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Abstract. Inspired by the work of J-L. Loday and M. Ronco, we build free tridendriform
algebras over reduced trees and we show that they have a coproduct satisfying some compat-
ibilities with the tridendriform products. Its graded dual is the opposite bialgebra of TSym
introduced by N. Bergeron et al., which is described by the lightening splitting of a tree.
In particular, we can split the product in three pieces and the coproduct in two pieces with
Hopf compatibilities. We generate its codendriform primitives and count its coassociative
primitives thanks to L. Foissy’s work.
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1 Introduction

In particular cases, the associative algebra structure on a space A may be extended to a richer
one. For example, in [9] and [19], the authors consider objects called dendriform algebras. In [12],
they consider dendriform algebras and dipterous algebras. Studying such properties over the
product of a bialgebra can give us information about its coproduct, if some convenient compat-
ibilities are satisfied. We can also consider the dendriform or tridendriform cases (commutative
or not) detailed in [11] under the terminology of shuffle and quasi-shuffle algebras.

To be more precise, an algebra is dendriform if its product can be “broken” in two pieces
denoted ≺, ≻ called respectively “left product” and “right product” such that these products
verify, for all a, b, c ∈ A

(a ≺ b) ≺ c = a ≺ (b ∗ c),
(a ≻ b) ≺ c = a ≻ (b ≺ c),

a ≻ (b ≻ c) = (a ∗ b) ≻ c.

In particular, this implies that ∗ :=≺ + ≻ is associative. The article [9] adds the (dual)
notion of dendriform coalgebra and describe dendriform bialgebras. In this document, we will
bring our attention to the case tridendriform detailed in [15] and [5] with λ = 1. This means
that our product ∗ is split in three pieces denoted ≺, ·, ≻, respectively called “left product”,
“middle product” and “right product” satisfying the properties of Definition 2.1. We define
the associative product of a tridendriform algebra as ∗ :=≺ + · + ≻. To study a tridendriform
bialgebra H, it is convenient to define a tridendriform structure over H ⊗H. In order to talk
about coassociativity later, we remind that H ⊗ (H ⊗ H) and (H ⊗ H) ⊗ H have the same
tridendriform structure

Lemma 2.4. For any tridendriform algebras A, B and C, we have A⊗ (B⊗C) = (A⊗B)⊗C
as tridendriform algebras.
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To build tridendriform bialgebras, we will need to add units. The unique way to add units is
described in Section 2.2, with an extension ⊗ of the tensor product. We get

Lemma 2.12. For A, B and C three augmented tridendriform algebras, we have

A⊗ (B⊗C) = (A⊗B)⊗C as tridendriform algebras.

After those reminders about the tensor products of tridendriform algebras and augmented
tridendriform algebras, we will study the combinatorics of these algebras. For this we will
use [15] where the free tridendriform algebra with one generator is described with reduced trees,
i.e., trees where each node has at least 2 sons (also known as Schröder trees). This algebra is
denoted by A. In this paper, we will get a new non-inductive formula for the tridendriform
operations. Here are some examples of computations:

≺ = , ≺ = + + + + ,

· = , · = + + ,

≻ = , ≻ = + + .

We will see in Section 4 that these products are quasi-shuffles of the branches of the right comb
representation of the left term with the branches of the left comb representation of the right
term. Looking at t as a right comb and s as a left comb means we consider them as

t =

F1

F2 · · ·
Fk

and s =

Fk+1

Fk+2
···

Fk+l

Definition 3.29. Let t and s be two trees which respective right comb and left comb represen-
tations are given above. Let k, l be the numbers of forests in the comb representation of t and s.
Let σ be a (k, l)-quasi-shuffle which has for image J1, nK. We denote σ(t, s) the tree obtained
the following way:

1. We first consider the ladder with n nodes

Node 1
Node 2

Node n

2. For all i ∈ J1, kK, we graft Fi as the left son at the node σ(i).

3. For all i ∈ Jk + 1, k + lK, we graft Fi as right son at the node σ(i).

Example 3.30. Consider σ = (1, 3, 2, 3) a (2, 2)-quasi-shuffle.

Let us take t = F1

F2
and s = F3

F4
. Then

σ(t, s) =
F1

F3

F2
F4

.
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Theorem 3.36. Let t, s be two trees different from |. Then

t ∗ s =
∑

σ∈QSh(k,l)

σ(t, s).

We also get a similar description for ≺, ·, ≻ products. For more details, see Corollary 3.37.
Then considering the number of leaves minus one as a gradation, we obtain

Theorem 3.20. The unique coproduct ∆ over A compatible with the tridendriform structure
and making (A, ∗, |,∆, ε) a connected graded bialgebra is given by the following formula for all
tree t

∆(t) =
∑

c admissible cut of t

Gc(t)⊗Rc(t), ∆(|) = | ⊗ |,

where Rc(t) is the component which has the root of t and Gc(t) = Gc
1(t)∗ · · · ∗Gc

k(t), where Gc
i (t)

are naturally ordered. If c is the empty cut, we define Rc(t) := t and Gc(t) := |. If c is the total
cut, we define Rc(t) := | and Gc(t) = t.

We shall use the notation (n,m)-dendriform bialgebras for n, m two non-negative integers,
to talk about bialgebras where the product can be split in n other operations and the co-
product can be broken in m other operations, satisfying some Hopf compatibilities. Here is
a table of known (n,m)-dendriform algebras, where n is the line number and m the column’s
one,

(n,m) 0 1 2 3 4

0 K-vector space
Associative
algebra

Dendriform
algebra

Tridendriform
algebra

Quadriform
algebra

1 Coalgebra Bialgebra
Dendriform
bialgebra

Tridendriform
bialgebra

Quadriform
bialgebra

2
Codendriform
coalgebra

Codendriform
bialgebra

Bidendriform
bialgebra

(3, 2)-
dendriform
bialgebra

?

3
Cotridendriform
coalgebra

Cotridendriform
bialgebra

(2, 3)-
dendriform
bialgebra

See [4, Defini-
tion 5.16]

?

4
Coquadriform
coalgebra

Coquadriform
bialgebra

? ? ?

In this paper, we introduce the new definitions of (3, 2) and (2, 3)-dendriform bialgebras. The
reader will find some pieces of information about tridendriform algebras, cotridendriform coal-
gebras and cotridendriform tridendriform bialgebras in [4] at Sections 5.1, 5.3 and 5.16, respec-
tively. Tridendriform algebras are studied in [5]. Bidendriform bialgebras are introduced and
studied in [9].

The fourth section introduces the notion of (1, 3)-dendriform bialgebras which is the dual
notion of (3, 1)-dendriform bialgebras. Thanks to the previous theorem, we give a link between
the graded dual of A, denoted by A⊛, and the recent paper of N. Bergeron and al [3], where the
Hopf algebra TSym is introduced

Theorem 4.23. The bialgebras A⊛ and TSymop are the same.

So, TSym is a (1, 3)-dendriform bialgebra and we get a description of its graded dual. Finally,
in the last section, we introduce the definition of (3, 2)-dendriform bialgebras
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Definition 5.1. A (3, 2)-dendriform bialgebra is a sextuple (A,≺, ·,≻,∆←,∆→) such that

� (A,≺, ·,≻) is an augmented tridendriform algebra.

� (A,∆←,∆→) is an augmented dendriform coalgebra.

� Using generalized Sweedler’s notations, the following relations are true, for all a, b ∈ A

∆←(a · b) = a′b′← ⊗ a′′ · b′′← + b′← ⊗ a · b′′←,

∆→(a · b) = a′b′→ ⊗ a′′ · b′′→ + a′ ⊗ a′′ · b+ b′→ ⊗ a · b′′→,

∆←(a ≺ b) = a′b′← ⊗ a′′ ≺ b′′← + a′b⊗ a′′ + b′← ⊗ a ≺ b′′← + b⊗ a,

∆→(a ≺ b) = a′b′→ ⊗ a′′ ≺ b′′→ + a′ ⊗ a′′ ≺ b+ b′→ ⊗ a ≺ b′′→,

∆→(a ≻ b) = a′b′→ ⊗ a′′ ≻ b′′→ + a′ ⊗ a′′ ≻ b+ b′→ ⊗ a ≻ b′′→ + ab′→ ⊗ b′′→ + a⊗ b,

∆←(a ≻ b) = a′b′← ⊗ a′′ ≻ b′′← + a′ ⊗ a′′ ≻ b+ ab′← ⊗ b′′←.

We give an example of such an object.

Proposition 5.6. We consider (A,≺, ·,≻) with its tridendriform algebra structure, we build
the following coproducts:

∆̃←(t) =

 ∑
c admissible cut of t

the right leaf of t has been cut

Gc(t)⊗Rc(t)

− t⊗ 1,

∆̃→(t) =

 ∑
c admissible cut of t

the right leaf of t has not been cut

Gc(t)⊗Rc(t)

− 1⊗ t.

Then (A,≺ +·,≻,∆←,∆→) and (A,≺, ·+ ≻,∆←,∆→) are bidendriform bialgebras. As a con-
sequence, (A,≺, ·,≻,∆←,∆→) is a (3, 2)-dendriform bialgebra.

There, we can apply the results from [9] to count and describe the codendriform primitives
ans coassociative primitives. With this work, we are able to get all the codendriform primitives
and we can count the coassociative ones. Finally, to end the paper, we study the “natural”
quotient of A as a (3, 2)-dendriform algebra by the set of elements obtained with the middle
product · (we send the middle product · to 0) in order to get back to the Loday–Ronco algebra
given in [16] and [2].

Some details about the bibliography

For other examples of tridendriform algebras, we can refer to the quasi-shuffle algebras present
in [13, 17] or [1]. The tridendriform algebra of the parking functions is given in [5]. In the
document, Remarks 3.2, 3.19 and 3.31 describe the case with multiple generators. They are
given without proofs, as it follows from the proofs detailed for one generator.

Document structure

In all the document, K will be any commutative field. This document has four sections:

� The first one gives several reminders about tridendriform algebras and its augmentations.

� The following one describes the free tridendriform bialgebra (relying on [15]) with one gen-
erator, giving combinatorial descriptions of the product with quasi-shuffle and admissible
cuts. There is also a description for multiple generators given as remarks.
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� Then we study the graded dual of the free tridendriform bialgebra which is TSym, the bial-
gebra whose coproduct is given by the lightning decomposition of a tree. As a consequence
of this section, we will find a (1, 3)-dendriform bialgebra structure for TSym.

� The last section defines (3, 2)-dendriform bialgebras and describe one example built on the
free (3, 1)-dendriform bialgebra with one generator given in the third section. We get it by
decorating the right-most leaf of a tree and we check it satisfies the definition. Finally, we
will show that a quotient of the free (3, 2)-dendriform algebra is the Loday–Ronco algebra.

2 Reminder

2.1 Tensor product for tridendriform algebras

Definition 2.1. Let K be a field and A be vector space of K. We say (A,≺, ·,≻) is a triden-
driform algebra if ≺, · and ≻ are all linear maps from A⊗A to A such that for any a, b, c ∈ A

(a ≺ b) ≺ c = a ≺ (b ∗ c), (2.1)

(a ≻ b) ≺ c = a ≻ (b ≺ c), (2.2)

(a ∗ b) ≻ c = a ≻ (b ≻ c), (2.3)

(a ≻ b) · c = a ≻ (b · c), (2.4)

(a ≺ b) · c = a · (b ≻ c), (2.5)

(a · b) ≺ c = a · (b ≺ c), (2.6)

(a · b) · c = a · (b · c), (2.7)

where ∗ is the associative product of the tridendriform algebra defined for any a, b ∈ A by
a ∗ b := a ≺ b+ a · b+ a ≻ b. We call the products ≻, ≺, · respectively right, left and middle.

Remark 2.2. The associativity of ∗ is a consequence of those seven relations.

Let us consider an associative algebra (A, ⋆) and a tridendriform algebra (B,≻, ·,≺). Our
goal is to give A⊗B a tridendriform algebra structure. In order to reach this aim, let us define
for all ⋉ ∈ {∗,≺,≻, ·}

⋉ :

{
(A⊗B)⊗ (A⊗B)→ A⊗B,

(a⊗ b)⊗ (c⊗ d) 7→ a ⋆ c⊗ b⋉ d,

With these definitions, we have ∗ =≺ + ·+ ≻.

Lemma 2.3. (A⊗B,≺, ·,≻) is a tridendriform structure.

Proof. We wish that these definitions make A⊗B a tridendriform algebra. We will check the
relations (2.1) to (2.7). To shorten the proof, we notice that the relations can be written as
follows for all a, b, c ∈ A

(a⋉ b)⋊ c = a⋉′ (b⋊′ c),

for (⋉,⋊,⋉′,⋊′) belonging to the following set:

{(≺,≺,≺, ∗), (≻,≺,≻,≺), (∗,≻,≻,≻), (≻, ·,≻, ·), (≺, ·, ·,≻), (·,≺, ·,≺), (·, ·, ·, ·)}. (2.8)

Let (⋉,⋊,⋉′,⋊′) be an element of the set above. Let a, c, e ∈ A and b, d, f ∈ B, then

((a⊗ b)⋉ (c⊗ d))⋊ e⊗ f = (a ⋆ c⊗ b⋉ d)⋊ (e⊗ f) = (a ⋆ c) ⋆ e⊗ (b⋉ d)⋊ f

= a ⋆ (c ⋆ e)⊗ b⋉′ (d⋊′ f) = (a⊗ b)⋉′ ((c⊗ d)⋊′ (e⊗ f)).

Consequently, this shows that A⊗B is a tridendriform algebra. ■
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Moreover, the tensor product for tridendriform algebras is associative.

Lemma 2.4. For any tridendriform algebras A, B and C, we have A⊗ (B⊗C) = (A⊗B)⊗C
as tridendriform algebras.

Proof. One just needs to write down the definitions of the products. ■

2.2 Augmented tridendriform algebras

Let (A,≻,≺, ·) be a tridendriform algebra. If we do some easy computations, we find that
(A,≻ +·,≺) and (A,≻,≺ +·) are two dendriform algebras, as detailed in [9]. In order to define
consistently the concept of augmented tridendriform algebra, which we will denote by (A,≻,≺, ·)
where A = A⊕K1 (1 is a unit for ∗ that we formally add to A), we need that (A,≻ +·,≺) and
(A,≻,≺ +·) are both augmented dendriform algebras as defined in [7, Section 3.1]. Therefore,
the definition of dendriform algebras applied to (A,≻ +·,≺) gives us for all a ∈ A

a ≺ 1 + a · 1 = a = 1 ≻ a and 1 ≺ a+ 1 · a = 0 = a ≻ 1.

Applying the same definition to (A,≻,≺ +·), we get for all a ∈ A

a ≺ 1 = a = 1 ≻ a+ 1 · a and 1 ≺ a = 0 = a ≻ 1 + a · 1.

As a consequence, we need to define 1 · a = a · 1 = 0 for all a ∈ A.

Definition 2.5. Let (A,≻,≺, ·) be a tridendriform algebra. We expand the products on
K⊗A⊕A⊗K⊕A⊗A by defining

∀a ∈ A, 1 ≺ a := 0 = 1 ≻ a, a ≺ 1 := a = 1 ≻ a and a · 1 := 0 = 1 · a. (2.9)

This construction gives us what we will call augmented tridendriform algebra. For a tridendriform
algebra A, we denote A the associated augmented tridendriform algebra.

Remark 2.6. With this definition of augmented tridendriform algebra, when both terms of the
relations (2.1)–(2.7) are well defined, there is an equality.

Remark 2.7. This is the unique way to define a ≻ 1, 1 ≻ a, a ≺ 1 and 1 ≺ a such that (2.1)–
(2.7) are equalities as soon as both sides are well defined.

Remark 2.8. It is not possible to define 1 ≺ 1 and 1 ≻ 1 such that the relations (2.9) are
satisfied over A.

2.3 Tensor product for augmented tridendriform algebras

Let
(
A,≻,≺, ·

)
and

(
B,≻,≺, ·

)
be two augmented tridendriform algebras. As in the dendriform

case, it is impossible to define ≻ and ≺ on the pair (1, 1) such that (2.9) still occurs. For this
reason, we define

A⊗B := A⊗B ⊕K⊗B ⊕A⊗K.

The previous vector space is a subspace of A⊗B on which we will define the three operations≻,≺
and ·.

Remark 2.9.

� We can extend ∗ to A⊗A with 1 ∗ 1 = 1. Moreover ∗ is associative on A.

� For two tridendriform algebras A and B, we have A⊗B = A⊗B.
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We define

∗ :

{(
A⊗B

)⊗2 → (
A⊗B

)
,

a⊗ b⊗ c⊗ d 7→ a ∗ c⊗ b ∗ d.

To simplify the notations, we denote by

D =
(
(A⊗K)⊗2

)
⊕ ((K⊗K)⊗ (A⊗K))⊕ ((A⊗K)⊗ (K⊗K)) ,

U =
(
(A⊗B)⊗2

)
⊕ ((A⊗K)⊗ (A⊗B))⊕ ((A⊗B)⊗ (A⊗K)) .

So, (A⊗B)⊗2 = U ⊕D. Then for all ⋉ ∈ {≺, ·,≻}, we define

⋉ :


(A⊗B)⊗2 →

(
A⊗B

)
,

a⊗ b⊗ c⊗ d ∈ U 7→ a ∗ c⊗ b⋉ d,

a⊗ b⊗ c⊗ d ∈ D 7→ a⋉ c⊗ b ∗ d.

Lemma 2.10. We consider two tridendriform algebras A and B. The algebra A⊗B is a
tridendriform algebra with the products defined above.

Remark 2.11. This implies that A⊗B is an augmented tridendriform algebra.

Proof. In Section 2.1, we have checked that the relations (2.1)–(2.7) are true when a, b, c, d, e, f
are elements of A or B. We now need to check those relations when at least one of these elements
is a unit.

Let (⋉,⋊,⋉′,⋊′) be an element of the set defined at (2.8). To simplify the following, when
we will consider x ∈ K1, we will suppose x = 1 after multiplying by a scalar. There are four
cases to check:

� Case 1: d ∈ B or (b ∈ B and f ∈ B);

� Case 2: b, d, f ∈ 1BK;

� Case 3: d ∈ 1BK, f ∈ 1BK and b ∈ B;

� Case 4: b ∈ 1BK, d ∈ 1BK, f ∈ B.

We prove Case 3 as an example. Other cases are left to the reader. We suppose d ∈ 1BK,
f ∈ 1BK and b ∈ B. Then c and e cannot be units.

[(a⊗ b)⋉ (c⊗ 1)]⋊ (e⊗ 1) = (a ∗ c⊗ b⋉ 1)⋊ (e⊗ 1) = (a ∗ c) ∗ e⊗ (b⋉ 1)⋊ 1

= a ∗ (c ∗ e)⊗ b× δ(⋉,⋊),(≺,≺),

(a⊗ b)⋉′ [(c⊗ 1)⋊′ (e⊗ 1)] = a⊗ b⋉′ (c⋊′ e⊗ 1) = a ∗ (c⋊′ e)⊗ b⋉′ 1
= a ∗ (c⋊′ e)⊗ b⋉′ 1× δ(⋉′,⋊′),(≺,∗).

Having a look at (2.8), we see that the only quadruple with (⋉,⋊) = (≺,≺) is (≺,≺,≺, ∗). So,
there is equality in this case. Once, we have checked the relations (2.1)–(2.7) on A⊗B. There
is still to check ∗ =≺ + ·+ ≻. With the work done in the first section, we only need to compute
this when there are at least one unit. Those verifications are straightforward. ■

2.4 Associativity of ⊗

Given A, B and C three augmented tridendriform algebras, do (A⊗B)⊗C and A⊗ (B⊗C)
have the same tridendriform algebra structure?

From the first section, (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C) have the same tridendriform algebra
structure. There is still to check what happens with units.
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Lemma 2.12. For A, B and C three augmented tridendriform algebras, we have

A⊗ (B⊗C) = (A⊗B)⊗C as tridendriform algebras.

Proof. In the following, we will use the identifications A⊗K ≈ A, B⊗K ≈ B, C⊗K ≈ C and
A⊗ (B⊗C) ≈ (A⊗B)⊗C. As a consequence, we see that

(
A⊗B

)
⊗C and A⊗

(
B⊗C

)
have

the same underlying vector space. We put D the following set:(
A⊗B ⊗ C

)⊗2 ⊕ ((A⊗B ⊗ C
)
⊗
(
A⊗B ⊗K

))
⊕
((
A⊗B ⊗K

)
⊗
(
A⊗B ⊗ C

))
.

For any ⋉ ∈ {∗,≺,≻, ·}, the tridendriform structure over ((A⊗B)⊗C)⊗2 is given by

⋉1 :


((A⊗B)⊗C)⊗2 → (A⊗B)⊗C,

(a⊗ b)⊗ c⊗ (a′ ⊗ b′)⊗ c′ ∈ D 7→ (a⊗ b) ∗ (a′ ⊗ b′)⊗ c⋉ c′,

(a⊗ b)⊗ c⊗ (a′ ⊗ b′)⊗ c′ ∈ ((A⊗B)⊗K)⊗2 7→ (a⊗ b)⋉ (a′ ⊗ b′)⊗ c ∗ c′.

Extending by linearity, we get an map ⋉1 defined on all ((A⊗B)⊗C)⊗2. Let us put D′ the set(
A⊗ (B⊗C)

)⊗2 ⊕ ((A⊗K⊗2
)
⊗
(
A⊗ (B⊗C)

))
⊕
((
A⊗ (B⊗C)

)
⊗
(
A⊗K⊗2

))
.

The tridendriform structure on A⊗
(
B ⊗ C

)
is given for all ⋉ ∈ {∗,≺,≻, ·} by

⋉2 :


(A⊗ (B⊗C))⊗2 → A⊗ (B⊗C),

a⊗ (b⊗ c)⊗ a′ ⊗ (b′ ⊗ c′) ∈ D′ 7→ a ∗ a′ ⊗ [(b⊗ c)⋉ (b′ ⊗ c′)],

a⊗ (b⊗ c)⊗ a′ ⊗ (b′ ⊗ c′) ∈
(
A⊗K⊗2

)⊗2 7→ a⋉ a′ ⊗ [(b⊗ c) ∗ (b′ ⊗ c′)].

By linearity of ⋉1 and ⋉2, for all x ∈ A. Then doing some straightforward computations, we
obtain for all ⋉ ∈ {≺,≻, ·, ∗}, ⋉1 = ⋉2. This proves the lemma. ■

Notation 2.13. Let A be an augmented tridendriform algebra. We denote by A+ the augmen-
tation ideal of A.

Remark 2.14. With those notations, we have A+ = A.

Before ending this section, we will need a definition and an easy lemma.

Definition 2.15. Let A, B be two tridendriform algebras. Let f : A → B a linear map. We
say that f is a tridendriform algebra morphism if for all a, b ∈ A and for all ⋉ ∈ {≺, ·,≻}

f(a⋉ b) = f(a)⋉ f(b).

If A, B are augmented, we say that f is an augmented tridendriform algebra morphism if
f : A+ → B+ is a tridendriform algebra morphism with f(1) = 1.

Lemma 2.16. Let A, A′, B, B′ be four augmented tridendriform algebras. Consider two tri-
dendriform algebra morphisms f : A→ A′ and g : B → B′. Then the map

f⊗g :

{
A+⊗B+ → A′⊗B′,

a⊗ b 7→ f(a)⊗ g(b)

is a tridendriform algebra morphism. Defining

f ⊗ g :


A⊗B → A⊗B,

a⊗ b ∈ A+⊗B+ 7→ (f ⊗ g)(a⊗ b),

1⊗ 1 7→ 1⊗ 1,

we get an augmented tridendriform algebra morphism.

Proof. The proof is straightforward. ■



Tridendriform Structures 9

3 The free tridendriform algebra and its coproduct

Let Tridend be the quadratic operad generated by Tridend2 = ⟨≻,≺, ·⟩ satisfying the rela-
tions (2.1)–(2.7). Let us consider A+ = Tridend(K). In other words, A+ is a free tridendriform
algebra generated by one element. Referring to [15, Theorem 2.6], we get A+ =

⊕
n≥1KTn

where Tn is the set of all planar rooted trees with n+ 1 leaves in which every internal node has
fertility at least 2. In other words, Tn is the set of reduced trees (also called Schröder trees)
with n + 1 leaves. Then we add a unit to this tridendriform algebra. We will denote in the
following A = A+,

A =
⊕
n≥0

KTn.

Examples 3.1. T0 = {|}, T1 = { }, T2 =
{

, ,
}
.

Remark 3.2.

� For more generators, we need to define: Let n ∈ N. Let D be a graded set by N, this means
D =

⊔
i∈NDi. We denote T g

n(D) the set of all rooted trees with n+1 leaves such that each
internal node x is decorated by an element of Dn where n is the number of children of the
internal node x.

� Let X be a non-empty set. The vector space on which we define the free tridendriform
algebra generated by X is

A(X) =
+∞⊕
n=0

T g
n(X

⋆),

where X⋆ is the set of all finite words on the alphabet X and for all n ∈ N, X⋆
n is the set

of all words of length n over the alphabet X. An equivalent definition exists decorating
the angular sectors of a tree by one letter from X instead. For more details, refer to [21,
Section 4]. For example, this is two representations of a same element of A(X):

a
bc

de
,

a

b c

ed

.

Let k be a non-negative integer. Let x(0), . . . , x(k) be trees from Tni for i ∈ J1, kK and ni ∈ N.
We denote by x(0) ∨ · · · ∨ x(k) the tree obtained by grafting on the same root and from left to
right the trees x(0), . . . , x(k). Then for x and y two trees, there exist unique trees x(0), . . . , x(k)

and y(0), . . . , y(l) such that

x = x(0) ∨ · · · ∨ x(k), y = y(0) ∨ · · · ∨ y(l).

With those notations, Theorem 2.6 from [15] tells us that we can define the three products
inductively by

x ≺ y = x(0) ∨ · · · ∨
(
x(k) ∗ y

)
,

x · y = x(0) ∨ · · · ∨
(
x(k) ∗ y(0)

)
∨ · · · ∨ y(l),

x ≻ y =
(
x ∗ y(0)

)
∨ · · · ∨ y(l),

initializing the induction with | ≺ y = 0, y ≺ | = y, x ≺ | = x, x ≻ | = 0, | · y = 0 = | · |
and | ∗ | = |.
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Examples 3.3.

� Taking k = 2 and x(0) = |, x(1) = , x(2) = |, x(0) ∨ x(1) ∨ x(2) is the following tree:

.

� On the other hand, the tree denoted by x(1) ∨ x(0) ∨ x(2) is

.

Our investigation to find a bialgebra with a tridendriform structure begins here. With this
objective in mind, we need to endow A with a bialgebra structure. Using the dendriform
structure of A⊗A, it is natural to impose for all x, y ∈ A

∆(x ≺ y) = ∆(x) ≺ ∆(y), ∆(x · y) = ∆(x) ·∆(y), ∆(x ≻ y) = ∆(x) ≻ ∆(y),

which leads to the following definition:

Definition 3.4. We will call a tridendriform bialgebra or (3, 1)-dendriform bialgebra any aug-
mented tridendriform algebra (H,≻,≺, ·) which also has a bialgebra structure (H, ∗, 1,∆, ε),
where ∗ =≺ + ·+ ≻, satisfying the following compatibilities, for all x, y ∈ H+

∆(x ≺ y) = ∆(x) ≺ ∆(y), ∆(x · y) = ∆(x) ·∆(y), ∆(x ≻ y) = ∆(x) ≻ ∆(y).

This notion of tridendriform bialgebra is such that (H,≺,≻ +·, 1H ,∆, ε) and (H,≺ +·,≻,
1H ,∆, ε) are both dendriform bialgebras, see Definition 1.3 with q = 1 from [5]. Let us remind
these definitions.

Definition 3.5. Let (H,m, 1,∆, ε) be a bialgebra. We say H is graded if there exists a se-
quence (Hn)n∈N of vectorial subspaces of H of finite dimension verifying

H =
+∞⊕
n=0

Hn.

Moreover, this grading satisfies

� ∀i, j ∈ N, m(Hi ⊗Hj) ⊆ Hi+j ,

� ∀n ∈ N, ∆(Hn) ⊆
∑

i+j=nHi ⊗Hj .

Definition 3.6. A graded Hopf algebra H is called connected if H0 has dimension 1.

Then giving A the grading An = KTn for all n ∈ N, we also wish that (A, ∗, |,∆, ε) is a graded
and connected bialgebra.

Notation 3.7. For any tree t, nl(t) is the number of leaves of t and deg(t) = nl(t)− 1.

3.1 Coproduct description

In this section, we will look for a coalgebra structure on (A,≺, ·,≻).

Definition 3.8. We define the following tridendriform algebra morphism:

∆:


A → A⊗A,
7→ ⊗ |+ | ⊗ ,

| 7→ | ⊗ |.
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But, as A is the free tridendriform algebra generated by one element, this morphism exists
and is unique because A⊗A is also a tridendriform algebra as seen in the previous section. We
will check at Theorem 3.20 that ∆ is coassociative.

Notation 3.9. For any n ∈ N, we denote by cn the corolla with n+ 1 leaves

· · ·
.

Remark 3.10. We describe here an explicit technique in order to find one writing of a tree.
Let n ∈ N and x ∈ Tn. We write x uniquely as x = x(0) ∨ · · · ∨ x(k). We need to consider four
cases:

� Case 1: ∀i ∈ J0, kK, x(i) = |. Then x = · ck.
� Case 2: x(0) ̸= |. Then x = x(0) ≻

(
| ∨ x(1) ∨ · · · ∨ x(k−1) ∨ x(k)

)
.

� Case 3: x(k) ̸= |. Then x = (x(0) ∨ · · · ∨ x(k−1) ∨ |) ≺ x(k).

� Case 4: there exists i ∈ J1, k − 1K such that x(i) ̸= |. Then we obtain

x = x(0) ∨ · · · ∨ x(i−1) ∨ x(i) ∨ x(i+1) ∨ · · · ∨ x(k)

=
(
x(0) ∨ · · · ∨ x(i−1) ∨ |

)
·
(
x(i) ∨ x(i+1) ∨ · · · ∨ x(k)

)
=
(
x(0) ∨ · · · ∨ x(i)

)
·
(
| ∨ x(i+1) ∨ · · · ∨ x(k)

)
,

where the two writings are equal thanks to the relation (2.5). Then we apply this process once
more on the branches of x and so on. Finally, we get a writing of x over the language {≺, ·,≻}
with constant symbol

{ }
.

In the following, we will give a lemma that helps us to find an explicit writing of ∆.

Notation 3.11. For all x ∈ A+, we denote ∆̃(x) = ∆(x)− |⊗x− x⊗|.

Lemma 3.12. Let t, s ∈ A = Tridend(K). Then

∆̃(t · s) = ∆̃(t) · ∆̃(s) + (1⊗ t) · ∆̃(s) + ∆̃(t) · (1⊗ s),

∆̃(t ≺ s) = s⊗ t+ (1⊗ t) ≺ ∆̃(s) + ∆̃(t) ≺ (1⊗ s) + ∆̃(t) ∗ (s⊗ 1) + ∆̃(t) ≺ ∆̃(s),

∆̃(t ≻ s) = t⊗ s+ (1⊗ t) ≻ ∆̃(s) + (t⊗ 1) ∗ ∆̃(s) + ∆̃(t) ≻ (1⊗ s) + ∆̃(t) ≻ ∆̃(s).

Proof. Let ⋉ ∈ {≻, ·,≺}. Let t, s ∈ A. Then

∆(t⋉ s) =
(
1⊗ t+ t⊗ 1 + ∆̃(t)

)
⋉
(
1⊗ s+ s⊗ 1 + ∆̃(s)

)
= 1⊗ t⋉ s+ s⊗ t⋉ 1 + (1⊗ t)⋉ ∆̃(s) + t⊗ 1⋉ s+ t⋉ s⊗ 1

+ (t⊗ 1)⋉ ∆̃(s) + ∆̃(t)⋉ (a⊗ s) + ∆̃(t)⋉ (s⊗ 1) + ∆̃(t)⋉ ∆̃(s).

We get the lemma applying the definition of ≺, · and ≻ on the equation above. ■

Definition 3.13. Let t be a tree, we define the valence of a vertex v of t as the number of
outgoing edges of v. A leaf of t is an edge of valence 0. We call a vertex of t internal if it is not
a leaf.

We say that an edge of t is internal if it links two internal vertices.

Definition 3.14. Let t be a tree. A cut of t is a non-empty choice of internal edges of t. We
call empty cut of t, the cut which chooses no edge of t and we call total cut the cut “under the
root of t”.

A cut c of t is called admissible if all paths from the root to one of the leaves do not meet
more than one chosen edge by c. The total and empty cuts are admissible cuts.
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Example 3.15. On the tree the drawn cut is not admissible but is admissible.

Notation 3.16. Let t be a tree and c be an admissible cut of t which is neither empty, nei-
ther total. By withdrawing the chosen edges by c, we find some trees that we will denote
Gc

1(t), . . . , G
c
m(t), where m is the number of edges chosen by c, Gc

1(t) is the left-most tree after
withdrawing all edges of c, . . . , and Gc

m(t) is the right-most tree.
We also denote by Rc(t) the component after withdrawing the edges of c containing the root

of t. If c is the empty cut, we define Rc(t) := t and Gc(t) := |. If c is the total cut, we define
Rc(t) := | and Gc(t) = t.

Examples 3.17.

� The empty cut c of the tree t gives Rc(t) = t.

� The total cut c of t gives Gc(t) = t.

� Let us consider the tree with the cut c symbolized by the horizontal line cutting the

tree. In this case, Rc(t) = and Gc(t) = .

� With , we get Rc(t) = and Gc
1(t) = , Gc

2(t) = , Gc
3(t) = .

Observing our results, we get

Proposition 3.18. The map defined at Definition 3.8 over A is given for all trees t by the
formula

∆(t) =
∑

c admissible cut of t

Gc(t)⊗Rc(t), ∆(|) = | ⊗ |,

where Rc(t) is the component of t containing its root and Gc(t) = Gc
1(t)∗ · · ·∗Gc

k(t), where Gc
i (t)

are naturally ordered from left to right.

Proof. We proceed by induction over the number of leaves. As seen before,

∆
( )

= ⊗ |+ | ⊗ .

This corresponds to the statement of our proposition.
Heredity: let n ∈ N. Suppose that for all trees with at most n+ 1 leaves, their coproduct is

written like in the proposition. Let t be a tree with n+ 2 leaves. There exist k, s ∈ N such that
k + s = n+ 3 and u ∈ Tk, v ∈ Ts such that one of these equations is true:

t = u ≺ v, where u = u(0) ∨ u(1) ∨ · · · ∨ u(r−1) ∨ |, (3.1)

t = u ≻ v, where v = | ∨ v(1) ∨ · · · ∨ v(r−1) ∨ v(r), (3.2)

t = u · v, where u = u(0) ∨ · · · ∨ u(r−1) ∨ |, (3.3)

using Remark 3.10 and r denotes the valence of the root of t. Under the condition (3.1), we
have

∆(t) = ∆(u) ≺ ∆(v)

=

( ∑
cu admissible cut of u

Gcu(u)⊗Rcu(u)

)
≺
( ∑

cv admissible cut of v

Gcv(v)⊗Rcv(v)

)
=

∑
cu admissible cut of u
cv admissible cut of v

Rcu ̸=|∧Rcv ̸=|
Rcu ̸=u∧Rcv ̸=v

Gcu(u) ∗Gcv(v)⊗Rcu(u) ≺ Rcv(v) + | ⊗ u ≺ v + u ≺ v ⊗ |.
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But u = u(0) ∨ u(1) ∨ · · · ∨ u(r−1) ∨ |. As a consequence, an admissible cut of u ≺ v = u(0) ∨
u(1) ∨ · · · ∨ u(r−1) ∨ v is an admissible cut of u followed by an admissible cut of v. Moreover, the
branches falling from v fall at the right of the branches from u. This implies

∆(u ≺ v) = ∆(t) =
∑

c admissible cut of t

Gc(t)⊗Rc(t).

With an analogous idea, we get the same result in the case (3.2). In the case (3.3), we get
t = u · v with u = u(0) ∨ · · · ∨ u(r−1) ∨ |. As a consequence,

∆(t) =

( ∑
cu admissible cut of u

Gcu(u)⊗Rcu(u)

)
·
( ∑

cv admissible cut of v

Gcv(v)⊗Rcv(v)

)
= | ⊗ u · v + u · v ⊗ |+

∑
cu admissible cut of u
cu admissible cut of v

Rcu ̸=|∧Rcv ̸=|
Rcu ̸=u∧Rcv ̸=v

Gcu(u) ∗Gcv(v)⊗Rcu(u) ·Rcv(v).

We denote v = v(0) ∨ · · · ∨ v(r
′). With the shape of u, an admissible cut of u · v = u(0) ∨ · · · ∨

u(r−1) ∨ v(0) ∨ · · · ∨ v(r
′) is an admissible cut of u followed by an admissible cut of v. Moreover,

the branches of v fall at the right of the branches of u. This shows that

∆(t) =
∑

c admissible cut of t

Gc(t)⊗Rc(t). ■

Remark 3.19. In the case of multiple generators, the coproduct overA(D) is the same extending
naturally its definition to decorated trees.

Theorem 3.20. The coproduct of Proposition 3.18 is coassociative and has for counit the linear
map defined by

ε(t) =

{
1 if t = |,
0 else.

As a consequence, (A, ∗, |,∆, ε) is a connected graded bialgebra and a tridendriform bialgebra.
Moreover, ∆ is the unique map making (A, ∗, |) a tridendriform bialgebra.

Proof. It is enough to show that ∆ is coassociative, unique and ε satisfies the counit property.
First, let us remind that A+ is the free tridendriform algebra generated by one element. The
result of Lemma 2.3 says that A+⊗A+ is a tridendriform algebra. Using the universal property
of the free tridendriform algebra given by the operad theory, we find the existence of a unique
tridendriform algebra morphism such that

∆:

{
A+ → A+⊗A+,

7→ | ⊗ + ⊗ |.

Then we expand the definition of ∆ to A by defining ∆(|) = | ⊗ |. Consequently, we have the
uniqueness of ∆. We get two maps

(Id⊗∆) ◦∆: A → A⊗ (A⊗A),
(∆⊗ Id) ◦∆: A → (A⊗A)⊗A.

But we have seen that the final spaces of these two maps have the same augmented tridendriform
structure in Lemma 2.12. By Lemma 2.16, (∆ ⊗ Id) ◦ ∆ and (Id ⊗ ∆) ◦ ∆ are morphisms
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of augmented tridendriform algebras. Then we deduce that these two applications are equal
over A+ because (Id⊗∆) ◦∆

( )
= (∆⊗ Id) ◦∆

( )
and generates A+ as tridendriform

algebra. Moreover, (Id⊗∆) ◦∆(|) = (∆⊗ Id) ◦∆(|). So, (∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆ over A.
So ∆ is coassociative.

For the counit property, using Lemma 2.16, we know that (ε ⊗ Id) ◦∆ and (Id ⊗ ε) ◦∆ are
morphisms of augmented tridendriform algebras. Moreover,

(ε⊗ Id) ◦∆
( )

= = (Id⊗ ε) ◦∆
( )

.

Thanks to the universal property of the free tridendriform algebra A+, these two morphisms are
equal to Id. It is clearly the same for ⟨|⟩. So, it is the identity over A. ■

Definition 3.21. For any bialgebra (H, ∗, 1,∆, ε), we define

Prim(H) :=
{
x ∈ H | ∆̃(x) = 0

}
.

Corollary 3.22. Every tree t element of Prim(A) is a corolla.

Proof. Let t ∈ Prim(A). If t has two leaves, then t = . Let us suppose t has at least
three leaves. Then using the fact that generates the tridendriform algebra A, we deduce the
existence of two trees u, v which have strictly less leaves than t such that

t = u ≺ v or t = u · v or t = u ≻ v.

By Lemma 3.12, the only possibility for t to be primitive is t = u · v with u, v ∈ Prim(A). By
induction hypothesis, u and v are corollas. So t is a corolla. ■

Examples 3.23.

� · = | ∨ (| ∗ |) ∨ | = is primitive.

� · = | ∨ | ∨ (| ∗ |) ∨ | = is primitive.

3.2 Description of the product

3.2.1 Quasi-shuffles

In this part, our objective is to give non inductive descriptions of the product ∗ and the three
others operations ≺, ·, ≻. We shall need the following definition:

Definition 3.24 (quasi-shuffle). Let k, l ∈ N \ {0}. A (k, l)-quasi-shuffle is a surjective map
σ : J1, k + lK↠ J1, nK surjective for some positive integer n such that

σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + l).

We will denote QSh(k, l) the set of all (k, l)-quasi-shuffles.

The reader may find more details about quasi-shuffles and tridendriform algebras in [18].

Remark 3.25. We will use the following notation to describe quasi-shuffles. Let k, l ∈ N \ {0}.
Let σ be a surjective map of J1, k + lK into some J1, nK. We will denote σ like this

(σ(1), . . . , σ(k), σ(k + 1), . . . , σ(k + l)).

Remark 3.26. Let σ ∈ QSh(k, l), then σ−1({1}) is either {1}, {k + 1} or {1, k + 1}.
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3.2.2 Comb representation of a tree

Let t be a tree. It t can always be seen as

t11 t1n1· · ·

t21 t2n2· · ·
· · ·

tk1 tknk· · ·

where k is the number of nodes on the right-most branch of t and for i ∈ J1, kK, ni + 1 is the
number of sons of the i-th node of this branch.

Notation 3.27. Let F = t1 . . . tn be a forest composed of n trees. Instead of writing

t1 tn· · ·

we will write
F

.

As a consequence, we deduce that all tree t can be seen as

F1

F2 · · ·
Fk

where F1, . . . , Fk are non-empty forests.

Definition 3.28. The writing defined above is the writing of t as a right comb. Proceeding the
same way, looking at the left branch of the root of t, we get the writing of t as a left comb.

3.2.3 Action of the quasi-shuffles over ordered pairs of trees

Let t, s two trees different from |. We look t as a right comb and s as a left comb. In other
words, we put

t =

F1

F2 · · ·
Fk

and s =

Fk+1

Fk+2
···

Fk+l

where for all i ∈ J1, k + lK, Fi is a non-empty forest. Here, k represents the number of nodes on
the right-most branch of t and l is the number of nodes on the left-most branch of s.

Definition 3.29. Let t and s be two trees which respective right comb representation and left
comb representation are given above. We denote by k (respectively l) the number of nodes on
the right-most (respectively left-most) branch of t (respectively s). Let σ be a (k, l)-quasi-shuffle
which has for image J1, nK for n a positive integer. We denote σ(t, s) the tree obtained this way:
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1. We first consider the ladder with n nodes:

Node 1
Node 2

Node n

2. For all i ∈ J1, kK, we graft Fi as the left son at the node σ(i).

3. For all i ∈ Jk + 1, k + lK, we graft Fi as right son at the node σ(i).

Example 3.30. Consider the (2, 2)-quasi-shuffle σ = (1, 3, 2, 3). Let us take

t = F1

F2

and s = F3

F4

, then σ(t, s) =
F1

F3

F2
F4

.

Remark 3.31. For multiple generators, we extend the definition of this product naturally
over A(X) except when a node of this ladder has left and right sons. In this case, the decoration
of this node is the concatenation of the decorations of the roots of the forests grafted at this
node.

Example 3.32. Let a, b ∈ D, then

(1, 1)
(

a , b
)
= ab .

Notation 3.33. Given F = t1 . . . tn a forest, we define

nl(F ) =

n∑
i=1

nl(ti), deg(F ) =

n∑
i=1

deg(ti).

Remark 3.34. For all trees t, s of A and for all σ, γ ∈ QSh(k, l), we have

σ(t, s) = γ(t, s) ⇐⇒ σ = γ.

Proof. The ladder used to build σ(t, s) and γ(t, s) is a tree along the path going from the root
to the nl(t)-th leaf. Comparing right and left sons of each node of the ladder we see σ = γ. ■

3.2.4 Description of the product

Let t, s be two trees different from |. We will suppose that our trees are written as follows:

t =

F1

F2 · · ·
Fk

and s =

Fk+1

Fk+2
···

Fk+l

Notation 3.35. Let F = t1 . . . tk be a forest and t a tree. We denote by F ∨ t the following
tree:

t1 ∨ · · · ∨ tk ∨ t.

Theorem 3.36. Let t, s be two trees different from | as described above. Then

t ∗ s =
∑

σ∈QSh(k,l)

σ(t, s).
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Proof. We prove this theorem by induction on the sum of k and l. As t, s ̸= |, k, l ∈ N \ {0}.
To initialize the induction, the only case to check is k + l = 2, that is to say k = 1 and l = 1.
Let us remind that T1 =

{ }
and QSh(1, 1) = {(1, 1), (1, 2), (2, 1)}. Then

(1, 1)
(

,
)
+ (2, 1)

(
,

)
+ (1, 2)

(
,

)
= + + = + + = ∗ .

Secondly, we check the heredity. Let (k, l) ∈ N \ {0} such that k + l ≥ 2. Let us suppose that
for all couples (k′, l′) ∈ N \ {0} such that k′ + l′ < k + l, we have the theorem. Then

t ∗ s = t ≺ s+ t · s+ t ≻ s

= F1 ∨


F2

F3 · · ·
Fk

∗
Fk+1

Fk+2
···

Fk+l



+


F1

F2 · · ·
Fk

∗
Fk+2

Fk+3
···

Fk+l

 ∨ Fk+1

+ F1 ∨


F2

F3 · · ·
Fk

∗
Fk+2

Fk+3
···

Fk+l

 ∨ Fk+1

= F1 ∨


∑

τ∈QSh(k−1,l)

τ


F2

F3 · · ·
Fk

,

Fk+1

Fk+2
···

Fk+l




+ F1 ∨


∑

γ∈QSh(k−1,l−1)

γ


F2

F3 · · ·
Fk

,

Fk+2

Fk+3
···

Fk+l


 ∨ Fk+1

+


∑

δ∈QSh(k,l−1)

δ


F1

F2 · · ·
Fk

,

Fk+2

Fk+3
···

Fk+l


 ∨ Fk+1

=
∑

τ∈QSh(k−1,l)
σ1=(1,τ(1)+1,...,τ(k+l−1)+1)

σ1(t, s)

+
∑

γ∈QSh(k−1,l−1)
σ2=(1,γ(1)+1,...,γ(k−1)+1,1,γ(k)+1,...,γ(k+l−2)+1)

σ2(t, s)

+
∑

δ∈QSh(k,l−1)
σ3=(δ(1)+1,...,δ(k)+1,1,δ(k+1)+1,...,δ(k+l−1)+1)

σ3(t, s).



18 P. Catoire

Therefore,

t ∗ s =
∑

σ1∈QSh(k,l)

σ−1
1 ({1})={1}

σ1(t, s) +
∑

σ2∈QSh(k,l)

σ−1
2 ({1})={1,k+1}

σ2(t, s) +
∑

σ1∈QSh(k,l)

σ−1
3 ({1})={k+1}

σ3(t, s)

=
∑

σ∈QSh(k,l)

σ(t, s). ■

Thanks to the previous theorem, we get

Corollary 3.37. Let t, s be two trees different from |. Then

t ≺ s =
∑

σ∈QSh(k,l)
σ−1(1)={1}

σ(t, s), t · s =
∑

σ∈QSh(k,l)
σ−1(1)={1,k+1}

σ(t, s), t ≻ s =
∑

σ∈QSh(k,l)
σ−1(1)={k+1}

σ(t, s).

Proof. We just refer to the previous proof. ■

Remark 3.38. In [4], the authors describe the tridendriform structure over Schröder trees with
stuffle paths in Section 7.1.2. A stuffle path is a sequence

(
σ−1({i})

)
i∈J1,nK where σ is a (k, l)-

quasi-shuffle and n = max(σ). As the set of quasi-shuffles is in bijection with stuffle paths, it
gives an equivalent description of the tridendriform structure. But it is still defined inductively.

Remark 3.39. For many generators, we extend these definitions to decorated trees thanks to
Lemma 3.31.

Some quasi-shuffle algebras are studied in [11] nearby Proposition 4. In the case of quasi-
shuffle algebras over words, the tridendriform structure is given by shuffling letters. Otherwise,
we can also define a tridendriform structure looking at from which word comes the last letter
(and not the first). If we do so with Schröder trees, the relation (2.1) is not satisfied.

3.3 (3, 1)-dendriform bialgebras quotients

Definition 3.40. Let (H,≺, ·,≻, 1,∆, ε) be (3, 1)-dendriform bialgebra. We say that I is a (3, 1)-
dendriform biideal if I is a tridendriform ideal and I is a coideal of H.

With these definitions, it follows:

Proposition 3.41. Let (H,≺, ·,≻, 1,∆, ε) be a (3, 1)-dendriform bialgebra. Let I be a (3, 1)-

dendriform biideal. Then H⧸I with the quotient structure is a (3, 1)-dendriform bialgebra.

4 Graded dual of A

4.1 Tridendriform coalgebra

We consider (A, ∗, |,∆, ε) as a graded and connected Hopf algebra (see Definitions 3.5 and 3.6).
We will now describe the graded dual of A, denoted by A⊛. Let us consider the bilinear map

⟨·, ·⟩ : A×A → K,

defined by ⟨t, s⟩ = δt,s for t, s two trees. Through this pairing, we identify A⊛ with A as vector
spaces with

Φ:


A → A⊛,

a 7→

{
A → K,

b 7→ ⟨a, b⟩.
(4.1)
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Let us put for all ⋉ ∈ {≺, ·,≻, ∗}, ∆⋉ = ⋉⊛. In order to be readable, we will write ∆• instead
of ∆·. Moreover, we will write ∆∗ = ∆. Then in A⊛+, we have

∆ = ∆≺ +∆• +∆≻.

Moreover, for all a⊗ b ∈ A⊗A and t ∈ A ≃ A⊛:

⟨∆⋉(t), a⊗ b⟩ = ⟨t, a⋉ b⟩.

By duality, choosing all the quadruples (⋉,⋊,⋉′,⋊′) elements of (2.8) and using the rela-
tions (2.1)–(2.7), we get in A⊛+

(Id⊗∆) ◦∆≺ = (∆≺ ⊗ Id) ◦∆≺, (4.2)

(Id⊗∆≺) ◦∆≻ = (∆≻ ⊗ Id) ◦∆≺, (4.3)

(Id⊗∆≻) ◦∆≻ = (∆⊗ Id) ◦∆≻, (4.4)

(Id⊗∆•) ◦∆≻ = (∆≻ ⊗ Id) ◦∆•, (4.5)

(Id⊗∆≻) ◦∆• = (∆≺ ⊗ Id) ◦∆•, (4.6)

(Id⊗∆≺) ◦∆• = (∆• ⊗ Id) ◦∆≺, (4.7)

(Id⊗∆•) ◦∆• = (∆• ⊗ Id) ◦∆•. (4.8)

Remark 4.1. Each map described above are maps from A⊛+ into a space where each term is
well defined according to the Remark 2.6.

Example 4.2. We have

(Id⊗∆) ◦∆≺
( )

= (Id⊗∆)
(
⊗ |
)
= ⊗ | ⊗ |,

(∆≺ ⊗ Id) ◦∆≺
( )

= (∆≺ ⊗ Id)
(
⊗ |
)
= ⊗ | ⊗ |.

Then we can break our coproduct ∆ over A⊛+ in three pieces such that the relations (4.2)–
(4.8) are verified. In the following, we define as in [4, Definition 5.3]:

Definition 4.3. A tridendriform coalgebra is a coalgebra
(
C, ∆̃

)
, where there exist three maps

∆̃≺ : C → C ⊗ C, ∆• : C → C ⊗ C, ∆̃≻ : C → C ⊗ C,

such that the relations (4.2)–(4.8) are true for all (x, y, z) ∈ C3 replacing each ∆⋉ by ∆̃⋉ for
⋉ ∈ {≺, ·,≻, ∗}. We also have ∆̃ = ∆̃≺ +∆• + ∆̃≻.

Definition 4.4. Let
(
C, ∆̃≺,∆•, ∆̃≻

)
be a tridendriform coalgebra. The associated augmented

tridendriform coalgebra is the vector space C = 1C · K ⊕ C where we expand our coproduct ∆̃
as a coproduct ∆ on 1C ·K by

∆(1C) = 1C ⊗ 1C .

We also define for all x ∈ C

∆(x) = ∆̃(x) + 1C ⊗ x+ x⊗ 1C ,

∆≺(x) = ∆̃≺(x) + x⊗ 1C ,

∆≻(x) = ∆̃≻(x) + 1C ⊗ x.

As a consequence, ∆ = ∆≺ + ∆• + ∆≻. Note that we do not define ∆≺(1C), neither ∆•(1C),
nor ∆≻(1C). As a consequence of these definitions, the relations (4.2)–(4.8) are satisfied over C.
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4.2 (1, 3)-dendriform bialgebras

We will study the compatibilities between the product m of A⊛ and the coproducts ∆≺, ∆•
and ∆≻ of A⊛. We already know that ∆ ◦ m = mA⊛⊗A⊛ ◦ (∆ ⊗ ∆). Let f, g ∈ A⊛+ and
u, v ∈ A+. Then f(|) = g(|) = 0. Let ⋉ ∈ {≺, ·,≻}. Thanks to our construction of ∆ preserving
the tridendriform structure, we get

⟨∆⋉ ◦m(f ⊗ g), u⊗ v⟩ = ⟨m(f ⊗ g), u⋉ v⟩ = ⟨f ⊗ g,∆(u⋉ v)⟩ = ⟨f ⊗ g,∆(u)⋉∆(v)⟩.

For x ∈ A, we also denote ∆̃(x) = x′ ⊗ x′′, omitting the summation symbol to shorten the
writing. Therefore, the results of the Lemma 3.12 can be written as

∆̃(u ≺ v) = v ⊗ u+ v′ ⊗ u ≺ v′′ + u′ ∗ v ⊗ u′′ + u′ ⊗ u′′ ≺ v + u′ ∗ v′ ⊗ u′′ ≺ v′′,

∆̃(u ≻ v) = u⊗ v + u′ ∗ v′ ⊗ u′′ ≻ v′′ + u′ ⊗ u′′ ≻ v + u ∗ v′ ⊗ v′′ + v′ ⊗ u ≻ v′′,

∆̃(u · v) = u′ ∗ v′ ⊗ u′′ · v′′ + u′ ⊗ u′′ · v + v′ ⊗ u · v′′.

Notation 4.5. For all ⋉ ∈ {≺, ·,≻} and for all x ∈ A⊛, we denote

∆⋉(x) = x′⋉ ⊗ x′′⋉

omitting the sum to shorten the writing. This is the generalized Sweedler’s notation.

Remark 4.6. For all f ∈ A⊛ and for all u, v ∈ A,

⟨f, u⋉ v⟩ = f(u⋉ v) = ∆⋉(f)(u⊗ v) = f ′⋉(u)f
′′
⋉(v).

From those equations, we get for any f, g ∈ A⊛+

∆≺(fg) = g ⊗ f + g′≺ ⊗ fg′′≺ + f ′≺g ⊗ f ′′≺ + f ′g′≺ ⊗ f ′′g′′≺, (4.9)

∆•(fg) = f ′g′• ⊗ f ′′g′′• + fg′• ⊗ g′′• + g′′• ⊗ fg′•, (4.10)

∆≻(fg) = f ⊗ g + f ′g′≻ ⊗ f ′′g′′≻ + f ′ ⊗ f ′′g + g′≻ ⊗ fg′′≻. (4.11)

We detail how to obtain (4.9). The other verifications are left to the reader,〈
∆≺(fg), u⊗ v

〉
=
〈
f ⊗ g, ∆̃(u ≺ v)

〉
=
〈
f ⊗ g, v ⊗ u+ v′ ⊗ u ≺ v′′ + u′ ∗ v ⊗ u′′ + u′ ⊗ u′′ ≺ v + u′ ∗ v′ ⊗ u′′ ≺ v′′

〉
= ⟨g ⊗ f, u⊗ v⟩+

〈
f ⊗ g′≺ ⊗ g′′≺, v

′ ⊗ u⊗ v′′
〉
+
〈
f ′≺ ⊗ f ′′≺ ⊗ g, u′ ⊗ v ⊗ u′′

〉
+
〈
f ⊗ g′≺ ⊗ g′′≺, u

′ ⊗ u′′ ⊗ v
〉
+
〈
f ′ ⊗ f ′′ ⊗ g′≺ ⊗ g′′≺, u

′ ⊗ v′ ⊗ u′′ ⊗ v′′
〉

=
〈
g ⊗ f + g′≺ ⊗ fg′′≺ + f ′≺g ⊗ f ′′≺ + f ′g′≺ ⊗ f ′′g′′≺, u⊗ v

〉
.

So we get (4.9). This encourages us to establish the following definition:

Definition 4.7. A (1, 3)-dendriform bialgebra is a family (H,m, η,∆≺,∆•,∆≻, ε) such that

� (H,m, η) is a unitary algebra.

� (H,∆≺,∆•,∆≻) is an augmented tridendriform coalgebra and ε is the counit of (H,∆)
where ∆ = ∆≺ +∆• +∆≻.

� The relations (4.9), (4.10) and (4.11) are satisfied for all f, g ∈ H.

Example 4.8. The bialgebra (A⊛,m, η,∆, ε) with three maps ∆≺, ∆• and ∆≻ defined above
is a (1, 3)-dendriform bialgebra.

Remark 4.9. If H is a graded (3, 1)-dendriform bialgebra, then its graded dual H⊛ is a (1, 3)-
dendriform bialgebra. Moreover, if H is a graded (1, 3)-dendriform bialgebra, H⊛ is a (3, 1)-
dendriform bialgebra.
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4.3 Study of the coproduct of A⊛

Definition 4.10 (lightning decomposition of a tree). Let t be a tree and i ∈ J1, nl(t)K. We call
the lightning decomposition of t on the leaf number i, the couple of trees obtained by hitting
a lightning on t at the leaf number i going along the path from that leaf to the root. This
lightning splits the tree into two pieces and by contracting unnecessary nodes, we obtain an
ordered pair of two trees (t1, t2).

Example 4.11.

 

→ →
(

,
)

This notion arises from [3, Definition 2.2 and Example 2.3], where a complete bialgebra called
TSym is built with a coproduct based on the lightning decomposition of a tree. It also appears
in [4] where lightings are called cutting paths in Section 7.1.1.

Notation 4.12. Let t be a tree and m be an element of J1, nl(t)K, we denote by (mt, tm) the
lightning decomposition of t on the leaf number m.

Let t be a tree of A. Let us consider it as an element of A⊛ through the pairing (4.1). Let u, v
be trees of A and we denote

u =

F1

F2 · · ·
Fk

and v =

Fk+1

Fk+2
···

Fk+l

Then

⟨∆(t), u⊗ v⟩ = ⟨t, u ∗ v⟩ =
∑

σ∈QSh(k,l)

⟨t, σ(u, v)⟩

=

{
1 if ∃σ ∈ QSh(k, l) such that t = σ(u, v),

0 else.

Remark 4.13. By Remark 3.34, if such a quasi-shuffle exists, it is necessarily unique.

As a consequence, if this quantity is non-zero, this implies that t has the following form:

the forests F1,...,Fk are ordered,
from below to top

the forests Fk+1,...,Fk+l are ordered,
from below to top

If we use a lightning on the m-th leaf of the tree t with m = nl(u), that is the ladder that we
see on the drawing above, we find

mt = u and tm = v. (4.12)

Moreover, all the elements of the form σ(u, v) for a certain σ ∈ QSh(k, l), satisfy

mσ(u, v) = u and σ(u, v)m = v,
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where m = nl(u). And these trees are the only ones with this property. In fact, let us consider t
a tree and m ∈ N \ {0} such that mt = u and tm = v. Then following the road of the lightning,
we have the following description of t:

forests of v as a left comb,forests of u as a right comb

where these forests appear “in the good order”. Consequently, we deduce

Proposition 4.14. The coproduct of A⊛ is given for all tree t different from | by

∆(t) =

nl(t)∑
m=1

mt⊗ tm.

We get combinatorial interpretations of the pieces of coproduct:

1. We interpret ∆≺(t) as the sum of mt⊗tm such that the lightning starting at the leaf number
m of t touches the right-most exterior branch of t.

2. The terms of ∆≻(t) is the sum of these terms where the lightning touches the left-most
exterior branch of t.

3. The terms of ∆•(t) are those where the lightning does not touch any of the exterior
branches.

Remark 4.15. It is the coproduct from TSym =
⊕

n≥0KPTn described in [3, Definition 4.1].
In [4, Section 7.3], we find an equivalent description of the coproducts with cutting paths.

The following results will be useful in the Section 5.2.3.

Corollary 4.16. Let a, b, c, d be four homogeneous elements of A. We put deg(a) = deg(c)
and deg(b) = deg(d). We suppose that a ∗ b = c ∗ d for the product of A. Then a and b are
collinear and c and d are collinear.

Proof. Firstly, we consider four trees a, b, c, d. We denote k := nl(a) = nl(b) and l := nl(c) =
nl(d). We define for any tree t with m leaves and for all n ∈ J1,mK

∆n(t) =
n t⊗ tn.

As a consequence, denoting λk,l the number of elements of QSh(k, l) (which is not zero),

∆k(a ∗ b) = λk,la⊗ b, ∆k(c ∗ d) = λk,lc⊗ d.

As a ∗ b = c ∗ d and λk,l ̸= 0, we deduce that a and b are collinear and c and d are collinear. Sec-
ondly, we consider a =

∑
i∈J1,nK λiai, b =

∑
j∈J1,mK βjbj , c =

∑
q∈J1,rK γqcq and d =

∑
l∈J1,sK δldl

where the λi, βj , γq, δl are all non zero scalars and ai, bj , cq, dl are trees. Expanding the writings
of a ∗ b and c ∗ d and applying ∆k, we also obtain

∆k(a ∗ b) = λk,la⊗ b, ∆k(c ∗ d) = λk,lc⊗ d.

We also have the same conclusion as in the first case. ■

Following the same ideas, we also have
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Corollary 4.17. Let a, b, c, d be four homogeneous elements of A. We put deg(a) = deg(c),
deg(b) = deg(d). We also suppose a ≺ b = c ≺ d or a · b = c · d or a ≻ b = c ≻ d. Then a and b
respectively c and d are collinear.

Theorem 4.18. Let X ∈ Ak ⊗ Al for some pair of non-negative integers (k, l). Let X =∑
i∈I ai ⊗ bi be a minimal writing of X for the number of terms. If there exists ⋉ ∈ {≺, ·,≻, ∗}

such that
∑

i∈I ai ⋉ bi = 0, then X = 0.

Proof. Let ⋉ ∈ {≺, ·,≻, ∗} such that
∑

i∈I ai ⋉ bi = 0. We define ∆k as in the previous proof.
As a consequence,

0 = ∆k(X) = ∆k

(∑
i∈I

ai ⋉ bi

)
= λ⋉

(k,l)

∑
i∈I

ai ⊗ bi,

where λ≺(k,l), λ
•
(k,l), λ

≻
(k,l) are respectively the number of elements of QSh(k, l) such that σ−1({1})=

{1}, σ−1({1}) = {1, k + 1} and σ−1({1}) = {k + 1}. None of these numbers are equal to zero.
But this sum is 0. As a consequence, at least one family (ai)i∈I or (bi)i∈I is linearly dependant.
However X =

∑
i∈I ai ⊗ bi is a minimal writing. So X = 0. ■

4.4 Description of the product of A⊛

Let us remind the definitions of � and mTSym from [3, Definitions 2.9 and 4.1].

Definition 4.19. Let t be a tree with k leaves and consider k trees t1, . . . , tk. We denote by
t � (t1, . . . , tk) the tree obtained by grafting ti on the i-th leaf of t for each i ∈ J1, kK. We
can also use multiple lightnings on a single tree t. If l is a non-negative integer, we denote by
Lightl(t) ⊆ Al+1 the set of all the decompositions of t obtained using l successive lightnings.
Consider another tree s such that deg(s) = r. We define

mTSym(s⊗ t) :=
∑

(t1,...,tr+1)∈Lightr(t)

s� (t1, . . . , tr+1).

Examples 4.20. Here is an example of multiple lightnings:

  
→

(
,
 )

→
(

, ,
)
,

Light2

( )
=
{(
|, |,

)
,
(
|, , |

)
,
(

, |, |
)
,
(
|, ,

)
,
(
|, ,

)
,(

, , |
)
,
(

, , |
)
,
(

, |,
)
,
(

, |,
)
,
(

, ,
)}

.

Here is an example for the product:

�

(
,

)
= ,

mTSym

(
,

)
= + + + +

+ + + + + .

Notation 4.21. Consider a vector space V and a linear map m : V ⊗ V → V , we denote mop

the linear map from V ⊗ V to V such that for all a⊗ b ∈ V ⊗ V

mop(a⊗ b) = m(b⊗ a).

If (A,m, 1) is an algebra, we denote Aop the algebra (A,mop, 1).
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Proposition 4.22. The product m of A⊛ is the product of mop
TSym.

Proof. Let (u, v) ∈ Tn × Tm ⊂ A⊛ × A⊛ for m and n some non-negative integers. Let w be
a tree of A. In this case, thanks to Theorem 3.20

⟨m(u⊗ v), w⟩ = ⟨u⊗ v,∆(w)⟩ =
∑

c admissible cut of w

δu⊗v(G
c(w)⊗Rc(w)).

Therefore, this quantity is not equal to zero if and only if w = v � (w1, . . . , wdeg(v)+1) and u
occurs in Gc(w) with c the cut of w such that Rc(w) = v. But Gc(w) = w1 ∗ · · · ∗ wdeg(v)+1,
by Theorem 3.36 and Remark 4.12, we get that Gc(w) is the sum of all the trees which gives
(w1, . . . , wdeg(v)+1) after deg(v) well-placed lightnings. As a consequence, we have

m(u⊗ v) =
∑

u7→(u1,...,udeg(v)+1)

v� (u1, . . . , udeg(v)+1)

= mTSym(v ⊗ u) = mop
TSym(u⊗ v). ■

Thanks to the previous proposition, Proposition 4.14 and Remark 4.15, we deduce that

Theorem 4.23. The bialgebras A⊛ and TSymop are the same.

Remark 4.24. We can give TSym a (1, 3)-dendriform bialgebra structure given in Proposi-
tion 4.14.

Remark 4.25. With multiple generators, we have A(D)⊛ = TSym(D)op. In the bialgebra
TSym(D) its coproduct is an expansion of the lightning decomposition over elements of⊕

n≥0 T
g
n(T (D)). Let t ∈ T g

n(T (D)). We consider a lightning on one of its leaves. If a node of t
only appears on the left tree or only on the right one, then its decoration stays unchanged. Oth-
erwise denoting d1 . . . dk its decoration and l the edge number from which the lightning arrives,
the decoration of this node on the left tree is d1 . . . dl−1 and on the right tree it is dl . . . dk.

Example 4.26. We consider the following tree:

t =
a

bc
de

Considering the lightning coming from the fourth leaf, we get

a
bc

de
→
(

bc

d , a
e

)
.

5 (3, 2)-dendriform bialgebras

5.1 Definition

Let (A,≺,≻, ·) be a tridendriform algebra. The definitions of dendriform algebras, dendriform
coalgebras, dendriform bialgebras, codendriform bialgebras and bidendriform bialgebras (that we
will call (2, 2)-dendriform bialgebras) can be found in the article [9].

Definition 5.1. A (3, 2)-dendriform bialgebra is a sextuple (A,≺, ·,≻,∆←,∆→) such that

� (A,≺, ·,≻) is an augmented tridendriform algebra.

� (A,∆←,∆→) is an augmented dendriform coalgebra.
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� The following relations are satisfied for all a, b ∈ A:

∆←(a · b) = a′b′← ⊗ a′′ · b′′← + b′← ⊗ a · b′′←, (5.1)

∆→(a · b) = a′b′→ ⊗ a′′ · b′′→ + a′ ⊗ a′′ · b+ b′→ ⊗ a · b′′→, (5.2)

∆←(a ≺ b) = a′b′← ⊗ a′′ ≺ b′′← + a′b⊗ a′′ + b′← ⊗ a ≺ b′′← + b⊗ a, (5.3)

∆→(a ≺ b) = a′b′→ ⊗ a′′ ≺ b′′→ + a′ ⊗ a′′ ≺ b+ b′→ ⊗ a ≺ b′′→, (5.4)

∆→(a ≻ b) = a′b′→ ⊗ a′′ ≻ b′′→ + a′ ⊗ a′′ ≻ b+ b′→ ⊗ a ≻ b′′→

+ ab′→ ⊗ b′′→ + a⊗ b, (5.5)

∆←(a ≻ b) = a′b′← ⊗ a′′ ≻ b′′← + a′ ⊗ a′′ ≻ b+ ab′← ⊗ b′′←. (5.6)

Remark 5.2. The definition of (3, 2)-dendriform bialgebra is made such that (A,≺, ·,≻,∆←,
∆→) is a (3, 2)-dendriform bialgebra ⇐⇒ (A,≺, ·+ ≻,∆←,∆→) and (A,≺ +·,≻,∆←,∆→) are
(2, 2)-dendriform bialgebras.

To check that this definition is consistent, we will give an example of such an object.

5.2 Example of a (3, 2)-dendriform bialgebra

5.2.1 Description

To find an example, we consider the (3, 1)-dendriform bialgebra given by A. Our objective is to
break the coproduct ∆ into two pieces, denoted by ∆→ and ∆←, which will satisfy the desired
relations. Let us consider t a tree and let us decorate the right-most leaf by a symbol d.

Example 5.3. For t = , this gives
d
.

Definition 5.4. Let t be a tree of A different from |. We define ∆←(t) as the sum of the terms
from ∆(t) which gets the decorated leaf by d (that means the right-most leaf of t) on the left
tensor, i.e., on Gc(t). Then we delete the decoration.

We define ∆→(t) as the sum of the terms from ∆(t) which gets the decorated leaf by d on
the right tensor, i.e., on Rc(t). Then we delete the decoration. So, ∆(t) = ∆←(t) + ∆→(t).

Notation 5.5. Let t be a tree. We denote td the tree t which last leaf is decorated with d. As
we do not talk about lightnings in this section, we use again this notation during this section.

Proposition 5.6. We consider (A,≺, ·,≻) with its tridendriform algebra structure, we build
the following coproducts:

∆̃←(t) =
∑

c admissible cut of t
the right-most leaf of t is cut

Gc(t)⊗Rc(t)− t⊗ 1,

∆̃→(t) =
∑

c admissible cut of t
the right-most leaf of t is not cut

Gc(t)⊗Rc(t)− 1⊗ t.

Then (A,≺ +·,≻,∆←,∆→) and (A,≺, ·+ ≻,∆←,∆→) are bidendriform bialgebras. As a con-
sequence, (A,≺, ·,≻,∆←,∆→) is a (3, 2)-dendriform bialgebra.

Proof. We will now show that (A,≺, ·,≻,∆←,∆→) satisfies the Definition 5.1. The first con-
straint is satisfied. For the second one, we need to check the three following equalities:(

∆̃← ⊗ Id
)
◦ ∆̃← =

(
Id⊗ ∆̃

)
◦ ∆̃←, (5.7)(

∆̃→ ⊗ Id
)
◦ ∆̃← =

(
Id⊗ ∆̃←

)
◦ ∆̃→, (5.8)(

∆̃⊗ Id
)
◦ ∆̃→ =

(
Id⊗ ∆̃→

)
◦ ∆̃→. (5.9)
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We prove each case by following the destination of the decorated leaf with d and using that
∆̃ = ∆̃← + ∆̃→ to obtain those equalities. More precisely, let us consider a tree t of A. In
order to show (5.7), we look for all the terms of

(
∆̃ ⊗ Id

)
◦ ∆̃
(
td
)
and

(
Id ⊗ ∆̃

)
◦ ∆̃
(
td
)
where

the decorated leaf is on the left tensor. In the first term, we find
(
∆̃← ⊗ Id

)
◦ ∆̃←

(
td
)
, then

in the second, we find
(
Id ⊗ ∆̃

)
◦ ∆̃←

(
td
)
. Finally, the coassociativity property gives that(

∆̃← ⊗ Id
)
◦ ∆̃←

(
td
)
=
(
Id⊗ ∆̃

)
◦ ∆̃←

(
td
)
. We proceed the same way with (5.8) and (5.9).

For the last condition, we remind that for all a, b ∈ A and for all ⋉ ∈ {≺, ·,≻}

∆(a⋉ b) = ∆(a)⋉∆(b) = (∆→(a) + ∆←(a))⋉ (∆→(b) + ∆←(b))

= ∆←(a)⋉∆←(b) + ∆←(a)⋉∆→(b) + ∆→(a)⋉∆←(b) + ∆→(a)⋉∆→(b).

As a consequence, identifying the terms which get the last leaf of a⋉ b at the left or at the right
of the tensor, we obtain for all ⋉ ∈ {≺, ·,≻}

∆→(a⋉ b) = ∆←(a)⋉∆→(b) + ∆→(a)⋉∆→(b) = ∆(a)⋉∆→(b),

∆←(a⋉ b) = ∆←(a)⋉∆←(b) + ∆→(a)⋉∆←(b) = ∆(a)⋉∆←(b).

We need to check the six relations in the definition of (3, 2)-dendriform bialgebra. I will only
detail the computation for (5.4), the other verifications are left to the reader. Let a, b ∈ A, then

∆̃→(a ≺ b) = (1⊗ a+ a⊗ 1 + a′ ⊗ a′′) ≺ (1⊗ b+ b′→ ⊗ b′′→)− 1⊗ a ≺ b

= 1⊗ a ≺ b+ b′→ ⊗ a ≺ b′′→ + a′ ⊗ a′′ ≺ b+ a′ ∗ b′→ ⊗ a ≺ b′′→ − 1⊗ a ≺ b

= a′ ∗ b′→ ⊗ a′′ ≺ b′′→ + a′ ⊗ a′′ ≺ b+ b′→ ⊗ a ≺ b′′→. ■

5.2.2 Counting codendriform primitives

In order to study the primitives of the (3, 2)-dendriform bialgebra A, we will use the results
from the article [9]. Let us remind results from [9] without proofs.

Definition 5.7. Let (C,∆←,∆→) be a dendriform coalgebra. We define

Prim←(C) :=
{
c ∈ C | ∆̃←(c) = 0

}
,

Prim→(C) :=
{
c ∈ C | ∆̃→(c) = 0

}
,

PrimCoass(C) :=
{
c ∈ C | ∆̃(c) = 0

}
,

PrimCodend(C) :=
{
c ∈ C | ∆̃←(c) = ∆̃→(c) = 0

}
.

Remark 5.8. In particular, PrimCodend(C) = Prim←(C) ∩ Prim→(C) ⊆ PrimCoass(C).

Let (C,∆←,∆→) be a dendriform coalgebra. We introduce the following sets defined by
induction:

PC(0) = {IdC},
PC(1) = {∆←,∆→} ⊆ L(C,C⊗2),
PC(n) =

{(
Id⊗(i−1) ⊗∆← ⊗ Id⊗(n−i)

)
◦ P | P ∈ PC(n− 1), i ∈ J1, nK

}
∪
{(

Id⊗(i−1) ⊗∆→ ⊗ Id⊗(n−i)
)
◦ P | P ∈ PC(n− 1), i ∈ J1, nK

}
⊆L
(
C,C⊗(n+1)

)
.

Definition 5.9. We say that a dendriform coalgebra C is connected if for all a ∈ C, there
exists na ∈ N such that for all P ∈ PC(na), P (a) = 0.

With these definitions, we get

Lemma 5.10. The coalgebra (A,∆←,∆→) is connected.
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Proof. We notice that for all ▷ ∈ {←,→}, we have for all n ∈ N

∆▷(An) ⊆
n−1∑
k=1

An−k ⊗Ak.

Therefore, choosing t ∈ An, p ∈ N and δ ∈ PC(p), we get

δ(An) ⊆
∑

k1+···+kp+1=n
k1,...,kp+1>0

Ak1 ⊗ · · · ⊗ Akp+1 .

So, for all p ≥ n and for all δ ∈ PC(p), δ(An) = (0). ■

Following [9], we get

Theorem 5.11. Let H be a (2, 2)-dendriform bialgebra, which we assume to be connected as
a dendriform coalgebra. Then H is generated by PrimCodend(H) as a dendriform algebra.

Proof. See [9, Theorem 21]. ■

This theorem also applies to (A,≺ +·,≻,∆←,∆→). So, A is generated by PrimCodend(A)
with the operations ≺ +·, ≻. In particular, A is generated by PrimCodend(A) as a tridendriform
algebra. More generally, this gives

Proposition 5.12. Let H be a connected (as a dendriform coalgebra) (3, 2)-dendriform bialge-
bra. Then H is generated by PrimCodend(H) as a tridendriform algebra.

Remark 5.13. By [9], we have

A = PrimCodend(A)⊕ (A ⪯ A+A ≻ A)
= PrimCodend(A)⊕ (A ≺ A+A ⪰ A)
= PrimCodend(A) + (A ≺ A+A · A+A ≻ A).

Theorem 5.14. Let H be a graded (2, 2)-dendriform bialgebra by N such that for all n ∈ N,
Hn is finite dimensional and H0 = (0). We consider the formal series

P (X) =
+∞∑
n=1

dim(PrimCodend(H)n)X
n, R(X) =

+∞∑
n=1

dim(Hn)X
n.

Then P (X) =
R(X)

(1 +R(X))2
.

Proof. See [9, Corollary 37]. ■

Remark 5.15. We may ask ourselves why we want to compute codendriform primitives. We
already have the generator . But it is a generator for the tridendriform structure meanwhile
PrimCodend(A) generates A as a dendriform algebra for both (≺ +·,≻) and (≺, ·+ ≻).

All the theorems cited above are valid for (A+,≺, ·,≻,∆←,∆→). Let us compute the formal
series:

R(X) =
+∞∑
n=1

dim(An)X
n.
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Definition 5.16 (non-redundant bracketing). Let n ∈ N. Let w be a word over the alphabet {|}
of n + 1 symbols. We call non-redundant bracketing of w all insertions of pairs of parenthesis
in w which do not contain subwords of the form (|) and such that w is not between brackets. We
will denote the set of non-redundant bracketing of any word w by Pn. The set of non-redundant
bracketings of all words is denoted by P.

Remark 5.17. We have P =
⋃

n≥0 Pn. Moreover, we will denote T :=
⋃

n≥0 Tn.

Example 5.18. Let us take the word w = |||, the non-redundant bracketings of w are |(||), (||)|
and |||. So |P2| = 3.

It is known that dim(An) = |Pn|. Referring to [20], we know that |Pn| = an where an is the
n-th second Schröder’s problem number. The numbers an are called small Schröder’s numbers
or super Catalan numbers. With this reference, we also have

∀n ∈ N, n ≥ 2, (n+ 1)an = (6n− 3)an−1 − (n− 2)an−2 and a0 = 1, a1 = 1.

Thanks to this, with the help of a computer we get

R(X) = X + 3X2 + 11X3 + 45X4 + 197X5 + 903X6 + 4279X7 + 20793X8

+ 103049X9 + 518859X10 + 2646723X11 + 13648869X12 + 71039373X13

+ 372693519X14 + 1968801519X15 + 10463578353X16 + 55909013009X17

+ 300159426963X18 + 1618362158587X19 + 8759309660445X20 + · · · ,
P (X) = X +X2 + 2X3 + 6X4 + 22X5 + 90X6 + 394X7 + 1806X8 + 8558X9

+ 41586X10 + 206098X11 + 1037718X12 + 5293446X13 + 27297738X14

+ 142078746X15 + 745387038X16 + 3937603038X17 + 20927156706X18

+ 111818026018X19 + 600318853926X20 + · · · .

Other properties of small Schröder’s numbers are given in [20].

Looking at the first terms of P , we suspect that P is the series of large Schröder’s numbers
denoted by (An)n∈N defined by A0 = 0, A1 = 1 = A2, then for all n ≥ 3, An = 2an−2.

Remark 5.19. In particular, we want to show

P (X) = X +X2 + 2X2R(X).

Looking once more at [20], we find that the formal series of R(X) is

1 +R(X) =
1 +X −

√
1− 6X +X2

4X
.

Referring to [20] and using Theorem 5.14, we obtain

Proposition 5.20.

P (X) =
+∞∑
n=0

AnX
n

where A0 = 0, A1 = A2 = 1 and for all n ≥ 3, An = 2an−2.
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Proof. To prove this proposition, we provide an intermediate computation

R(X)

1 +R(X)
=

1− 3X −
√
1− 6X +X2

1 +X −
√
1− 6X +X2

=

(
1− 3X −

√
1− 6X +X2

)(
1 +X +

√
1− 6X +X2

)(
1 +X −

√
1− 6X +X2

)(
1 +X +

√
1− 6X +X2

)
=

4X − 4X2 − 4X
√
1− 6X +X2

8X

= X +
1

2

(
1− 3X −

√
1− 6X +X2

)
= X + 2XR(X). (5.10)

Then

R(X)

(1 +R(X))2
=

X

1 +R(X)
+ 2X

R(X)

1 +R(X)
=

X

1 +R(X)
+ 2X2 + 4X2R(X).

Now we compute the first term of the right part of this equality:

X

1 +R(X)
=

4X2

1 +X −
√
1− 6X +X2

=
4X2

(
1 +X +

√
1− 6X +X2

)(
1 +X −

√
1− 6X +X2

)(
1 +X +

√
1− 6X +X2

)
=

4X2 + 4X3 + 4X2
√
1− 6X +X2

8X

=
X

2

(
1 +X +

√
1− 6X +X2

)
=

X

2
(1 +R(X)) +X

√
1− 6X +X2.

Finally,

R(X)

(1 +R(X))2
= 2X2(1 +R(X)) +X

√
1−6X+X2 + 2X2 +X

(
1− 3X −

√
1−6X+X2

)
= X +X2 + 2X2R(X). ■

As a consequence, we deduce the two following equalities:

P (X) =
3

2
X +

3

2
X2 − X

2

√
1− 6X +X2, R(X) =

P (X)

2X2
− 1

2X
− 3

2
.

5.2.3 Codendriform primitives generation

Now we exactly know the dimensions of codendriform primitives. For degree 1 and 2, we have

PrimCodend(A)1 =
〈 〉

, PrimCodend(A)2 =
〈 〉

.

Remark 5.21. Note that − is an element of PrimCoass(A). However,

∆←
(
−

)
= 0− ⊗ .

So, it is not an element of PrimCodend(A).

From equations (5.1)–(5.6) we deduce the following equivalences:
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Proposition 5.22. For all a, b ∈ A, we have

(b ∈ Prim→(A) and a ∈ PrimCoass(A)) ⇐⇒ ∆→(a · b) = 0,

b ∈ Prim←(A) ⇐⇒ ∆←(a · b) = 0.

Proof. The =⇒ implications come straightforward from the codendriform relations. For the
other implication of the second equivalence, let us consider a, b ∈ A such that ∆←(a · b) = 0.
Then we suppose by contradiction that ∆←(b) ̸= 0. Without loss of generality, we can suppose
that the writings of ∆←(b) as a sum of tensors are minimal for the number of terms.

Case 1 : ∆̃(a) = 0. Using codendriform relations, we know that

∆←(a · b) = b′← ⊗ a · b′′← = 0.

Defining B = {c⊗ d | c⊗ d appears in ∆←(a · b) such that deg(c) is maximal}, we get

∆←(b) =
∑
B

b′← ⊗ b′′← +
∑

the rest

b′← ⊗ b′′←.

Let also denote byB1 andB2 the respective projections ofB over its first and second component.
Remark that in this case, if b′←⊗b′′← appears in ∆←(b) such that b′←⊗b′′← ∈ B then b′′← is minimal
for the degree. For reasons of degrees, we must have∑

B

b′← ⊗ a · b′′← = 0.

As the writings of ∆←(b) are supposed minimal, this implies that the family (b′←) is free and the
same for (b′′←). Applying Theorem 4.18, we find that the family (a·b′′←) is free. We complete those
free families (b′←)b′←∈B1 and (a · b′′←)b′′←∈B2 into bases respectively of Tdeg(B1) and Tdeg(a)+deg(B2).
We consider f , g elements of the dual basis verifying f(b′←) = 1 for one and only one element
of B1 and g(a · b′′←) = 1 for one and only one element of (a · b′′←)b′′←∈B2 . Choosing correctly (f, g),
we find

0 = (f ⊗ g)

(∑
B

b′← ⊗ a · b′←
)

= 1.

This is a contradiction. As a consequence, we find ∆←(b) = 0.
Case 2 : ∆̃(a) ̸= 0. Let us denote the set

A =
{
c⊗ d | c⊗ d appears in ∆̃(a) and c has maximal degree

}
.

We define B the same way as the previous case. We take back the notations for projections
over first and second component of B and we expand them for A. The tensors of ∆←(a · b) from
which the first term has maximal degree are∑

A

∑
B

a′ ∗ b′← ⊗ a′′ · b′′←.

Without loss of generality, we can suppose that the writings of ∆←(b) and ∆̃(a) are minimal
for the number of terms. We check (a′ ∗ b′→)(a′,b′→)∈A1×B1

and (a′′ ≺ b′′→)(a′′,b′′→)∈A2×B2
are free

families of A. For this, we will use the Theorem 4.18. In fact, we consider for all (a′, b′) ∈ A1×B1

a scalar λ(a′,b′→) such that∑
A1×B1

λ(a′,b′→)a
′ ∗ b′→ = 0.
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By construction of A1 × B1, hypotheses of Theorem 4.18 are satisfied. As a consequence,
(a′ ∗ b′→)(a′,b′→)∈A1×B1

is a free family. Following the same method, we have that the family
(a′′ ≺ b′′→)(a′′,b′′→)∈A2×B2

is also free. We can complete each of these families into respective
basis of Tdeg(B1)+deg(A1) and Tdeg(B2)+deg(A2). Using elements f , g of the dual basis defined by
f(a′ ∗ b′←) = 1 for one and only one element of (a′∗b′←)a′∈A1,b′←∈B1 and g(a′′ ·b′′←)a′′∈A2,b′′←∈B2 = 1
for one and only one element of (a′′ · b′′←). As a consequence, with a good choice for (f, g), we
get

0 = (f ⊗ g)

(∑
A

∑
B

a′ ∗ b′← ⊗ a′′ · b′′←
)

= 1.

This is a contradiction. We then deduce that ∆̃(a) = 0 or ∆←(b) = 0.
For the first equivalence, we use similar ideas. ■

This allows us to say

a · b ∈ PrimCodend(A) ⇐⇒ (b ∈ PrimCodend(A) and a ∈ PrimCoass(A)).

This defines a map

θ• :

{
PrimCoass(A)⊗ PrimCodend(A)→ PrimCodend(A),
a⊗ b 7→ a · b.

Using similar arguments, we also prove

Proposition 5.23. For all a, b ∈ A,

∆←(a ≻ b) = 0 ⇐⇒ (a ∈ PrimCoass(A) and b ∈ Prim←(A)),
∆→(a ≺ b) = 0 ⇐⇒ (a ∈ PrimCoass(A) and b ∈ Prim→(A)).

The proposition above gives two maps

θ≻ :

{
PrimCoass(A)⊗ Prim←(A)→ Prim←(A),
a⊗ b 7→ a ≻ b,

θ≺ :

{
PrimCoass(A)⊗ Prim→(A)→ Prim→(A),
a⊗ b 7→ a ≺ b.

Moreover, the space PrimCodend(A) is an algebra with ·.

Definition 5.24. A dipterous algebra (H, ∗) is an associative algebra with an additional bilinear
operation denoted by ≺ such that, for all a, b, c ∈ H, (a ≺ b) ≺ c = a ≺ (b ∗ c).

We notice that A is also a dipterous algebra, as a consequence A is cofree referring to [14].
In other words, there exists a vector space V such that coT(V ) ≃ A as coalgebras. For more
details see [14].

Series of coassociative primitives: using the results of the previous paragraph and the
results 59 (i.e., Prim(coT(V )) = V ) and 46 (i.e, FT (V )(X) = 1

1−FV (X) where FB is the formal

series of the graded space B such that B0 = (0)) from [8], we obtain

FT (V )(X) = FA(X) =
1

1− FPrimCoass(A)(X)
,

which implies FPrim(A)(X) = FA(X)−1
FA

. But, FA(X) = 1 +R(X). As a consequence, we find

FPrimCoass(A)(X) =
R(X)

1 +R(X)
.



32 P. Catoire

Proposition 5.25. We have

FPrimCoass(A)(X) =
P (X)

X
− 1.

In other words,

FPrimCoass(A)(X) =

+∞∑
n=1

An+1X
n,

where A0 = 0, A1 = 1, A2 = 1 and for all n ≥ 3, An = 2an−2.

Proof. From (5.10), we get

FPrimCoass(A)(X) =
R(X)

1 +R(X)
= X + 2XR(X).

And we also have, according to Remark 5.19,

P (X)

X
− 1 =

X +X2 + 2X2R(X)

X
− 1 = X + 2XR(X). ■

Finally, we obtain

Theorem 5.26. For all n ∈ N, we define

θn :

{
PrimCoass(A)n ⊗

〈 〉
→ PrimCodend(A)n+1,

a⊗ 7→ a · .

Then for all n ∈ N, θn is an isomorphism of vector spaces.

Proof. Let n ∈ N. By Proposition 5.25, we know that dim (PrimCoass(A)n) = An+1. From
Proposition 5.20, we obtain dim (PrimCodend(A)n+1) = An+1. But

dim
(
PrimCoass(A)n ⊗

〈 〉)
= dim(PrimCodend(A)n+1).

Consider (ai)i∈J1,An+1K a basis of PrimCoass(A)n. According to Theorem 4.18, the following
family

(
ai ·

)
i∈J1,An+1K is free in PrimCodend(A)n+1.

For reasons of dimensions, we conclude that θn is an isomorphism. ■

Remark 5.27. We fix (A,≺,⪰,∆→,∆←) a (2, 2)-dendriform bialgebra structure. For all vector
spaces V over K, we denote by Dend(V ) the free dendriform algebra generated by V . Referring
to [19, Theorem 4.6], the brace algebras B(V ) and PrimCoass(Dend(V )) are isomorphic for
any vector space V . For more information about brace algebra, we refer to [6, 10]. Thanks
to [9, Theorem 35 and Corollary 36], we have A = Tridend

( )
= Dend(PrimCodend(A)). As

a consequence, we can compute recursively PrimCoass(A) and PrimCodend(A) the following way:

1. Suppose we know PrimCoass(A)n.

2. Compute PrimCodend(A)n+1 with Theorem 5.26.

3. Use B(PrimCodend(A)) in order to compute PrimCoass(A)n+1 from PrimCoass(A)k, k ≤ n
and PrimCodend(A)n+1.
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5.3 Quotient of A by
〈
A+ · A+

〉
Consider A the free tridendriform algebra with one generator. We remind that we write A =
1AK⊕A+. We define

〈
A+ · A+

〉
as the tridendriform ideal generated by A+ · A+.

Lemma 5.28. The tridendriform ideal
〈
A+ · A+

〉
is a (3, 2)-dendriform biideal of (A,≺,≻,

∆←,∆→).

Proof. By definition, it is a tridendriform ideal.
We check I :=

〈
A+ · A+

〉
is a dendriform coideal. First, as ε(|) = 1 and is zero on A+, it is

easily seen that ε(I) = (0). Then for all s1, s2 ∈ A+,

∆←(s1 · s2) = s′1s
′
2← ⊗ s′′1 · s′′2← + s′2← ⊗ s1 · s′′2← ∈ A⊗ I,

∆→(s1 · s2) = s′1s
′
2→ ⊗ s′′1 · s′′2→ + s′1 ⊗ s′′1 · s2 + s′2→ ⊗ s1 · s′′2→ ∈ A⊗ I.

As a consequence, ∆(s) ∈ A ⊗ I + I ⊗ A for s = s1 · s2. Then let x be an element of I
such that ∆(x) ∈ A ⊗ I + I ⊗ A. Let y ∈ A and (⋉,⋊) ∈ {≺, ·,≻, ∗}2. Then denoting
∆(x) = | ⊗ x+ x⊗ |+

∑
x′ ⊗ x′′ and ∆(y) = | ⊗ y + y ⊗ |+

∑
y′ ⊗ y′′, we have

∆(x)⋉∆(y) = | ⊗ x⋉ y + y ⊗ x⋉ |+ x⊗ |⋉ y + x⋉ y ⊗ |

+
∑

x′ ⊗ x′′ ⋉ y +
∑

x′ ∗ y ⊗ x′′ ⋉ |+
∑

x′ ∗ y′ ⊗ x′′ ⋉ y′′,

∆(y)⋊∆(x) = | ⊗ y ⋊ x+ x⊗ y ⋊ |+ y ⊗ |⋊ x+ y ⋊ x⊗ |

+
∑

y′ ⊗ y′′ ⋊ x+
∑

y′ ∗ x⊗ y′′ ⋊ |+
∑

y′ ∗ x′ ⊗ y′′ ⋊ x′′.

In both expressions, each term is either 0 or an element of A⊗ I + I ⊗A using the fact that I is
a tridendriform ideal. We have proved that ∆(x⋉y) and ∆(y⋊x) belong to A⊗I+I⊗A. Using
similar ideas, we easily prove the same results for ∆←(x ⋉ y) = ∆(x) ⋉∆←(y), ∆←(y ⋊ x) =
∆(y)⋊∆←(x), ∆→(x⋉ y) = ∆(x)⋉∆→(y) and ∆→(y⋊ x) = ∆(y)⋊∆→(x). So it proves that〈
A+ · A+

〉
is a dendriform coideal.

So the proof is complete. ■

As a consequence, we can divide A by the (3, 2)-dendriform biideal
〈
A+ · A+

〉
. Referring to

the Remark 3.10, we will give a characterization to describe the trees in
〈
A+ · A+

〉
.

Lemma 5.29. Let t be a tree of A. Then t is not a binary tree if and only if t ∈
〈
A+ · A+

〉
.

Proof. Indeed, suppose that t = t1 · t2 where t1 = t
(0)
1 ∨ · · · ∨ t

(k1)
1 and t2 = t

(0)
2 ∨ · · · ∨ t

(k2)
2 with

k1 ≥ 1 and k2 ≥ 1 because t1, t2 ∈ A+. As a consequence,

t =
(
t
(0)
1 ∨ · · · ∨ t

(k1)
1

)
·
(
t
(0)
2 ∨ · · · ∨ t

(k2)
2

)
= t

(0)
1 ∨ · · · ∨

(
t
(k1)
1 ∗ t(0)2

)
∨ · · · ∨ t

(k2)
2 .

So, this is clear that t is not a binary tree.
Conversely, consider a non-binary tree t. We want to show that t has at least one writing

with ·. To prove this, we proceed by induction on the number of leaves of t. We denote n the
number of leaves of t. To initialize the induction, we need to begin with n = 3. The only tree
which is not binary is = · . To prove the heredity, we consider that n > 3 and we
suppose that for all 3 ≤ m < n, non-binary trees with m leaves are elements of

〈
A+ ·A+

〉
. Let t

be a tree with n leaves. We have the following writing:

t = t(0) ∨ · · · ∨ t(k).

Case 1 : k ≥ 2. We choose i ∈ J1, k − 1K. Then writing t1 = t(0) ∨ · · · ∨ t(i) ∨ | and
t2 = t(i+1) ∨ · · · ∨ t(k), we get

t = t1 · t2.
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Case 2 : k = 1. As a consequence, t = t(0) ∨ t(1) where each of these trees owns at least one
leaf. But, as t is not binary either t(0) is not binary, either t(1) is not binary. In the two cases,
each of these trees has strictly less leaves than t. By the induction hypothesis, we can suppose
that t(0) ∈

〈
A+ · A+

〉
without loss of generality. But,

〈
A+ · A+

〉
is a tridendriform ideal. This

implies that t ∈
〈
A+ · A+

〉
because t =

(
t(0) ≻

)
≺ t(1). ■

This allows us to conclude that A⧸⟨A+ · A+⟩ and
⊕

n≥0KPBTn are isomorphic as vec-

tor spaces. Finally, the quotient space of A by
〈
A+ · A+

〉
is a (3, 2)-dendriform bialgebra with

its natural structure of quotient space. But, the product · is 0 on this space. In particular,
the bialgebra we just obtained can be seen as a (2, 2)-dendriform bialgebra. More precisely, in
A⧸⟨A+ · A+⟩

∗ =≺ + ≻ .

This product corresponds to the one written in [16, Proposition 3.2]. Moreover, it is not hard to
see that the coproduct of the quotient space is the same as the one in [3, Proposition 3.3]. This
algebra is the Loday–Ronco algebra. Referring to [16], the Proposition 3.2 says that for t, t′ two
binary trees written t = t1 ∨ t2 and t′ = t′1 ∨ t′2, we have

t ∗ t′ = t1 ∨ (t′1 ∗ t2) + (t ∗ t′1) ∨ t′2.

This is exactly the descriptions of the products ≺ and ≻ restricted to binary trees.

Proposition 5.30. The coproduct given in [16] on a tree t = t1 ∨ t2 with t1 ∈ Tn and t2 ∈ Tm

is defined by

∆(t) =
∑
j,k

(
t
(1)(j)
1 ∗ t(1)(k)2

)
⊗
(
t
(2)(n−j)
1 ∨ t

(2)(m−k)
2

)
+ t⊗ |,

where ∆(t1) =
∑n

j=0 t
(1)(j)
1 ⊗ t

(2)(n−j)
1 and ∆(t2) =

∑m
k=0 t

(1)(k)
2 ⊗ t

(2)(m−k)
2 . This coproduct is

the same as the one on A⧸⟨A+ · A+⟩.

Proof. We will proceed by induction over n the number of leaves of t to show the coproduct ∆
of Loday–Ronco algebra is the same as the one over A⧸⟨A+ · A+⟩ denoted by ∆.

Initialization: if n = 1, i.e., t = |, then ∆(|) = ∆(|) = | ⊗ |. If n = 2, i.e., t = , we get

∆
( )

= ⊗ |+ | ⊗ , ∆
( )

= | ∗ | ⊗ | ∨ |+ ⊗ | = ⊗ |+ | ⊗ .

Heredity : let n ∈ N such that n ≥ 3, suppose that for all n′ < n we have the equality
between ∆ and ∆ for all trees with n′ leaves. We check that it is also true for trees with n
leaves. Let us write t = t1 ∨ t2 such that t1 has n1 leaves and t2 has n2 leaves. Two mutually
excluding cases can happen:

� The case n2 + 1 ̸= n. Using the properties of ∆, we get

∆(t) = ∆(t1 ∨ t2) = ∆(t1 ≻ (| ∨ t2)) = ∆(t1) ≻ ∆(| ∨ t2).

Applying the induction hypothesis once, we get

∆(t) = ∆(t1) ≻ ∆(| ∨ t2)

=

(
n1∑
j=0

t
(1)(j)
1 ⊗ t

(2)(n1−j)
1

)
≻
(
| ∨ t2 ⊗ |+

∑
c admissible cut of t2

Gc(t2)⊗ | ∨ P c(t2)

)
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=

(
n1∑
j=0

t
(1)(j)
1 ⊗ t

(2)(n1−j)
1

)
≻

(
| ∨ t2 ⊗ |+

n2∑
k=0

t
(1)(k)
2 ⊗ | ∨ t

(2)(n2−k)
2

)
=
∑
j,k

t
(1)(j)
1 ∗ t(1)(k)2 ⊗ t

(2)(n1−j)
1 ∨ t

(2)(n2−k)
2 + t⊗ |.

So, in this case we have equality between ∆ and ∆.

� The case n1 + 1 ̸= n is done the same way. That is why we omit some details,

∆(t) = ∆((t1 ∨ |) ≺ t2)

=
∑
j,k

t
(1)(j)
1 ∗ t(1)(k)2 ⊗

((
t
(2)(n1−j)
1 ∨ |

)
≺ t

(2)(n2−k)
2

)
+
∑
k

(t1 ∨ |) ∗ t(1)(k)2 ⊗ | ≺ t
(2)(n−k)
2

=
∑
j,k

t
(1)(j)
1 ∗ t(2)(k)2 ⊗ t

(2)(n1−j)
1 ∨ t

(n2−k)
2 + t⊗ |.

Therefore, we have the result. ■

5.4 Conclusion

Thanks to [15], we have given a bialgebra structure to the free tridendriform algebra A such
that it is a (3, 2)-dendriform bialgebra structure. Considering the graded dual of A, we have
defined (2, 3)-dendriform bialgebras. Using [3], we have identified the graded dual of A with
TSym as bialgebras. Moreover, it shows that TSym can be given a (2, 3)-dendriform bialgebra
structure. It shows the interactions between the combinatorics on trees and the dendriform and
tridendriform algebras.

Some ideas are not explored in this paper. For example, can we get other quotient spaces from
the free (3, 2)-dendriform bialgebra? Can we find a description of the coassociative primitives
of this algebra obtained with Remark 5.27? Or can we generalize our ideas to other (n,m)-
dendriform structures and maybe give a more general definition?
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