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Abstract. New bispectral polynomials orthogonal on a Bannai–Ito bi-lattice (uniform
quadri-lattice) are obtained from an unconventional truncation of the untruncated Bannai–
Ito and complementary Bannai–Ito polynomials. A complete characterization of the result-
ing para-Bannai–Ito polynomials is provided, including a three term recurrence relation,
a Dunkl-difference equation, an explicit expression in terms of hypergeometric series and
an orthogonality relation. They are also derived as a q → −1 limit of the q-para-Racah
polynomials. A connection to the dual −1 Hahn polynomials is also established.
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1 Introduction

Following the classification of Leonard [14], Bannai and Ito introduced a new classification of
orthogonal polynomials as the polynomials that satisfy the Leonard duality property [1]. With
it, they introduced the first −1 orthogonal polynomials: the Bannai–Ito polynomials. Vinet,
Zhedanov and collaborators have since lead the way in research on −1 orthogonal polynomials
starting with [17, 18] and giving an almost complete description of the −1 part of the Askey
scheme. In parallel, the same group of people introduced a new category of orthogonal polyno-
mials: the para-polynomials [12, 19]. The two categories are, a priori, not exclusive, which raise
the question of the existence of a family of orthogonal polynomials at the crossing of the two.
In this paper, we answer that question at the affirmative by presenting the para-Bannai–Ito
polynomials.

There are many reasons to be interested in a q → −1 limit of the q-para-Racah polynomials.
From a mathematical physics standpoint, since the discovery of the para-Krawtchouk polynomi-
als [19], para-polynomials have been linked to perfect state transfer (PST) and fractional revival
(FR) in XX-spin chains with nearest neighbour couplings (see also [11]). A necessary feature
for PST is the persymmetry (i.e., symmetry under anti-diagonal reflections) of the underlying
Jacobi matrix and, for FR [6], the existence of an isospectral deformation of this persymmetric
matrix. The models with these state transport properties that are based on −1 orthogonal
polynomials have not been developed. From a mathematical viewpoint, para-polynomials have
appeared as basis functions for the finite-dimensional representations of algebras of the Sklyanin
type [2, 3, 5]. The q-para-Racah polynomials arise in particular in connection with the degener-
ate Sklyanin algebra [8]. The q → −1 limits of these q-para-Racah polynomials therefore stand
to provide a representation basis for a −1 version of this algebra. The study of the para-Bannai–
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Ito polynomials is also of interest in the elaboration of the scheme of -1 orthogonal polynomials,
but also to obtain the complete set of para-polynomials; Indeed, of the three types of grid ob-
tained from the general Askey–Wilson grid in the cases |q| ≠ 1, q = 1 and q = −1 , only the
Bannai–Ito grid (q = −1) has not been investigated as a potential candidate to yield a new
family of orthogonal polynomials of the para type (appreciating that the quadratic bi-lattice
grid leads to the para-Racah polynomials [12] and that the q-quadratic bi-lattice grid takes one
to the q-para-Racah polynomials [13]). As such, the category of para-polynomials is character-
ized by three main properties. Each family of para-polynomials is a finite system of orthogonal
polynomials obtained from a unconventional truncation of a classical family, the Jacobi matrix
representing the recurrence relation is persymmetric or an isospectral deformation of a persym-
metric matrix and the polynomials are orthogonal on the union of two regular lattices (regular
lattices are limits of the q-quadratic lattice).

The goal of this paper is to fully characterize the q → −1 limit of the q-para-Racah polynomi-
als. We name them para-Bannai–Ito polynomials, as they are obtained from an unconventional
truncation of the general Bannai–Ito [15] and general complementary Bannai–Ito polynomials [7].
The paper has the following structure. In Section 2, we review some important properties of
the general Bannai–Ito and complementary Bannai–Ito polynomials, as well as their relations
via Christoffel/Geronimus transformations [9, 20]. In Section 3, the truncation condition for the
general complementary Bannai–Ito with N = 2j (j even) is presented with the corresponding
three-term recurrence relation, the Dunkl-difference equation, the explicit expression in terms
of hypergeometric series and the orthogonality relation. A Geronimus transformation is used to
obtain, in Section 4, the recurrence relation of the para-Bannai–Ito polynomials for N = 2j + 1
(j even) through the same truncation, albeit in the case of the general Bannai–Ito polynomials.
The corresponding cases for j odd are treated in Appendixes A and B. In Section 5, the para-
Bannai–Ito polynomials are obtained as a q → −1 limit of the q-para-Racah polynomials and
a connection to the dual −1 Hahn polynomials is presented.

2 General Complementary Bannai–Ito and Bannai–Ito

Let us first review some properties of the general untruncated complementary Bannai–Ito poly-
nomials. Together with the general Bannai–Ito polynomials, they sit atop the q → −1 limit
of the q-Askey scheme and depend on four parameters ρ1, ρ2, r1, r2. They admit an explicit
expression given by

I2n(x; ρ1, ρ2, r1, r2) = l(1)n Wn

(
(ix)2; ρ2, ρ1 + 1,−r1 +

1

2
,−r2 +

1

2

)
, (2.1)

I2n+1(x; ρ1, ρ2, r1, r2) = (x− ρ2)l
(2)
n Wn

(
(ix)2; ρ2 + 1, ρ1 + 1,−r1 +

1

2
,−r2 +

1

2

)
, (2.2)

where l
(i)
n are normalizing factor to ensure monicity, Wn

(
x2

)
are Wilson polynomials given by

Wn

(
x2; a, b, c, d

)
= 4F3

(
−n, n+ a+ b+ c+ d− 1, a− ix, a+ ix

a+ b, a+ c, a+ d
; 1

)
=

n∑
k=0

(−n, n+ a+ b+ c+ d− 1, a− ix, a+ ix)k
(1)k(a+ b, a+ c, a+ d)k

, (2.3)

and (a)k = (a)(a+1) · · · (a+ k− 1) and (a1, a2, . . . , an)k = (a1)k(a2)k · · · (an)k are the standard
Pochhammer symbols.

These polynomials obey the three term recurrence relation

xIn(x) = In+1(x) + (ρ1 −An − Cn)In(x) +An−1CnIn−1(x),
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with recurrence coefficients

An =


−(n+ 2ρ2 − 2r2 + 1) (n+ 2ρ2 − 2r1 + 1)

4(n+ g + 1)
, n even,

−(n+ 1) (n− 2r1 − 2r2 + 1)

4(n+ g + 1)
, n odd,

Cn =


(n+ 2ρ1 − 2r1 + 1) (n+ 2ρ1 − 2r2 + 1)

4(n+ g + 1)
, n even,

(n+ 2g + 1) (n+ 2ρ1 + 2ρ2 + 1)

4(n+ g + 1)
, n odd,

(2.4)

where g = ρ1 + ρ2 − r1 − r2.

The general Bannai–Ito polynomials can be presented as the Geronimus transformation of
those In with parameter ρ1. The general Bannai–Ito are hence given in terms of general com-
plementary Bannai–Ito as follows:

Bn(x; ρ1, ρ2, r1, r2) = In(x; ρ1, ρ2, r1, r2)−An−1In−1(x; ρ1, ρ2, r1, r2).

They obey the three term recurrence relation

xBn(x) = Bn+1(x) + (ρ1 −An−1 − Cn)Bn(x) +An−1Cn−1Bn−1(x), (2.5)

where An and Cn are as in (2.4).

Dunkl-difference equations are presented for the complementary Bannai–Ito and Bannai–Ito
polynomials in [7] and [15], respectively. It can be seen from formulas (2.4) that the positivity
condition un = An−1Cn > 0 cannot be achieved for all n ∈ N for the general complementary
Bannai–Ito. Nevertheless, it is possible to obtain a finite set of N +1 orthogonal polynomials by
using as truncation conditions u0 = A−1C0 = 0 and uN+1 = ANCN+1 = 0. The first condition is
always respected, but a parametrization dependent on N and its parity is needed for the second
condition, and it can be realized in many ways. Suppose that N is even. Then, the truncation
conditions (N +2ρ2−2r2+1) = 0, (N +2ρ2−2r1+1) = 0 or (N +2ρ1+2ρ2+2) = 0 all lead to
the usual complementary Bannai–Ito polynomials. However, using a parametrization such that

(N + 2g + 2) = 0, (2.6)

when N is even leads to an admissible truncation and to a different result. One should be
careful when choosing a parametrization for this last truncation, since a zero is introduced in
the denominator of the coefficients An and Cn for n ∼ N/2. The parametrization needs to ensure
that a cancellation occurs to have finite expressions in those cases. A very similar truncation
arises for the general Bannai–Ito but for N odd, and it reads

(N + 2g + 1) = 0. (2.7)

These truncation conditions lead to a new family of orthogonal polynomials: the para-Bannai–
Ito polynomials. Taking N = 2j in (2.6) and N = 2j + 1 in (2.7), both truncation conditions
are identical and correspond to

(j + g + 1) = 0. (2.8)

The parametrization then only depends on the parity of j.
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3 Para-Bannai–Ito polynomials for N = 2j, j even

In this section, we obtain the recurrence relation of the para-Bannai–Ito for N = 2j, j even, by
applying the truncation condition (2.8) to the general complementary Bannai–Ito polynomials.
An appropriate parametrization is

ρ1 − r1 = −j + 1

2
+ e1t, ρ2 − r2 = −j + 1

2
+ e2t, (3.1)

and (2.8) is achieved in the limit t → 0.

3.1 Recurrence relation

Inserting (3.1) in (2.4) and using the change of parameters

ρ1 =
b− j − 1 + a

4
, ρ2 =

b− j − 1− a

4
,

e1
e1 + e2

= α,
e2

e1 + e2
= (1− α), (3.2)

it is seen that A0
j and C0

j only depend on e1 and e2, through combinations. That can be described
in terms of a single parameter α as above. The recurrence relation for the para-Bannai–Ito

polynomials P
(0)
n (x; a, b, α, 2j) reads

xP(0)
n (x) = P

(0)
n+1(x) +

(
b− j − 1 + a

4
−A0

n − C0
n

)
P(0)

n (x) +A0
n−1C

0
nP

(0)
n−1(x), (3.3)

A0
n =


−1

4
(n− j − a), n even, n ̸= j,

−1

4

(n+ 1)(n− j − b)

(n− j)
, n odd,

1

2
(1− α)a, n even, n = j.

C0
n =


1

4
(n− j + a), n even, n ̸= j,

1

4

(n− 2j − 1)(n− j + b)

(n− j)
, n odd,

1

2
αa, n even, n = j.

(3.4)

It is now clear that the truncation condition u0 = u2j+1 = 0 is achieved. In order to respect the
positivity condition un = A0

n−1C
0
n > 0 for n ∈ {1, 2, . . . , 2j} and obtain a finite set of orthogonal

polynomials, one must choose between the two sets of restrictions on the parameters,

a ≤ −j − 1, |b| ≤ 1, 0 ≤ α ≤ 1, or

b ≥ j, |a+ 1| ≤ 1, 0 ≤ α ≤ 1. (3.5)

It is useful to note that the coefficients of the recurrence relation (3.3) are persymmetric
when α = 1/2 (i.e., un = uN−n+1 and bn = bN−n where bn is the coefficient in front of the
diagonal term in the recurrence relation). This persymmetry is seen to be tantamount to both
conditions A0

n + C0
n = A0

2j−n + C0
2j−n and A0

n−1C
0
n = A0

2j−nC
0
2j−n+1. These conditions are ful-

filled when α = 1/2 because one can verify that A0
n = C0

2j−n and C0
n = A0

2j−n which together
solve the two conditions. This property will be useful to obtain the orthogonality relation.
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3.2 Dunkl-difference equation

It is possible to obtain the Dunkl-difference equation for the para-Bannai–Ito polynomials from
the one of the complementary Bannai–Ito polynomials via the truncation (3.1). This procedure
is straightforward for this equation since no divergence occur. It reads as

DβP
(0)
n (x) = Λ(β)

n P(0)
n (x),

with the following eigenvalues:

Λ
(β)
2n = n(n− j), Λ

(β)
2n+1 = n(n+ 1− j) + β.

The operator Dβ is given by

Dβ = D0 + β
(x− ρ2)

2x
(I −R),

with

D0 = A(x)T+ +B(x)T− + C(x)R+D(x)T+R− (A(x) +B(x) + C(x) +D(x))I,

where T±f(x) = f(x± 1), Rf(x) = f(−x) and

A(x) =
(x+ ρ1 + 1) (x+ ρ2 + 1) (2x− 2ρ1 − j) (2x− 2ρ2 − j)

8(x+ 1)(2x+ 1)
,

B(x) =
(x− ρ2) (x− ρ1 − 1) (2x+ 2ρ1 + j) (2x+ 2ρ2 + j)

8x(2x− 1)
,

C(x) =
(x− ρ2)

(
4x2 + ω

)
8x

− (x− ρ2) (x+ ρ1 + 1) (2x− 2ρ1 − j) (2x− 2ρ2 − j)

8x(2x+ 1)
−B(x),

D(x) =
ρ2 (x+ ρ1 + 1) (2x− 2ρ1 − j) (2x− 2ρ2 − j)

8x(x+ 1)(2x+ 1)
,

ω = (2ρ1 + j)(2ρ2 + j)− 4(1 + ρ1)(ρ1 + ρ2 + j).

One needs to use the change of parameters (3.2) in order to obtain the result above. Observe

that Λ
(β)
n = Λ

(β)
2j−n and that the spectrum is hence degenerate. This means that the para-

Bannai–Ito polynomials are bispectral, but not classical.

3.3 Explicit expression

The explicit expression for the para-Bannai–Ito is obtained by using the limit described af-

ter (3.1) in (2.1) and (2.2). Let A
(I)
n,k and B

(I)
n,k be the coefficients of decomposition of the Wilson

polynomials as in (2.3) for I2n(x) and I2n+1(x). The complementary Bannai–Ito polynomials
can then be written as

I2n(x) = l(1)n

n∑
k=0

A
(I)
n,k, I2n+1(x) = l(2)n (x− ρ2)

n∑
k=0

B
(I)
n,k.

Using this decomposition, the para-Bannai–Ito polynomials can be obtained by taking the limit
directly in those coefficients,

P
(0)
2n (x) = κ(1)n

n∑
k=0

lim
t→0

A
(I)
n,k = κ(1)n

n∑
k=0

An,k,
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P
(0)
2n+1(x) = κ(2)n (x− ρ2)

n∑
k=0

lim
t→0

B
(I)
n,k = κ(2)n

(
x− b− j − 1− a

4

) n∑
k=0

Bn,k,

with the right normalization to make them monic. The summands and the renormalization
constants are found to be

An,k =



(−n)k(n− j)k
( b−j−1−a

4 + x
)
k

( b−j−1−a
4 − x

)
k

(1k
(1+b−j

2

)
k

(
− j+a

2

)
k

(
− j

2

)
k

,

k ≤ j
2 , k ≤ n,(

1

1− α

)
(−n)k

( b−j−1−a
4 + x

)
k

( b−j−1−a
4 − x

)
k

(1)k
(1+b−j

2

)
k

(
− j+a

2

)
k

(n− j)j−n(1)n+k−j−1(
− j

2

)
j
2
(1)k−j/2−1

,

k > j
2 , k ≤ n,

κ(1)n =



(1+b−j
2

)
n

(
− j+a

2

)
n

(
− j

2

)
n

(n− j)n
, n ≤ j

2 ,

(1− α)

(1+b−j
2

)
n

(
− j+a

2

)
n

(
− j

2

)
j
2
(1)n−j/2−1

(n− j)j−n(1)2n−j−1
, n > j

2 ,

and

Bn,k =



(−n)k(n+ 1− j)k
( b−j+3−a

4 + x
)
k

( b−j+3−a
4 − x

)
k

(1)k
(3+b−j

2

)
k

(2−j−a
2

)
k

(2−j
2

)
k

, k < j
2 ,(

1

1− α

)
(−n)k

( b−j+3−a
4 + x

)
k

( b−j+3−a
4 − x

)
k

(1)k
(3+b−j

2

)
k

(2−j−a
2

)
k

(n+ 1− j)j−n−1(1)n+k−j(2−j
2

)
j−2
2
(1)k−j/2

, k ≥ j
2 ,

κ(2)n =



(3+b−j
2

)
n

(2−j−a
2

)
n

(2−j
2

)
n

(n+ 1− j)n
, n < j

2 ,

(1− α)

(3+b−j
2

)
n

(2−j−a
2

)
n

(2−j
2

)
j−2
2
(1)n−j/2

(n+ 1− j)j−n−1(1)2n−j
, n ≥ j

2 .

In terms of terminating hypergeometric series, for even degrees, we have

1

κ
(1)
n

P
(0)
2n (x) = 4F3

(−n, n− j, b−j−1−a
4 + x, b−j−1−a

4 − x
1+b−j

2 , − j+a
2 , − j

2

; 1

)
,

if n ≤ j
2 , and

1

κ
(1)
n

P
(0)
2n (x) = 4F3

(−n, n− j, b−j−1−a
4 + x, b−j−1−a

4 − x
1+b−j

2 , − j+a
2 , − j

2

; 1

)

+
(n− j)j−n(−n)j/2+1

( b−j−1−a
4 + x

)
j/2+1

( b−j−1−a
4 − x

)
j/2+1

(1)n−j/2

(1− α)
(
− j

2

)
j/2

(1)j/2+1

(1+b−j
2

)
j/2+1

(
− j+a

2

)
j/2+1

× 4F3

( j+2
2 − n, n− j−2

2 , b+j+3−a
4 + x, b+j+3−a

4 − x
3+b
2 , 2−a

2 , 4+j
2

; 1

)
if n > j

2 . For odd degrees, we have

1

κ
(2)
n

(
x− b−j−1−a

4

)P(0)
2n+1(x) = 4F3

(−n, n+ 1− j, b−j+3−a
4 + x, b−j+3−a

4 − x
3+b−j

2 , 2−j−a
2 , 2−j

2

; 1

)
,
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if n < j
2 , and

1

κ
(2)
n

(
x− b−j−1−a

4

)P(0)
2n+1(x) = 4F3

(−n, n+ 1− j, b−j+3−a
4 + x, b−j+3−a

4 − x
3+b−j

2 , 2−j−a
2 , 2−j

2

; 1

)

+
(n+ 1− j)j−n−1(−n)j/2

( b−j+3−a
4 + x

)
j/2

( b−j+3−a
4 − x

)
j/2

(1)n−j/2

(1− α)
(2−j

2

)
j/2−1

(1)j/2
(3+b−j

2

)
j/2

(2−j−a
2

)
j/2

×4F3

( j
2 − n, n− j−2

2 , b+j+3−a
4 + x, b+j+3−a

4 − x
3+b
2 , 2−a

2 , 4+j
2

; 1

)
if n ≥ j

2 .

3.4 Orthogonality relation

To obtain the orthogonality relation, we first need to determine the grid or orthogonality lattice.
It is provided by the eigenvalues of the Jacobi matrix or, equivalently, by the zeroes of the
characteristic polynomial P

(0)
2j+1(x). We can define P

(0)
2j+1(x) using the recurrence relation (3.3)

and inserting the expression of P
(0)
2j (x) and P

(0)
2j−1(x) given in Section 3.3. An extraction of the

zeroes can be done with the help of the Saalschütz summation formula to obtain

P
(0)
2j+1(x) =

j∏
k=0

(
x+ (−1)k

(
2k − j − b+ a

4

)
+

1

4

)

×
j−1∏
k=0

(
x+ (−1)k

(
2k − j − b− a

4

)
+

1

4

)
.

The set of 2j+1 para-Bannai–Ito polynomials will thus be orthogonal on a Bannai–Ito bi-lattice
with 2j + 1 grid points.

x2s = −(−1)s
(
2s− j − b+ a

4

)
− 1

4
, s ∈ {0, 1, . . . , j},

x2s+1 = −(−1)s
(
2s− j − b− a

4

)
− 1

4
, s ∈ {0, 1, . . . , j − 1}.

A depiction of the grid is given in Appendix C. This Bannai–Ito bi-lattice can also be seen as a
linear quadri-lattice

x4s = −
(
4s− j − b+ a

4

)
− 1

4
, s ∈ {0, 1, . . . , j/2},

x4s+1 = −
(
4s− j − b− a

4

)
− 1

4
, s ∈ {0, 1, . . . , j/2− 1},

x4s+2 =

(
4s+ 2− j − b+ a

4

)
− 1

4
, s ∈ {0, 1, . . . , j/2− 1},

x4s+3 =

(
4s+ 2− j − b− a

4

)
− 1

4
, s ∈ {0, 1, . . . , j/2− 1}.

From the theory of orthogonal polynomials [4], the weights are given by

ws =
u1 · · ·u2j

P
(0)
2j (xs)P

(0)′
2j+1(xs)

, s = 0, 1, . . . , 2j, (3.6)
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in terms of which the orthogonality relation of the para-Bannai–Ito polynomials will read

2j∑
s=0

wsP
(0)
n (xs)P

(0)
m (xs) = u1 · · ·unδnm. (3.7)

In [6], a method to derive the weight for persymmetric orthogonal polynomials was presented
together with a procedure to also achieve that after an isospectral deformation. This is exactly
the situation that the para-Bannai–Ito polynomials present. Now, the usual expression

P
(0)
N (xs) = (−1)N+s√u1 · · ·uN (3.8)

for P
(0)
N (xs) is predicated on the eigenvalues of the Jacobi matrix ordered in an increasing fashion

which is not the case in the presentation of the bi-Bannai–Ito grid given above. Nonetheless, it
is possible to alter the increasing order condition and to require instead that between any two
zeroes of even index, there must be a zero of odd index and vice versa. Using this modified
condition, the interlacing zeroes property and the persymmetry, when N = 2j, we still find
for P

(0)
N (xs) the expression (3.8). In the case of the para-Bannai–Ito polynomials, positivity en-

sures that the modified condition for the eigenvalues is achieved. Recalling that the polynomials
are persymmetric, we then have that for α = 1/2,

w̃s =
(−1)s

√
u1 · · ·uN

P
(0)′
2j+1(xs)

, (3.9)

with the un also evaluated at α = 1/2. A direct computation gives

w̃4s =
h2j

(−s)s(1)j/2−s

(
−s− a

2

)
j/2

(
s+ 1+a−b−j

2

)
j/2

(
s+ 1−b−j

2

)
j/2

,

w̃4s+1 = − h2j

(−s)s(1)j/2−s−1

(
−s+ a

2

)
j/2+1

(
s+ 1−a−b−j

2

)
j/2

(
s+ 1−b−j

2

)
j/2

,

w̃4s+2 = − h2j

(−s)s(1)j/2−s−1

(
−s− a

2

)
j/2

(
s+ 1+a−b−j

2

)
j/2+1

(
s+ 1−b−j

2

)
j/2

,

w̃4s+3 =
h2j

(−s)s(1)j/2−s−1

(
−s+ a

2

)
j/2

(
s+ 1−a−b−j

2

)
j/2

(
s+ 1−b−j

2

)
j/2+1

,

with

h2j =
√
u1 · · ·u2j =

(1)j
( b+1−j

2

)
j

(
− j+a

2

)
j

22j
(1−j

2

)
j

.

It was also shown in [6] that after an isospectral deformation, the new weights are related to the
persymmetric weights by a multiplicative factor dependent on α in our case,

ws = C (1 + β(−1)s) w̃s.

Using (3.6) and (3.9) for the first few j, we can solve for C and β. One can verify that C = 1
and β = 2α− 1 which gives

w2s = 2αw̃2s, w2s+1 = 2(1− α)w̃2s+1.
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We also have
j∑

s=0

w2s = α,

j∑
s=0

w2s+1 = 1− α,

which generalize a known result for mirror-symmetric Jacobi matrices. Finally, we give a general
expression for hn =

√
u1 · · ·un which can be squared and inserted in (3.7) to complete the

characterization of the para-Bannai–Ito for N = 2j with j even,

h2n =

√
(−j)n(1)n

(1+b−j
2

)
n

(1−b−j
2

)
n

(
− j+a

2

)
n

(2+a−j
2

)
n

22n
(1−j

2

)
n

×


1, n < j

2 ,√
2α, n = j

2 ,

2
√

α(1− α), n > j
2 ,

h2n+1 =

√
(−1)(−j)n+1(1)n

(1+b−j
2

)
n+1

(1−b−j
2

)
n

(
− j+a

2

)
n+1

(2+a−j
2

)
n

22n+1
√(1−j

2

)
n

(1−j
2

)
n+1

×

{
1, n < j

2 ,

2
√

α(1− α), n ≥ j
2 .

4 Para-Bannai–Ito for N = 2j + 1, j even

The general complementary Bannai–Ito and the general Bannai–Ito polynomials are related
by a Geronimus transformation with parameter ρ1. The Geronimus transformation and the
truncation commute, and therefore, performing the transformations on the para-Bannai–Ito
polynomials with N = 2j + 1, j even, we obtain a set of N + 1 = 2j + 2 polynomials that cor-
respond to the truncation (3.1) of the general Bannai–Ito polynomials. The eigenvalue xs = ρ1
is then added to the spectrum. The treatment of the case N = 2j + 1, j even, is analogous to
the case N = 2j, j even. The results are presented below.

4.1 Recurrence relation

Using the truncation (3.1) in (2.5) gives the recurrence relation for P
(1)
n (x; a, b, α, 2j + 1)

xP(1)
n (x) = P

(1)
n+1(x) +

(
b− j − 1 + a

4
−A1

n − C1
n

)
P(1)

n (x) +A1
n−1C

1
nP

(1)
n−1(x), (4.1)

A1
n =



1

4
(n− j + a), n even, n ̸= j,

1

4

(n− 2j − 1)(n− j + b)

(n− j)
, n odd,

1

2
αa, n even, n = j,

C1
n =



−1

4

n(n− j − 1− b)

(n− j − 1)
, n even,

−1

4
(n− j − 1− a), n odd, n ̸= j + 1,

1

2
(1− α)a, n odd, n = j + 1.

The positivity condition is achieved if one chooses the parameters such that

|a| ≥ j + 1, |b| ≤ 1, 0 ≤ α ≤ 1.

Again, the polynomials are persymmetric if α = 1/2.
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4.2 Dunkl-difference equation

Since no divergences appear in the Dunkl-difference equation of the general Bannai–Ito polyno-
mials under the para truncation, it follows that the para-Bannai–Ito polynomials are solutions
to the same equation except for a change of variable. It reads as

LP(1)
n (x) = λnP

(1)
n (x),

with the eigenvalues

λ2n = n, λ2n+1 = (j − n) .

The Dunkl-difference operator is

L = F (x)(I −R) +G(x)
(
T+R− I

)
,

where

G(x) =
(4x+ 1 + a− b− j)(4x+ 1− a− b− j)

16(2x+ 1)
,

F (x) =
(4x+ 1 + j + a− b)(4x+ 1 + j − a− b)

32x
.

4.3 Explicit expression

Since the para-Bannai–Ito forN = 2j andN = 2j+1 are related by a Geronimus transformation,
we obtain directly the expression for the case N = 2j + 1 with j even as a combination of two
para-Bannai–Ito polynomials with N = 2j. The explicit expression is

P(1)
n (x) = P(0)

n (x)− C1
nP

(0)
n−1(x),

where C1
n is as in (4.1).

4.4 Orthogonality relation

We know that the Geronimus transformation will only add xs = ρ1 to the spectrum provided
by the zeros of P

(0)
2j+1. It turns out that this fits with the grid of Section 3.4 and that its points

are then given by

x2s = −(−1)s
(
2s− j − b+ a

4

)
− 1

4
, s ∈ {0, 1, . . . , j}, (4.2)

x2s+1 = −(−1)s
(
2s− j − b− a

4

)
− 1

4
, s ∈ {0, 1, . . . , j}, (4.3)

or again as a linear quadri-lattice

x4s = −
(
4s− j − b+ a

4

)
− 1

4
, s ∈ {0, 1, . . . , j/2},

x4s+1 = −
(
4s− j − b− a

4

)
− 1

4
, s ∈ {0, 1, . . . , j/2},

x4s+2 =

(
4s+ 2− j − b+ a

4

)
− 1

4
, s ∈ {0, 1, . . . , j/2− 1},

x4s+3 =

(
4s+ 2− j − b− a

4

)
− 1

4
, s ∈ {0, 1, . . . , j/2− 1}.
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The orthogonality relation is again of the form

2j+1∑
s=0

wsP
(1)
n (xs)P

(1)
m (xs) = u1 · · ·unδnm,

where

ws =
u1 · · ·u2j+1

P
(1)
2j+1(xs)P

(1)′
2j+2(xs)

, s = 0, 1, . . . , 2j + 1.

The computation in the persymmetric case followed by the generalization with an isospectral
deformation gives the weights

w4s =
2αh2j+1

(−s)s(1)j/2−s

(
−s− a

2

)
j/2+1

(
s+ 1+a−b−j

2

)
j/2

(
s+ 1−b−j

2

)
j/2

,

w4s+1 = − 2(1− α)h2j+1

(−s)s(1)j/2−s

(
−s+ a

2

)
j/2+1

(
s+ 1−a−b−j

2

)
j/2

(
s+ 1−b−j

2

)
j/2

,

w4s+2 = − 2αh2j+1

(−s)s(1)j/2−s−1

(
−s− a

2

)
j/2

(
s+ 1+a−b−j

2

)
j/2+1

(
s+ 1−b−j

2

)
j/2+1

,

w4s+3 =
2(1− α)h2j+1

(−s)s(1)j/2−s−1

(
−s+ a

2

)
j/2

(
s+ 1−a−b−j

2

)
j/2+1

(
s+ 1−b−j

2

)
j/2+1

,

with

h2j+1 =
(1)j

(1−b−j
2

)
j

(
− j+a

2

)
j+1

22j+1
(1−j

2

)
j

.

To complete the characterization for N = 2j+1 with j even, we have that the general expressions
for the hn =

√
u1 · · ·un with un = A1

n−1C
1
n are

h2n =

√
(−j)n(1)n

(1−b−j
2

)
n

(1+b−j
2

)
n

(
− j+a

2

)
n

(
− j−a

2

)
n

22n
(1−j

2

)
n

×

{
1, n ≤ j

2 ,

2
√

α(1− α), n > j
2 ,

h2n+1 =

√
(−1)(−j)n(1)n

(1−b−j
2

)
n

(1+b−j
2

)
n

(
− j+a

2

)
n+1

(
− j−a

2

)
n+1

22n+1
(1−j

2

)
n

×

{
1, n < j

2 ,

2
√

α(1− α), n ≥ j
2 .

5 Para-Bannai–Ito polynomials as a q → −1 limit
of the q-para-Racah polynomials

In [13], the q-para-Racah polynomials were introduced as a q generalization of the para-Racah
polynomials. In this section, we show that the para-Bannai–Ito polynomials can be obtained
as a q → −1 limit of the q-para-Racah polynomials, reinforcing their position in the family of
para polynomials. The monic q-para-Racah polynomials for N = 2j + 1 satisfy the recurrence
relation

xRn(x) = Rn+1(x) +

(
c+ c−1

2
−AR

n − CR
n

)
Rn(x) +AR

n−1C
R
n Rn−1(x),
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with

AR
n =


(1− cdqn)

(
d− cqn−j

) (
1− qn−2j−1

)
2cd (1− q2n−2j−1) (1 + qn−j)

, n ̸= j,

α
(
1− cdqj

)
(d− c)

(
1− q−j−1

)
2cd (1− q−1)

, n = j,

CR
n =


(1− qn)

(
c− dqn−j−1

) (
cd− qn−2j−1

)
2cd (1 + qn−j−1) (1− q2n−2j−1)

, n ̸= j + 1,

(1− α)
(
1− qj+1

)
(c− d)

(
cd− q−j

)
2cd(1− q)

, n = j + 1.

In order to recover the para-Bannai–Ito polynomials, one needs to use the parametrization

q = −eε, c = iexp

(
ε

[
a+ b− j

2

])
, d = iexp

(
ε

[
−a+ b− j

2

])
. (5.1)

After redefining the resulting family of polynomials through the following affine transformation
of the variable

x → 2iε

(
x+

1

4

)
,

we have

xR̃n(x) = R̃n+1(x) +

(
c+ c−1

4iε
− 1

4
− AR

n

2iε
− CR

n

2iε

)
R̃n(x) +

AR
n−1

2iε

CR
n

2iε
R̃n−1(x). (5.2)

Using the parametrization (5.1) and taking the limit ε → 0, equivalent to q → −1, one sees
that (5.2) goes into the recurrence relation of the para-Bannai–Ito polynomials with N = 2j+1
and j even. While this was not discussed in [13], the N = 2j + 1 and N = 2j cases of the
q-para-Racah polynomials are related by Christoffel and Geronimus transformations, which is
the analog of the relation presented before. So the limit process also works for the q-para-
Racah with N = 2j, and gives the para-Bannai–Ito with N = 2j and j even and the recurrence
relation (3.4).

6 Special cases

6.1 Reduction to a simple lattice
and connection with the dual −1 Hahn polynomials

Consider the case α = 1/2. For b = 0, it is observed that the spectrum of the para-Bannai–Ito
(i.e., (4.2) and (4.3)) reduces to a single Bannai–Ito lattice (two linear lattices separated by a
gap). This reduction can be observed in the appendix. This restricted grid can be expressed by
the sequence

2xk =
(−1)k

4

(
k

2
+

1

4
− a+ j + 1

2

)
− 1

4
, k ∈ {0, 1, . . . , N}.

In this setting, we can connect this special case directly to the general complementary Bannai–Ito
and to the general Bannai–Ito polynomials

P(0)
n

(
x; a, 0,

1

2
, 2j

)
= In

(
x;−j + 1− a

4
,−j + 1 + a

4
,
j + 1− a

4
,
j + 1 + a

4

)
,
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P(1)
n

(
x; a, 0,

1

2
, 2j + 1

)
= Bn

(
x;−j + 1− a

4
,−j + 1 + a

4
,
j + 1− a

4
,
j + 1 + a

4

)
,

where In and Bn are as in Section 2.
This special case is also connected with the dual −1 Hahn polynomials R̂n(x;α, β,N) [16]

via the relations

P(0)
n

(
x; a, 0,

1

2
, 2j

)
=

1

23n
R̂n

(
−
[
23x+ 1

]
; j − a, j − a, 2j

)
,

P(1)
n

(
x; a, 0,

1

2
, 2j + 1

)
=

1

23n
R̂n

([
23x+ 1

]
; a− j − 1, a− j − 1, 2j + 1

)
.

6.2 Reduction to a simple linear lattice

The simple Bannai–Ito grid can be further specialized by taking a = −j − 1. This takes it into
a simple linear lattice

xk = j − k, k ∈ {0, 1, . . . , N},

after a relabelling of the grid points. The polynomials are then related to shifted monic
Krawtchouk polynomials Kn(x; p,N) [10]

P(0)
n

(
x;−j − 1, 0,

1

2
, 2j

)
=

1

2n
Kn

(
2x+ j;

1

2
, 2j

)
,

P(1)
n

(
x;−j − 1, 0,

1

2
, 2j + 1

)
=

1

2n
Kn

(
2x+ j + 1;

1

2
, 2j + 1

)
.

7 Conclusion

To summarize, the para-Bannai–Ito polynomials have been introduced and characterized. They
are obtained by a q → −1 limit of the q-para-Racah polynomials, but also as a special trun-
cation of the general Bannai–Ito and complementary Bannai–Ito polynomials. Their explicit
expressions in terms of hypergeometric series was derived as well as their recurrence relation
and Dunkl-difference equation. It was shown that the para-Bannai–Ito polynomials are orthogo-
nal on a finite bi-Bannai–Ito grid (linear quadri-lattice). The para-Bannai–Ito have a connection
to the dual −1 Hahn polynomials (orthogonal on single Bannai–Ito grid or linear bi-lattice) and
to the shifted Krawtchouk polynomials (orthogonal on a linear lattice).

The Jacobi matrix of the para-Bannai–Ito is an isospectral deformation of the persymmetric
one when α = 1/2. Such matrices have been used in the design of spin chains with fractional
revival. It would be of interest to examine if models based on the para-Bannai–Ito polynomials
exhibit similar properties.

A Para-Bannai–Ito for N = 2j, j odd

Truncation from the general complementary Bannai–Ito polynomials

ρ1 + ρ2 = −j + 1

2
+ e1t, −r1 − r2 = −j + 1

2
+ e2t.

The para-Bannai–Ito polynomials are obtained through a t → 0 limit.

ρ1 =
b− j − 1 + a

4
, −r1 =

b− j − 1− a

4
,
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e1
e1 + e2

= α,
e2

e1 + e2
= (1− α). (A.1)

Recurrence relation

xP(2)
n (x) = P

(2)
n+1(x) +

(
b− j − 1 + a

4
−A2

n − C2
n

)
P(2)

n (x) +A2
n−1C

2
nP

(2)
n−1(x),

A2
n =


−1

4

(n− j − a)(n− j − b)

(n− j)
, n even,

−1

4
(n+ 1), n odd, n ̸= j,

−1

2
(1− α)(j + 1), n odd, n = j,

C2
n =



1

4

(n− j + a)(n− j + b)

(n− j)
, n even,

1

4
(n− 2j − 1), n odd, n ̸= j,

−1

2
α(j + 1), n odd, n = j.

Positivity condition

a ≤ −j, |b| ≤ 1, 0 ≤ α ≤ 1, or |a| ≤ 1, b ≤ −j, 0 ≤ α ≤ 1.

Dunkl-difference equation

DβP
(2)
n (x) = Λ(β)

n P(2)
n (x),

Λ
(β)
2n = n(n− j), Λ

(β)
2n+1 = n(n+ 1− j) + β,

Dβ = D0 + β
(4x+ b+ a+ j + 1)

8x
(I −R),

D0 = A(x)T+ +B(x)T− + C(x)R+D(x)T+R− (A(x) +B(x) + C(x) +D(x))I,

where T±f(x) = f(x± 1) and Rf(x) = f(−x) and where

A(x) =
(x+ ρ1 + 1)

(
x− ρ1 +

1−j
2

)
(2x− 2r1 + 1)(2x+ 2r1 − j)

8(x+ 1)(2x+ 1)
,

B(x) =

(
x+ ρ1 +

j+1
2

)
(x− ρ1 − 1)(2x+ 2r1 − 1)(2x− 2r1 + j)

8x(2x− 1)
,

C(x) =

(
x+ ρ1 +

j+1
2

)(
4x2 + ω

)
8x

−
(
x+ ρ1 +

j+1
2

)
(x+ ρ1 + 1)(2x− 2r1 + 1)(2x+ 2r1 − j)

8x(2x+ 1)
−B(x),

D(x) = −(2ρ1 + j + 1)(x+ ρ1 + 1)(2x− 2r1 + 1)(2x+ 2r1 − j)

16x(x+ 1)(2x+ 1)
,

ω = 4(1 + ρ1 − r1)

(
1− j

2

)
+ 4r1(1− r1)− j,

where the change of parameter (A.1) must be used.
Explicit expression

P
(2)
2n (x) = κ(1)n

n∑
k=0

An,k, P
(2)
2n+1(x) = κ(2)n

(
x+

b+ j + 1 + a

4

) n∑
k=0

Bn,k,
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where

An,k =



(−n)k(n− j)k
(
− b+j+1+a

4 + x
)
k

(
− b+j+1+a

4 − x
)
k

(1)k
(
− b+j

2

)
k

(
− j+a

2

)
k

(1−j
2

)
k

,

k ≤ (j−1)
2 , k ≤ n,(

1

α

)
(−n)k

(
− b+j+1+a

4 + x
)
k

(
− b+j+1+a

4 − x
)
k

(1)k
(
− b+j

2

)
k

(
− j+a

2

)
k

(n−j)j−n(1)n+k−j−1(
1−j
2

)
j−1
2

(1)k−(j+1)/2

,

k > (j−1)
2 , k ≤ n,

κ(1)n =



(
− b+j

2

)
n

(
− j+a

2

)
n

(1−j
2

)
n

(n− j)n
, n ≤ (j−1)

2 ,

(α)

(
− b+j

2

)
n

(
− j+a

2

)
n

(1−j
2

)
j−1
2
(1)n−(j+1)/2

(n− j)j−n(1)2n−j−1
, n > (j−1)

2 ,

and

Bn,k =


(−n)k(n+ 1− j)k

(
− b+j−3+a

4 + x
)
k

(
− b+j−3+a

4 − x
)
k

(1)k
(3−j

2

)
k

(2−j−a
2

)
k

(2−j−b
2

)
k

, k < j−1
2 ,(

1

α

)
(−n)k

(
− b+j−3+a

4 + x
)
k

(
− b+j−3+a

4 − x
)
k

(1)k
(2−j−a

2

)
k

(2−j−b
2

)
k

(n+1−j)j−n−1(1)n+k−j(
3−j
2

)
j−3
2

(1)k−(j−1)/2

, k ≥ j−1
2 ,

κ(2)n =



(2−j−a
2

)
n

(2−j−b
2

)
n

(3−j
2

)
n

(n+ 1− j)n
, n < j−1

2 ,

(α)

(2−j−a
2

)
n

(2−j−b
2

)
n

(3−j
2

)
j−3
2
(1)n−(j−1)/2

(n+ 1− j)j−n−1(1)2n−j
, n ≥ j−1

2 .

Orthogonality relation

x4s = −
(
4s− j + a− b

4

)
− 1

4
, s ∈ {0, 1, . . . , (j − 1)/2},

x4s+1 =

(
4s− j − a− b

4

)
− 1

4
, s ∈ {0, 1, . . . , (j − 1)/2},

x4s+2 =

(
4s+ 2− j + a− b

4

)
− 1

4
, s ∈ {0, 1, . . . , (j − 1)/2},

x4s+3 = −
(
4s+ 2− j − a− b

4

)
− 1

4
, s ∈ {0, 1, . . . , (j − 3)/2},

w4s =
2αh2j

(−s)s(1)(j−1)/2−s

(
−s+ 1−a

2

)
(j−1)/2

(
s+ 1+a−b−j

2

)
(j+1)/2

(
s− b+j

2

)
(j+1)/2

,

w4s+1 =
2(1− α)h2j

(−s)s(1)(j−1)/2−s

(
−s+ 1+a

2

)
(j+1)/2

(
s+ 1−a−b−j

2

)
(j−1)/2

(
s− b+j

2

)
(j+1)/2

,

w4s+2 = − 2αh2j

(−s)s(1)(j−1)/2−s

(
−s− 1+a

2

)
(j+1)/2

(
s+ 1+a−b−j

2

)
(j+1)/2

(
s+ 2−b−j

2

)
(j−1)/2

,

w4s+3 = − 2(1− α)h2j

(−s)s(1)(j−3)/2−s

(
−s− 1−a

2

)
(j+1)/2

(
s+ 1−a−b−j

2

)
(j+1)/2

(
s+ 2−b−j

2

)
(j+1)/2

,

h2n =

√
(−j)n(1)n

(2+a−j
2

)
n

(
− j+a

2

)
n

(2+b−j
2

)
n

(
− j+b

2

)
n

22n
√(2−j

2

)
n

(
− j

2

)
n

×

{
1, n ≤ (j−1)

2 ,

2
√

α(1− α), n > (j−1)
2 ,
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Figure 1. Depiction of a Bannai–Ito bi-lattice.

x
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d2
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d3 d3
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Figure 2. Reduction of the Bannai–Ito bi-lattice to a single Bannai–Ito lattice.

x
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d

d

d

d

d d

Figure 3. Reduction of the single Bannai–Ito lattice into a single linear lattice.

h2n+1 =

√
(−1)(−j)n+1(1)n

(2+a−j
2

)
n

(
− j+a

2

)
n+1

(2+b−j
2

)
n

(
− j+b

2

)
n+1

22n+1
√(2−j

2

)
n

(
− j

2

)
n+1

×


1, n < (j−1)

2 ,
√
2α, n = (j−1)

2 ,

2
√

α(1− α), n > (j−1)
2 .

The orthogonality relation reads

2j∑
s=0

wsP
(2)
n (xs)P

(2)
m (xs) = h2nδnm.

B Para-Bannai–Ito for N = 2j + 1, j odd

Truncation from the general Bannai–Ito polynomials

ρ1 + ρ2 = −j + 1

2
+ e1t, −r1 − r2 = −j + 1

2
+ e2t.

The para-Bannai–Ito polynomials are obtained through a t → 0 limit, with

ρ1 =
b− j − 1 + a

4
, −r1 =

b− j − 1− a

4
,

e1
e1 + e2

= α,
e2

e1 + e2
= (1− α).

Recurrence relation

xP(3)
n (x) = P

(3)
n+1(x) +

(
b− j − 1 + a

4
−A3

n − C3
n

)
P(3)

n (x) +A3
n−1C

3
nP

(3)
n−1(x),
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A3
n =



1

4

(n− j + a)(n− j + b)

(n− j)
, n even,

1

4
(n− 2j − 1), n odd, n ̸= j,

−1

2
α(j + 1), n odd, n = j,

C3
n =


−1

4
n, n even, n ̸= j + 1,

−1

4

(n− j − 1− a)(n− j − 1− b)

(n− j − 1)
, n odd,

−1

2
(1− α)(j + 1), n even, n = j + 1.

Positivity condition

|a| ≥ j, |b| ≤ 1, 0 ≤ α ≤ 1, or |a| ≤ 1, |b| ≥ j, 0 ≤ α ≤ 1.

Dunkl-difference equation

LP(1)
n (x) = λnP

(1)
n (x), λ2n = n, λ2n+1 = (j − n),

L = F (x)(I −R) +G(x)
(
T+R− I

)
,

where

G(x) =
(4x+ 1 + b− a− j)(4x+ 1 + a− b− j)

16(2x+ 1)
,

F (x) =
(4x+ j + 1− a− b)(4x+ j + 1 + a+ b)

32x
.

Explicit expression

P(3)
n (x) = P(2)

n (x)− C3
nP

(2)
n−1(x).

Orthogonality relation

x4s = −
(
4s− j + a− b

4

)
− 1

4
, s ∈ {0, 1, . . . , (j − 1)/2},

x4s+1 =

(
4s− j − a− b

4

)
− 1

4
, s ∈ {0, 1, . . . , (j − 1)/2},

x4s+2 =

(
4s+ 2− j + a− b

4

)
− 1

4
, s ∈ {0, 1, . . . , (j − 1)/2},

x4s+3 = −
(
4s+ 2− j − a− b

4

)
− 1

4
, s ∈ {0, 1, . . . , (j − 1)/2},

w4s =
2αh2j

(−s)s(1)(j−1)/2−s

(
−s+ 1−a

2

)
(j+1)/2

(
s+ 1+a−b−j

2

)
(j+1)/2

(
s− b+j

2

)
(j+1)/2

,

w4s+1 =
2(1− α)h2j

(−s)s(1)(j−1)/2−s

(
−s+ 1+a

2

)
(j+1)/2

(
s+ 1−a−b−j

2

)
(j+1)/2

(
s− b+j

2

)
(j+1)/2

,

w4s+2 = − 2αh2j

(−s)s(1)(j−1)/2−s

(
−s− 1+a

2

)
(j+1)/2

(
s+ 1+a−b−j

2

)
(j+1)/2

(
s+ 2−b−j

2

)
(j+1)/2

,

w4s+3 = − 2(1− α)h2j

(−s)s(1)(j−1)/2−s

(
−s− 1−a

2

)
(j+1)/2

(
s+ 1−a−b−j

2

)
(j+1)/2

(
s+ 2−b−j

2

)
(j+1)/2

,
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h2n =

√
(−j)n(1)n

(
− j−a

2

)
n

(
− j+a

2

)
n

(
− j−b

2

)
n

(
− j+b

2

)
n

22n
(
− j

2

)
n

×

{
1, n < (j+1)

2 ,

2
√
α(1− α), n ≥ (j+1)

2 ,

h2n+1 =

√
(−1)(−j)n(1)n

(
− j−a

2

)
n+1

(
− j+a

2

)
n+1

(
− j−b

2

)
n+1

(
− j+b

2

)
n+1

22n+1
(
− j

2

)
n+1

×

{
1, n < (j+1)

2 ,

2
√

α(1− α), n ≥ (j+1)
2 .

The orthogonality relation reads

2j+1∑
s=0

wsP
(3)
n (xs)P

(3)
m (xs) = h2nδnm.

C Depiction of the Bannai–Ito bi-lattice

We show here an example of the Bannai–Ito bi-lattice for a = −(c + j + 1) and c > 0, which
correspond to the first set of restrictions of (3.5) with j even. We see that the parameter c, and
consequently a, controls the gap between the positive and negative part of the grid. As for the
parameter b, it controls the gap between consecutive points on each separate side. The first and
last points are at the coordinate x = ±2j+b+c

4 and the distances d3 and d4 alternate until they
reach the end on both side. We have precisely,

d1 =
c+ 2− b

4
, d2 =

b+ c

4
, d3 =

1 + b

2
, d4 =

1− b

2
.

When we use b = 0, we obtain equally distanced points on each side. This is equivalent to
a single Bannai–Ito lattice (or two separate linear grid).

Now, we have

d1 =
c

4
+

1

2
, d2 =

c

4
, d3 =

1

2
.

Finally, if we use c = 0 (or a = −j − 1), we obtain one simple linear grid where the points are
all separated by d = 1/2.

Acknowledgements

JP holds a scholarship from Fonds de recherche québécois – nature et technologies (FRQNT)
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