t, m, u, i are naturally induced from those for X .

5These isomorphisms gives an action of X1 on E0.
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For orbifolds X, Y , we define a morphism from X to Y as a smooth functor from some
refinement of X to Y. Let us go back to the case of smooth maps between manifolds, the
same map may be described as various system of maps between coordinate charts, i.e., the
image of a coordinate chart of X may be contained in various coordinate charts of Y . Hence
the description as a smooth functor is not unique. Thus we need to consider smooth natural
transformation between two smooth functors.

To be precise, let Mor0(X ,Y) be the object space consisting of smooth functors from a re-
finement of X to Y, with its element given by

X Uϕoo u // Y,

where ϕ : U → X is a refinement of X , and u : U → Y is a strict smooth morphism. We
simply denote this object by (U , ϕ, u). Given two objects (U , ϕ, u) and (V, ψ, v) a morphism
from (U , ϕ, u) and (V, ψ, v) is a common refinement W of U and V together with a natural
transformation α : u ◦ π1 =⇒ v ◦ π2 as illustrated in following diagram:

U
ϕ

{{

u

!!
α

��

X Woo

π1

>>

π2   

Y.

V
ψ

cc

v

==

This forms the morphism space Mor1((U , ϕ,u), (V, ψ,v)) ⊂ Mor1(X ,Y). The composition of
two composable morphisms and other structure maps can be found in [2] where the Sobolev
completion of Mor(X ,Y) is developed.6 For any continuous morphism f ∈ Mor0(X ,Y) in this
sense, we can pull-back vector bundle E in the sense of Definition 3.3 (3). For f, g ∈ Mor0(X ,Y),
if there is a morphism T ∈ Mor1(X ,Y) from f to g, T induces an isomorphism between f∗E
and g∗E.

3.2 Twisted sector and orbifold stable maps

We introduce the notion of the twisted sector (or inertia groupoid) for an orbifold X presented
by a proper étale Lie groupoid X .

Definition 3.5. For a proper étale Lie groupoid X , we set

IX0 = {a ∈ X1 | s(a) = t(a)}, IX1 =
{
a

g→ b | a, b ∈ IX0, g ∈ X1, b = g ◦ a ◦ i(g)
}
,

s
(
a

g→ b
)
= a, t

(
a

g→ b
)
= b, m

(
b
h→ c, a

g→ b
)
= a

h◦g→ c,

i
(
a

g→ b
)
= b

i(g)→ a, u(a) = a
u(s(a))→ a.

Then we obtain a groupoid

IX = (IX0, IX1, s, t,m, u, i).

We call it the twisted sector (or inertia groupoid) of X . The twisted sector of a proper étale Lie
groupoid X is a proper étale Lie groupoid, although the dimension depends on its connected
components. Note that IX0 contains the space of identities, which is identified with X0. The
restriction of IX to X0 is called the trivial twisted sector (or the untwisted sector).

6There is a formulation in terms of bibundles. For the purpose of the moduli spaces of stable maps with
Kuranishi structures, we use the description given here.
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For example, the twisted sector I(Γ⋉ U) of an action groupoid Γ⋉ U is described as

I(Γ⋉ U)0 = {(γ, x) ∈ Γ× U | γ · x = x},

I(Γ⋉ U)1 =
{
(γ, x)

ρ→ (σ, y) | γ · x = x, σ · y = y, y = ρ · x, σ = ρ ◦ γ ◦ ρ−1
}
.

When an orbifold X is equipped with an almost complex structure J = (J0, J1), we assign
the age (or the degree shifting number) to a ∈ IX0. Considering the situation locally, we reduce
the discussion to the case of an action groupoid. Then a is given by (γ, x) ∈ I(Γ ⋉ U)0. We
regard γ : U → U around x a J0-linear map γ : Cn → Cn (x corresponds to the origin of Cn).
Since Γ is a finite group, there is a minimal positive integer m such that γm = id and the action
by γ around x is diagonalizable and presented by a matrix conjugate to

diag
(
exp

(
2πm1

√
−1/m

)
, . . . , exp

(
2πmn

√
−1/m

))
,

where 0 ≤ mj < m, j = 1, . . . , n. Then we set age(γ, x) = (m1+ · · ·+mn)/m and call it the age
(or the degree shifting number) of (γ, x). The age is a locally constant function on (the space of
objects of) the twisted sector. More generally, for an orbifold complex vector bundle, we define
the age of the Γ-action on the fiber.

The age is an important invariant associated with the action of γ ∈ Γ on a complex vector
bundle. Specifically, when considering the Dolbeault operator acting on sections of holomorphic
orbifold vector bundle over an orbifold Riemann surface, its Fredholm index is, by definition, an
integer. However, the orbifold Chern number is a rational number, not necessarily an integer.
Consequently, in this context, the topological quantity appearing in Riemann–Roch theorem is
corrected by the age (for the local action on the vector bundle). In the theory of stable maps
from an orbifold Riemann surface, an elliptic operator acting on the pull-back of the tangent
bundle of the target by an orbifold stable map appears as the linearization of the equation for
pseudo-holomorphic maps. Such an operator has the same principal symbol as the Dolbeault
operator with coefficients in a holomorphic orbifold vector bundle, i.e., the pull-back of the
tangent bundle. Thus the (virtual) dimension of the moduli space is expressed by the Fredholm
index of the linearization operator and the age mentioned above plays an important role.

A holomorphic map from an orbifold Riemann surface C to an almost complex orbifold X
is defined to be a smooth functor F = (F0, F1) from a refinement C of a proper étale Lie
groupoid representing C to a proper étale Lie groupoid X equipped with an almost complex
structure (J0, J1) representing X such that F0, F1 are holomorphic with respect to J0, J1,
respectively. Here, C is an effective orbifold (locally, the action groupoid Γ⋉D associated with
an effective action of a finite group Γ on the unit diskD ⊂ C keeping the origin fixed). The almost
complex orbifold X is also locally presented by an action groupoid associated with an effective
action of a finite group G on an almost complex manifold. Then a morphism ϕ : Γ⋉D → G⋉U
is given by a pair of ϕ0 : D → U and a homomorphism ϕ1 : Γ → G such that ϕ0 is ϕ1-equivariant
J0-holomorphic map. In orbifold Gromov–Witten theory, we only consider those such that the
homomorphism ϕ1 is injective.

We next explain a pseudo-holomorphic ϕ : C → X takes values in the twisted sector. Pick
an action groupoid Γ ⋉ D (with O ∈ D representing p) presenting a neighborhood of p ∈ C
and an action groupoid G ⋉ U presenting a neighborhood of |ϕ|(p) ∈ X. Here |ϕ| is the map
from |C| to |X | induced by ϕ. Let η ∈ Γ be the generator corresponding to exp

(
2π

√
−1/m

)
.

Then (ϕ1(η), ϕ0(O)) belongs to IX0. If η is not trivial, (ϕ1(η), ϕ0(O)) belongs to a non-trivial
twisted sector, since ϕ1 is injective. When there is a natural transformation between ϕ = (ϕ0, ϕ1)
and ϕ′ = (ϕ′0, ϕ

′
1), the equivalence classes of (ϕ1(η), ϕ0(O)) and (ϕ′1(η), ϕ

′
0(O)) in |IX| are the

same. Therefore, the image in |IX| is well defined.
An orbifold stable map from an orbifold nodal Riemann surface C to an almost complex

orbifold X is defined in the following way. Take a normalization p : C̃ → C of C. Then, for each
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(possibly orbifold) node z ∈ C, there is a pair (z̃′, z̃′′) ∈ C̃ × C̃. An orbifold holomorphic map
from C to X is represented by an orbifold holomorphic map from C̃ to X such that, for each
node z, (z̃′ and z̃′′) are mapped to (g, x) and

(
g−1, x

)
, for some g ∈ G and x ∈ U , in the twisted

sector of G⋉ U which is a local model of X . The stable condition is, as usual, the finiteness of
the automorphism of the map.

In ordinary Gromov–Witten theory, our focus lies on holomorphic maps from nodal Riemann
surfaces. However, in orbifold Gromov–Witten theory, we also consider holomorphic maps from
orbifold Riemann surfaces allowing orbifold nodes. It is not possible to obtain the nodal orbifold
structure simply by looking at the degeneration of domain orbifold Riemann surfaces. Instead,
we need to investigate the degeneration of holomorphic curves. To achieve this, we introduce an
orbifold structure around nodes ensuring that the homomorphism ϕ1 above is injective.

Similar to the case of manifolds, for a symplectic orbifold X, we pick an compatible almost
complex structure. Fix a homology class A (the homology class of the map between coarse
spaces), the moduli space Mg,m(A) of orbifold stable maps representing A is compact Hausdorff
and carries a virtual fundamental class. (The injectivity of ϕ1 mentioned above is used for the ef-
fectivity of the Kuranishi structure.) Here, g is the genus of the domain curve, m = (m1, . . . ,mℓ)
is the data of marked orbifold points. (When mj = 1, the marked point is a regular point.)
We can define the evaluation map evj : Mg,m(A) → |IX|, j = 1, . . . , ℓ. Using them, orbifold
Gromov–Witten invariant

GWg,ℓ,A : H∗(|IX|)⊗ℓ → Q

is defined by

(α1, . . . , αℓ) 7→
∑
|m|=ℓ

∫
[Mg,m(A)]vir

ev∗1α1 ∧ · · · ∧ ev∗ℓαℓ.

It is a convention that the grading of H∗(|IX|) is shifted by twice of the age of each connected
component of |IX|.

4 Lagrangian and dihedral twisted sector

4.1 Definition of Lagrangians

A Lagrangian submanifold L in a symplectic manifold X has a neighborhood, which is sym-
plectomorphic to a tubular neighborhood of the zero section of the cotangent bundle T ∗L of L
(Weinstein). The zero section is the fixed point set of the fiberwise multiplication by −1,
which is an anti-symplectic involution. Hence there is a neighborhood W of L and an involu-
tion τ : W → W with τ∗ω = −ω such that L is the fixed point set of τ . Based on this fact, we
introduce an orientifold structure on a symplectic orbifold and define an associated Lagrangian
in a symplectic orbifold as follows.

Let (s, t) : (X1, ω1) ⇒ (X0, ω0) be a proper étale Lie groupoid representing the symplectic
orbifold (X , ω), that is, (X0, ω0) is a symplectic manifold and ω1 = s∗ω0 = t∗ω0.

Firstly, we introduce the notion of symplectic orientifolds. Denote by BZ2 the action groupoid
of the trivial Z2

∼= {±1} action on a point, i.e., {±1}⋉ {pt}. An orientifold structure on (X , ω)
is a proper étale Lie groupoid X̃ =

(
X̃1 ⇒ X̃0

)
X // X̃ ε // BZ2,

where X̃0 = X0 and ε : X̃ =
(
X̃1 ⇒ X̃0

)
→ BZ2

∼= {±1} ⋉ {pt} is a strict groupoid morphism
such that Ker(ε) = X and, for any arrow γ /∈ ker(ε), the local diffeomorphism ψγ : Us(γ) → Ut(γ)
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is an anti-symplectomorphism. Here Us(γ) and Ut(γ) are open neighbourhoods of s(γ) and t(γ)
respectively in X0 such that, for p ∈ Us(γ) (resp. q ∈ Ut(γ)), ψγ gives an arrow γ′ (resp. γ′′),
with s(γ′) = p (resp. t(γ′′) = q). Namely, ψγ gives local sections Us(γ) → X̃1 and Ut(γ) → X̃1.

Equivalently, we can decompose the arrow space X̃1 as a disjoint union X̃1 = X1 ∪X−1, where
X−1 =

{
γ ∈ X̃1 | ε(γ) = −1

}
. The induced maps (s, t) : X−1 ⇒ X0 satisfy s∗ω0 = −t∗ω0. Note

that (s, t) : X−1 ⇒ X0 is not a groupoid, as any product of composable arrows γ and γ′ with
ε(γ) = ε(γ′) = −1 is not an arrow in X−1 as ε(γγ′) = 1. We call γ with ε(γ) = −1 an odd arrow
(or odd morphism).

For x ∈ X0, let Γx and Γ̃x be the isotropy group of x in X and X̃ respectively, then an
orientifold structure induces an extension of the local group Γx

{1} → Γx −→ Γ̃x −→ Z2 → {1}.

We simply denote an orientifold structure on (X , ω) by
(
X̃ , ω, ε

)
.

Now, we introduce the notion of Lagrangians in symplectic orbifolds. Let L be a subset
of X ∼= |X |. We shall call L the underlying space of a Lagrangian in the symplectic orbifold X,
if there is a neighborhood W of L equipped with an open orientifold structure on W = π−1(W )
in the following sense. Here π : X0 → |X | is the projection to the coarse space.

An open orientifold structure on (X , ω) is an open suborbifold W of (X , ω) with an orien-
tifold structure

(
W̃, ω, ε

)
on (W, ω). Let (W, ω) be an open suborbifold of (X , ω), represented

by (W1 ⇒W0), where W0 is an open submanifold of X0, and W1 = s−1(W0)∩ t−1(W0). Assume
that W admits an orientifold structure W̃ =

((
W̃1 ⇒ W̃0

)
, ω, ε

)
. We can define a Lagrangian

L = (L1 ⇒ L0) in (X , ω) associated to the orientifold structure
(
W̃, ε

)
as follows,

Denote by Inv
(
W̃1

)
=

{
τ ∈ W̃1 | ε(τ) = −1, s(τ) = t(τ), τ2 = u(s(τ))

}
the space of

involutive odd arrows in W̃1. Then there is the adjoint action of W1 on Inv
(
W̃1

)
, i.e., (γ, τ) ∈

(W1)s ×t Inv
(
W̃1

)
7→ γ · τ · γ−1 ∈ Inv

(
W̃1

)
. Note that Inv

(
W̃1

)
is a manifold of dimension

1
2 dimX. A Lagrangian in a symplectic orbifold is the following data.

(1) I is a collection of connected components of Inv
(
W̃1

)
, which is invariant under the adjoint

action by W1.

(2) The space L0 is defined by

L0 = {(x, τ) | x ∈W0, τ ∈ I, s(τ) = t(τ) = x} =
⊔
τ∈I

W̃ τ
0 ,

where W̃ τ
0 =

{
x ∈ W̃0 =W0 | x = s(τ) = t(τ)

}
(the fixed point set of τ), such that

L =
⋃
τ∈I

π
(
W̃ τ

0

)
.

(3) The morphism space L1 between two elements (x, τ) and (y, τ ′):

MorL((x, τ), (y, τ
′))

consists of γ ∈ MorW(x, y) satisfies γτγ−1 = τ ′. There are canonical maps (s, t) : L1 ⇒ L0.
The composition, unit and inverse maps are induced from the corresponding maps for
W = (W1 ⇒W0).

If these conditions are fulfilled, we call L a Lagrangian in the symplectic orbifold (X , ω) associated
to an open orientifold structure

(
W̃, ω, ε

)
on an open suborbifold (W, ω) of (X , ω). A Lagrangian

in (X , ω) is a Lagrangian associated to some open orientifold structure
(
W̃, ω, ε

)
and some I.
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Note that L = (L1 ⇒ L0) is a proper étale Lie groupoid. There is a canonical strict morphism

(ι1, ι0) : (L1 ⇒ L0) −→ (W1 ⇒W0)

such that ι0 : L0 →W0 is an immersion, and the groupoid structure on L1 ⇒ L0 is induced from
the groupoid action of W on L0.

When W is locally described by a finite group action groupoid G ⋉ U ⇒ U , the orientifold
structure implies that there is an exact sequence of groups

{1} → G −→ G̃
ε−→ Z2 → {1}

such that g ∈ G̃-action on U satisfies g∗ω = ε(g)ω. Let I be a subset of Inv
(
G̃
)
, which is the

set of all g ∈ G̃ such that g2 = 1 and ε(g) = −1. If I is invariant under the adjoint action by G,
we can also have a Lagrangian LI , which is an open and closed suborbifold of L.

As an example of a Lagrangian in a symplectic orbifold, we consider the diagonal ∆X in
the product (X × X ,−pr∗1ω + pr∗2ω) of a symplectic orbifold (X , ω). Firstly, we review the
diagonal in the setting of orbifolds, cf. [1, Example 2.6]. Let X be the proper étale Lie groupoid
presenting X. Then we define the diagonal groupoid ∆X by

(∆X )0 = {(x, α, y) ∈ X0 ×X1 ×X0 | s(α) = x, t(α) = y}

(∆X )1 =
{
(x, α, y)

h1,h2→ (x′, α′, y′) | h1, h2 ∈ X1,

s(h1) = x, t(h1) = x′, s(h2) = y, t(h2) = y′, m(h2, α) = m(α′, h1)
}

such that the structure maps s, t, m, u, i are naturally induced from X . Then ∆X is a groupoid.
When X = (G⋉ U ⇒ U), we find that

(∆G⋉U )0 =
⊔
g∈G

∆g,∆g = {(x, gx) | x ∈ U}, (∆G⋉U )1 = (G×G)×
(⊔
g∈G

∆g

)
.

We use the notation (x, gx; g) for (x, gx) ∈ ∆g. We set s((h1, h2), (x, gx; g)) = (x, gx; g),
t((h1, h2), (x, gx; g)) =

(
h1x, h2gx;h2gh

−1
1

)
, etc. In other words, ∆G⋉U is the action groupoid

(G×G)⋉ ⊔∆g associated with the action of G×G on ⊔∆g.
Now we discuss the canonical orientifold structure on (X ,−ω)× (X , ω) defined by the canon-

ical involution τcan of switching two components. Suppose that a local model for X is given by
a finite group action groupoid (G⋉U ⇒ U) as above. Note that ∆id is the fixed point set of the
involution τcan(x, x

′) = (x′, x). Since τcan is the reflection with respect to ∆id, we set τid = τcan.
Note also that ∆g = (1, g)∆id is the fixed point set of

τg = (1, g) ◦ τid ◦
(
1, g−1

)
=

(
g−1, g

)
◦ τid.

Denote by G̃×G the group generated by G × G and τid. Then we see that G̃×G is the semi
direct product

G̃×G = (G×G)⋊ Z2

with the Z2-action is defined by the adjoint action by the involution (g1, g2) 7→ τcan·(g1, g2)·τ−1
can =

(g2, g1) for (g1, g2) ∈ G×G. Then the corresponding local model for X × X is

(G×G)⋉ (U × U) ⇒ U × U.

Note that the odd involutive elements in G̃×G consists of
{(
g−1, g

)
◦ τcan | g ∈ G

}
, and the

fixed point of the involution action
(
g−1, g

)
◦ τcan on U × U consists of {(x, gx) | x ∈ U}.
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The Lagrangian L for this orientifold structure can be described as follows.
(
In this case, we

take I = Inv
((
X̃ × X

)
1

)
.
)
For an order m element g ∈ G, there is a monomorphism from the

dihedral group

Dm −→ G̃×G

with the image generated by
(
g−1, g

)
and τ . So, locally over U × U , the associated Lagrangian

is presented by
(
LU0 ⇒ LU1

)
with the unit space

LU0 =
⊔
g∈G

Fix
((
g−1, g

)
◦ τcan

)
=

⊔
g∈G

{(x, gx; g) | g ∈ G, x ∈ U},

and the morphism space LU1 = (G×G)× LU0 with the obvious action

(h1, h2) : (x, gx; g) 7→
(
h1x, h2gx;h2gh

−1
1

)
for (h1, h2) ∈ G×G, here (h1x, h2gx) is a fixed point of the involutive element(

h1g
−1h−1

2 , h2gh
−1
1

)
◦ τcan.

We clearly see that L is equivalent to ∆X , which we discussed above. So this canonical La-
grangian is indeed X diagonally embedded in (X ,−ω)× (X , ω). Locally, we can check that the
natural inclusion (ϕ1, ϕ0) : (G⋊U⇒ U) →

(
LU1 ⇒ LU0

)
is the equivalence where ϕ0(x) = (x, x; id)

and ϕ1(g, x) = ((g, g), (x, x; id)).
Clearly, the groupoid ∆G⋉U is isomorphic to

(
LU1 ⇒ LU0

)
, which we obtained from the

symplectic orientifold.

4.2 Dihedral twisted sector

Let L be a Lagrangian of a symplectic orbifold (X , ω) associated to a local orientifold struc-
ture

(
W̃, ω, ε

)
on an open symplectic suborbifold (W, ω) as in the previous subsection. Let

W = (W1 ⇒ W0). We introduce a notion of the dihedral twisted sectors of a Lagrangian in
a symplectic orbifold.

Definition 4.1. For a Lagrangian L = (L1 ⇒ L0) in a symplectic orbifold (X , ω) as above, we
have the following proper étale Lie groupoid IXL such that the space of objects is given by

(IXL)0 = L0 ×W̃0
L0 =

⊔
τ,τ ′∈I

W̃ τ
0 ∩ W̃ τ ′

0

and the space of morphisms is induced from the diagonal action of W-action on L0 ×W̃0
L0 in

the sense that for any point

(x, τ, τ ′) ∈ W̃ τ
0 ∩ W̃ τ ′

0 ⊂ L0 ×W̃0
L0

and h ∈ s−1(x) ⊂ W1, h · (x, τ, τ ′) =
(
t(h), hτh−1, hτ ′h−1

)
. Equivalently, for any pair (x, τ, τ ′)

and (y, τ̃ , τ̃ ′) in (IXL)0,

MorIXL((x, τ, τ
′), (y, τ̃ , τ̃ ′)) =

{
h ∈ MorW(x, y) | τ̃ = hτh−1, τ̃ ′ = hτ ′h−1 ∈ W̃1

}
with the obvious source and target maps. The other structure maps m,u, i are induced from
the corresponding maps in W. We call IXL the dihedral twisted sector7 of the Lagrangian L in
the symplectic orbifold X .

7Let Zm, Dm be the cyclic group of order m and the dihedral group of order 2m, respectively. Then the
dihedral twisted sector of L can be described as

W ⋉
⊔
m∈N

IMor
(
BDm, W̃

)
.

Here the symbol IMor in the notation indicates that the injectivity on the level of morphism spaces is required.
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Recall the exact sequence {1} → W1 → W̃1
ε→ {±1} → {1}. For any pair τ, τ ′ ∈ Inv

(
W̃1

)
with non-empty W̃ τ

0 ∩ W̃ τ ′
0 , then τ ′τ−1 = g ∈W1 and τgτ = g−1. Pairs (τ, τ ′) of odd involutions

is in one-to-one correspondence with pairs (τ, g) of odd involution and an element of W1 such
that τ ·g ·τ = g−1. So we can rephrase the definition of the dihedral twisted sector using (x, τ, g)
for g ∈W1 satisfying τgτ = g−1 (dihedral relation).8

Now, we discuss the case of the diagonal ∆X in Section 4.1. In fact, it motivated us to make
the definition of the dihedral twisted sector. We first consider a holomorphic map Φ = (Φ0,Φ1)
from a half infinite cylinder

[0,∞)× [−1, 1]/(τ,−1) ∼ (τ, 1)

to a complex orbifold presented by G⋉U , the action groupoid of the action of a finite group G
on U . Note that the half infinite cylinder is presented by the following groupoid C = (C0, C1)
such that C0 = [0,∞)×[−1, 1] and C1 is the disjoint union of {id(τ,t)|(τ, t) ∈ [0,∞)×[−1, 1]} and
{a(τ,1) : (τ, 1) → (τ,−1)}, {a(τ,−1) : (τ,−1) → (τ, 1)}. We define the structure maps s, t, m, u, i
in an obvious way. This groupoid9 is a presentation of the equivalence relation ∼ on C0. Then Φ
is given by the pair of a holomorphic map Φ0 : [0,∞) × [−1, 1] → U , Φ1 : C1 → (G ⋉ U)1 such
that Φ1(id(τ,t)) = u(Φ0(τ, t)), Φ1(a(τ,−1)) = (g(τ),Φ0(τ,−1)) and Φ1(a(τ,1)) =

(
g(τ)−1,Φ0(τ, 1)

)
for some g(τ) ∈ G. Since Φ1 is continuous, Φ1 is regarded as a locally constant function with
values in G. We set γ = Φ1(a(τ,−1)). Here, the condition that Φ0(τ, 1) = γ ·Φ0(τ,−1) is required.
Since γ is of finite order, we obtain a holomorphic map from a finite cover of the half-infinite
cylinder to U . If Φ0 is a holomorphic map with finite energy, the limit

p = lim
τ→∞

Φ0(τ, t)

exists and is independent of t. Thus we find that γ · p = p, i.e., (γ, p) ∈ G ⋉ U belongs to the
twisted sector. If we replace Φ by σ ·Φ =

(
σ ·Φ0, σ ·Φ1 ·σ−1

)
, (γ, p) changes to

(
σ ·γ ·σ−1, σ ·p

)
.

It is compatible with the local description of the twisted sector of the action groupoid.
Next, we rewrite the above argument using a holomorphic map

Ψ(τ, t) = (Φ0(τ,−t),Φ0(τ, t))

from [0,∞] × [0, 1] to (G × G) ⋉ ((U,−J) × (U, J)). Then it satisfies the boundary condi-
tion ∆id along t = 0 and ∆γ along t = 1. Apply the Schwarz reflection principle to Ψ and
the anti-holomorphic involution τid(x, x

′) = (x′, x) which is the reflection with respect to ∆id,
we obtain an extension Ψ+ : [0,∞) × [−1, 1] → U × U . Note that the anti-holomorphic in-
volution τγ = (1, γ) ◦ τid ◦

(
1, γ−1

)
=

(
γ−1, γ

)
◦ τid, the fixed point set of which is ∆γ . Since

Ψ+(τ, 1) = τid ◦Ψ+(τ,−1), we find that

Ψ+(τ, 1) =
(
γ−1, γ

)
·Ψ+(τ,−1).

In this way, we get the element
(
γ−1, γ

)
∈ G × G from Ψ and τid. Then we conclude that the

object (γ, p) in the twisted sector, which is given by the behavior of Φ under τ → ∞ corresponds
to the triple

(
(p, p), τid,

(
γ−1, γ

))
in the dihedral twisted sector, which is given by the behavior

of Ψ under τ → ∞. This leads us to the notion of the dihedral twisted sector.
If we consider Ψρ1,ρ2 = (ρ1, ρ2)◦Ψ, the boundary conditions along t = 0 and t = 1 are ∆ρ2·ρ−1

1
and ∆ρ2·γ·ρ−1

1
, respectively. Set σ = ρ2 ·ρ−1

1 and ζ = ρ2 ·γ ·ρ−1
1 . Applying the Schwarz reflection

8In the case of Floer theory for cleanly intersecting Lagrangians, the formulation using a pair of anti-symplectic
involutions is better suited.

9This is not a étale groupoid. Take [0,∞) × (−1 − δ, 1 + δ) instead of [0,∞) × [−1, 1] and an equivalence
relation (τ, t) ∼ (τ, t+2) for t ∈ (−1− δ,−1+ δ). Then the corresponding groupoid is a proper étale Lie groupoid
representing the cylinder. For the argument here, both groupoid works.
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to Ψρ1,ρ2 with respect to τσ, we obtain an extension Ψ+
ρ1,ρ2 : [0,∞) × [−1, 1] → U × U . The

boundary conditions for Ψ+
ρ1,ρ2 are τσ∆ζ and ∆ζ along t = −1 and t = 1, respectively. Note

that

τζ =
(
1, ζ · σ−1

)
◦ τσ ◦

(
1, σ · ζ−1

)
=

(
ζ−1 · σ, ζ · σ−1

)
◦ τσ,

i.e.,

τρ2·γ·ρ−1
1

=
(
ρ1 · γ−1 · ρ−1

1 , ρ2 · γ · ρ−1
2

)
◦ τρ2·ρ−1

1
.

Then, for a point x ∈ ∆ζ , we have x =
(
ζ−1 · σ, ζ · σ−1

)
◦ τσ(x). Hence, we find that

Ψ+
ρ1,ρ2(τ, 1) =

(
ζ−1 · σ, ζ · σ−1

)
Ψ+
ρ1,ρ2(τ,−1) =

(
ρ1 · γ−1 · ρ−1

1 , ρ2 · γ · ρ−1
2

)
Ψ+
ρ1,ρ2(τ,−1).

We assign an object
(
(ρ1p, ρ2p), τρ2·ρ−1

1
,
(
ρ1 · γ−1 · ρ−1

1 , ρ2 · γ · ρ−1
2

))
. Note that

τρ2·ρ−1
1

=
(
ρ1 · ρ−1

2 , ρ2 · ρ−1
1

)
◦ τid = (ρ1, ρ2) ◦ τid ◦

(
ρ−1
1 , ρ−1

2

)
.

Thus we find that the action of (ρ1, ρ2) ∈ G × G on the object space of the dihedral twisted
sector sends

(
(p, p), τid,

(
γ−1, γ

))
to(

(ρ1p, ρ2p), τρ2·ρ−1
1
,
(
ρ1 · γ−1 · ρ−1

1 , ρ2 · γ · ρ−1
2

))
.

Therefore, the object in the dihedral twisted sector determined by Ψ with boundary conditions
∆id, ∆γ and the one determined by (ρ1, ρ2)Ψ with boundary conditions

(ρ1, ρ2)∆id = ∆ρ2·ρ−1
1

= Fix
(
τρ2·ρ−1

1

)
,

(ρ1, ρ2)∆γ = ∆ρ2·γ·ρ−1
1

= Fix
((
ρ1 · γ−1 · ρ−1

1 , ρ2 · γ · ρ−1
2

)
◦ τρ2·ρ−1

1

)
are equivalent in the sense of Definition 3.1.

5 Filtered A∞-structure associated with a Lagrangian

In this section, we give a brief description on the filtered A∞-algebra associated with a La-
grangian L = (L1 ⇒ L0) in a closed symplectic orbifold X. A spin structure on L is a spin
structure on L0 = {(x, τ) ∈ W0 × I | s(τ) = t(τ) = x}, which is invariant under the action
of W1. On the dihedral twisted sector IXL, we define a local system Θ. Recall that an object of
the dihedral twisted sector is (x, τ, g) ∈W0×I ×W1 such that s(τ) = t(τ) = x, s(g) = t(g) = x
and τgτ = g−1. This condition is equivalent to that x ∈ W̃ τ

0 ∩ W̃ gτ
0 for τ, gτ ∈ I ⊂ Inv

(
W̃1

)
.

When we present W = (W1 ⇒ W0) as a proper étale action Lie groupoid, we find that a con-
nected component of (IXL)0 is {x ∈W0 | s(τ) = t(τ) = x, s(g) = t(g) = x} = Fix(τ) ∩ Fix(gτ),
which is a clean intersection of Lagrangian submanifolds in W0. Then we have an O(1)-local
system Θ given in [7, Proposition 8.1.1]. We find that Θ is a O(1)-local system on IXL in the
sense Definition 3.3 (3). Then the space Ω∗(IXL; Θ) of differential forms with coefficients in Θ
is defined on the dihedral twisted sector IXL.

The filtered A∞-algebra is defined on Ω∗(IXL; Θ)⊗̂CΛ0 by the same way as a spin Lagrangian
submanifold as in Section 2:

mk =
∑

mk,βT
∫
β ,ω,

where m0,0 = 0, m1,0 = d and

mk,β(ξ1, . . . , ξk) = (−1)∗(ev0)!(ev
∗
1ξ1 ∧ · · · ∧ ev∗kξk), unless (k, β) = (0, 0), (1, 0).
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The arguments on sign and orientation bundles on the moduli spaces in [17] are extended to our
setting straightforwardly. We consider pseudo-holomorphic maps from the unit disk with interior
orbifold points and boundary punctures to X such that the boundary is mapped to L and the
boundary punctures are mapped to the dihedral twisted sector in the following way. Take a strip-
like coordinate [R,∞)× [0, 1) around the puncture. Then there is (x, τ, g) ∈ (IXL)0, the pseudo-
holomorphic map is described by w : [R,∞)× [0, 1) →W0 such that w([R,∞)× {0}) ⊂ Fix(τ),
w([R,∞)× {1}) ⊂ Fix(gτ) and lims→∞(s, t) = x.

We adopt the argument in [9, 10] in the setting of [2] to construct Kuranishi structures
on the moduli space of bordered orbifold stable maps. The notion of relative spin structures
is generalized to a Lagrangian in a symplectic orbifold. We will have the orbifold version of
Theorem 2.1, i.e., the orbifold quantum cohomology of a closed symplectic orbifold X is iso-
morphic to Lagrangian Floer cohomology of the diagonal equipped with the product structure
given by ±m2. The construction of the filtered A∞-bimodule associated with a relative spin pair
of cleanly intersecting Lagrangians is also generalized in the orbifold setting. The details will
appear elsewhere.
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