Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 075, 42 pages      arXiv:2303.04493      https://doi.org/10.3842/SIGMA.2023.075

Frobenius Monoidal Functors of Dijkgraaf-Witten Categories and Rigid Frobenius Algebras

Samuel Hannah a, Robert Laugwitz b and Ana Ros Camacho a
a) School of Mathematics, Cardiff University, Abacws, Senghennydd Road, Cardiff, CF24 4AG, Wales, UK
b) School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Received March 16, 2023, in final form September 26, 2023; Published online October 12, 2023

Abstract
We construct a separable Frobenius monoidal functor from $\mathcal{Z}\big(\mathsf{Vect}_H^{\omega|_H}\big)$ to $\mathcal{Z}\big(\mathsf{Vect}_G^\omega\big)$ for any subgroup $H$ of $G$ which preserves braiding and ribbon structure. As an application, we classify rigid Frobenius algebras in $\mathcal{Z}\big(\mathsf{Vect}_G^\omega\big)$, recovering the classification of étale algebras in these categories by Davydov-Simmons [J. Algebra 471 (2017), 149-175, arXiv:1603.04650] and generalizing their classification to algebraically closed fields of arbitrary characteristic. Categories of local modules over such algebras are modular tensor categories by results of Kirillov-Ostrik [Adv. Math. 171 (2002), 183-227, arXiv:math.QA/0101219] in the semisimple case and Laugwitz-Walton [Comm. Math. Phys., to appear, arXiv:2202.08644] in the general case.

Key words: Frobenius monoidal functor; Frobenius algebra; Dijkgraaf-Witten category; local module; modular tensor category; étale algebra.

pdf (695 kb)   tex (50 kb)  

References

  1. Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monogr. Ser., Vol. 29, American Mathematical Society, Providence, RI, 2010.
  2. Bartlett B., Douglas C.L., Schommer-Pries C.J., Vicary J., Modular categories as representations of the 3-dimensional bordism 2-category, arXiv:math.AT/1509.06811.
  3. Benson D.J., Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, Cambridge Stud. Adv. Math., Vol. 30, Cambridge University Press, Cambridge, 1998.
  4. Brown K.S., Cohomology of groups, Grad. Texts Math., Vol. 87, Springer, New York, 1982.
  5. Bruguières A., Natale S., Exact sequences of tensor categories, Int. Math. Res. Not. 2011 (2011), 5644-5705, arXiv:1006.0569.
  6. Creutzig T., Kanade S., McRae R., Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017.
  7. Davydov A., Modular invariants for group-theoretical modular data. I, J. Algebra 323 (2010), 1321-1348, arXiv:0908.1044.
  8. Davydov A., Müger M., Nikshych D., Ostrik V., The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013), 135-177, arXiv:1009.2117.
  9. Davydov A., Simmons D., On Lagrangian algebras in group-theoretical braided fusion categories, J. Algebra 471 (2017), 149-175, arXiv:1603.04650.
  10. De Renzi M., Gainutdinov A.M., Geer N., Patureau-Mirand B., Runkel I., 3-Dimensional TQFTs from non-semisimple modular categories, Selecta Math. (N.S.) 28 (2022), 42, 60 pages, arXiv:1912.02063.
  11. Dijkgraaf R., Pasquier V., Roche P., Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18 (1991), 60-72.
  12. Dijkgraaf R., Pasquier V., Roche P., Topological interactions in broken gauge theories, arXiv:hep-th/9511195.
  13. Dong C., Lepowsky J., Generalized vertex algebras and relative vertex operators, Progr. Math., Vol. 112, Birkhäuser, Boston, MA, 1993.
  14. Dong C., Ren L., Xu F., On orbifold theory, Adv. Math. 321 (2017), 1-30, arXiv:1507.03306.
  15. Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., Vol. 205, American Mathematical Society, Providence, RI, 2015.
  16. Flake J., Harman N., Laugwitz R., The indecomposable objects in the center of Deligne's category $\underline{\rm Re}{\rm p}S_t$, Proc. Lond. Math. Soc. 126 (2023), 1134-1181, arXiv:2105.10492.
  17. Fröhlich J., Fuchs J., Runkel I., Schweigert C., Correspondences of ribbon categories, Adv. Math. 199 (2006), 192-329, arXiv:math.CT/0309465.
  18. Fuchs J., Runkel I., Schweigert C., TFT construction of RCFT correlators. I: partition functions, Nuclear Phys. B 646 (2002), 353-497, arXiv:hep-th/0204148.
  19. Fuchs J., Schaumann G., Schweigert C., A modular functor from state sums for finite tensor categories and their bimodules, Theory Appl. Categ. 38 (2022), 436-594, arXiv:1911.06214.
  20. Fuchs J., Stigner C., On Frobenius algebras in rigid monoidal categories, Arab. J. Sci. Eng. Sect. C Theme Issues 33 (2008), 175-191, arXiv:0901.4886.
  21. Hochschild G., Serre J.-P., Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134.
  22. Huang Y.-Z., Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), 871-911, arXiv:math.QA/0502533.
  23. Huang Y.Z., Kirillov Jr. A., Lepowsky J., Braided tensor categories and extens-ions of vertex operator algebras, Comm. Math. Phys. 337 (2015), 1143-1159, arXiv:1406.3420.
  24. Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory, VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra, in Conformal Field Theories and Tensor Categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, 169-248, arXiv:1110.1931.
  25. Kerler T., Lyubashenko V.V., Non-semisimple topological quantum field theories for 3-manifolds with corners, Lecture Notes in Math., Vol. 1765, Springer, Berlin, 2001.
  26. Kirillov Jr. A., Ostrik V., On a $q$-Analogue of the McKay correspondence and the ADE classification of $\mathfrak{sl}_2$ conformal field theories, Adv. Math. 171 (2002), 183-227, arXiv:math.QA/0101219.
  27. Laugwitz R., Walton C., Constructing non-semisimple modular categories with relative monoidal centers, Int. Math. Res. Not. 2022 (2022), 15826-15868, arXiv:2010.11872.
  28. Laugwitz R., Walton C., Constructing non-semisimple modular categories with local modules, Comm. Math. Phys., to appear, arXiv:2202.08644.
  29. Lentner S., Mierach S.N., Schweigert C., Sommerhaeuser Y., Hochschild cohomology, modular tensor categories, and mapping class groups I, SpringerBriefs Math. Phys., Vol. 44, Springer, Berlin, 2023.
  30. Lentner S.D., Quantum groups and Nichols algebras acting on conformal field theories, Adv. Math. 378 (2021), 107517, 71 pages, arXiv:1702.06431.
  31. Majid S., Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998), 1-9, arXiv:q-alg/9701002.
  32. McRae R., Twisted modules and $G$-equivariantization in logarithmic conformal field theory, Comm. Math. Phys. 383 (2021), 1939-2019, arXiv:1910.13226.
  33. Möller S., A cyclic orbifold theory for holomorphic vertex operator algebras and applications, Ph.D. Thesis, Technische Universität Darmstadt, 2016, arXiv:1611.09843.
  34. Morales Y., Müller M., Plavnik J., Ros Camacho A., Tabiri A., Walton C., Algebraic structures in group-theoretical fusion categories, Algebr. Represent. Theory, to appear, arXiv:2001.03837.
  35. Natale S., On the equivalence of module categories over a group-theoretical fusion category, SIGMA 13 (2017), 042, 9 pages, arXiv:1608.04435.
  36. Ostrik V., Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not. 2003 (2003), 1507-1520, arXiv:math.QA/0111139.
  37. Pareigis B., On braiding and dyslexia, J. Algebra 171 (1995), 413-425.
  38. Radford D.E., Hopf algebras, Ser. Knots Everything, Vol. 49, World Scientific Publishing, Hackensack, NJ, 2012.
  39. Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  40. Schauenburg P., The monoidal center construction and bimodules, J. Pure Appl. Algebra 158 (2001), 325-346.
  41. Schweigert C., Woike L., Homotopy coherent mapping class group actions and excision for Hochschild complexes of modular categories, Adv. Math. 386 (2021), 107814, 55 pages, arXiv:2004.14343.
  42. Shimizu K., Non-degeneracy conditions for braided finite tensor categories, Adv. Math. 355 (2019), 106778, 36 pages, arXiv:1602.06534.
  43. Shimizu K., Ribbon structures of the Drinfeld center of a finite tensor category, Kodai Math. J. 46 (2023), 75-114, arXiv:1707.09691.
  44. Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Stud. Math., Vol. 18, De Gruyter, Berlin, 1994.
  45. Weibel C.A., An introduction to homological algebra, Cambridge Stud. Adv. Math., Vol. 38, Cambridge University Press, Cambridge, 1994.
  46. Willerton S., The twisted Drinfeld double of a finite group via gerbes and finite groupoids, Algebr. Geom. Topol. 8 (2008), 1419-1457, arXiv:math.QA/0503266.
  47. Yadav H., Frobenius monoidal functors from (co)Hopf adjunctions, arXiv:2209.15606.

Previous article  Next article  Contents of Volume 19 (2023)