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Abstract. The classical Pfaff–Darboux theorem, which provides local ‘normal forms’ for
1-forms on manifolds, has applications in the theory of certain economic models [Chiappo-
ri P.-A., Ekeland I., Found. Trends Microecon. 5 (2009), 1–151]. However, the normal forms
needed in these models often come with an additional requirement of some type of convexity,
which is not provided by the classical proofs of the Pfaff–Darboux theorem. (The appropriate
notion of ‘convexity’ is a feature of the economic model. In the simplest case, when the
economic model is formulated in a domain in Rn, convexity has its usual meaning.) In
[Methods Appl. Anal. 9 (2002), 329–344], Ekeland and Nirenberg were able to characterize
necessary and sufficient conditions for a given 1-form ω to admit a convex local normal form
(and to show that some earlier attempts [Chiappori P.-A., Ekeland I., Ann. Scuola Norm.
Sup. Pisa Cl. Sci. 4 25 (1997), 287–297] and [Zakalyukin V.M., C. R. Acad. Sci. Paris Sér. I
Math. 327 (1998), 633–638] at this characterization had been unsuccessful). In this article,
after providing some necessary background, I prove a strengthened and generalized convex
Pfaff–Darboux theorem, one that covers the case of a Legendrian foliation in which the
notion of convexity is defined in terms of a torsion-free affine connection on the underlying
manifold. (The main result of Ekeland and Nirenberg concerns the case in which the affine
connection is flat.)
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1 Introduction

The Pfaff–Darboux theorem provides a local ‘normal form’ for 1-forms on manifolds, assuming
that certain constant rank conditions are met. A common version1 of this classical theorem
is the following: Let ω be a smooth 1-form on an n-manifold M and suppose that there is an
integer k > 0 such that

ω ∧ (dω)k vanishes identically on M

while

ω ∧ (dω)k−1 is nowhere vanishing on M .

This paper is a contribution to the Special Issue on Differential Geometry Inspired by Mathemati-
cal Physics in honor of Jean-Pierre Bourguignon for his 75th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Bourguignon.html

1There are many variants. See [2, Chapter II, Section 3].
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Then each m ∈ M has an open neighborhood U ⊂ M on which there exist (smooth) func-
tions y1, . . . , yk, p2, . . . , pk and a nonvanishing function a such that2

U∗ω = a(dy1 + p2 dy
2 + · · ·+ pk dy

k). (1.1)

Since

U∗(ω ∧ (dω)k−1
)
= (−1)k(k−1)/2(k−1)! ak dy1 ∧ · · · ∧ dyk ∧ dp2 ∧ · · · ∧ dpk,

the functions y1, . . . , yk, p2, . . . , pk in this representation must be independent on U .
The normal form (1.1) is often written more symmetrically as

U∗ω = a1 du
1 + a2 du

2 + · · ·+ ak du
k, (1.2)

where the ai do not simultaneously vanish in U . In this representation, the independence of the
functions y1, . . . , yk, p2, . . . , pk translates into the condition that the mapping

(u, [a]) : U → Rk × RPk−1 = P
(
T ∗Rk

)
be a submersion.

In fact, the representation (1.2) is more common in treatises on mathematical economics,
where the Pfaff–Darboux theorem plays an important role [3]. Often, the normal forms needed
in these models sometimes come with an additional requirement of convexity, i.e., the underlying
manifold is M = Rn (or an open domain in Rn), and one would like to arrange that the func-
tions ai be positive and the functions ui be strictly convex, i.e., have positive definite Hessians.3

A useful reference for the role of convexity in economic models is the book [4] and the article [1].
Now, it turns out that constructing such a convex Pfaff–Darboux representation is not always

possible, which raises the question of how to determine when one exists. In [5], Ekeland and
Nirenberg were able to provide necessary and sufficient conditions for a given 1-form ω ∈ Ω1(Rn)
to admit a local convex Pfaff–Darboux normal form. They also constructed examples that
showed that some earlier attempts [3, 6] to find such conditions had been unsuccessful.

In this note, after providing some necessary background, I prove a generalization of the convex
Pfaff–Darboux theorem of Ekeland and Nirenberg. This treatment has some notable features
that make it of interest for the general problem.

First, the proof of Ekeland and Nirenberg does not assume the classical Pfaff–Darboux the-
orem; instead, it constructs the desired convex representation directly using the Frobenius the-
orem, essentially reproving the Pfaff–Darboux theorem but with the additional convexity con-
dition imposed. The proof in this article assumes the classical Pfaff–Darboux theorem, so that
the argument can more directly focus on choosing a Pfaff–Darboux representation that satisfies
the convexity requirements. This results in a shorter proof, one that also brings the nature of
the convexity requirements more sharply into focus.

Second, the notion of strict convexity turns out to be meaningful on any manifold endowed
with a torsion-free affine connection, and the proof below covers this more general situation with
no extra work.

Third, the proof yields a stronger result, in that it produces a local convex Pfaff–Darboux
representation of ω adapted to any ω-Legendrian foliation that satisfies a certain geometrically
natural positivity condition, one that is equivalent pointwise to the condition of Ekeland and
Nirenberg.

2Throughout this article, I adopt the convention that, when L ⊂ M is a submanifold and ψ is a differential
form on M , then L∗ψ denotes the pullback of ψ to L.

3Sometimes one only requires weak convexity, i.e., that the Hessian of ui be positive definite on each of its
level sets.
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2 Classical Pfaff–Darboux theorems

Let ω be a smooth 1-form on an n-manifold M that, for some integer k > 0, satisfies

ω ∧ (dω)k vanishes identically on M (2.1)

while

ω ∧ (dω)k−1 is nowhere vanishing on M . (2.2)

The integer k−1 is known as the Pfaff rank of ω [2, Chapter II, Section 3]. Note that k ≤ 1
2(n+1).

When k = 1
2(n+1), ω is said to be a contact form on M .

When ω satisfies (2.1) and (2.2), so does ω̃ = fω for any nonvanishing function f on M , since
ω̃ ∧ (dω̃)r−1 = f rω ∧ (dω)r−1 for all integers r > 0.

2.1 Canonical subbundles

An ω satisfying (2.1) and (2.2) defines a kernel subbundle K = ω−1(0) ⊂ TM of corank 1 and
a subbundle A ⊂ K of corank 2(k−1) in K by the rule that, for each m ∈ M ,

Am = {v ∈ Km | dω(v, w) = 0, ∀w ∈ Km}.

Replacing ω by ω̃ = fω for any nonvanishing function f does not change K or A.
If k > 1, then K ⊂ TM is not an integrable plane field, but the subbundle A ⊂ TM is always

integrable, since it is the Cauchy characteristic plane field of the differential ideal I generated
by ω (see [2, Chapter II, Proposition 2.1]). In the contact case, i.e., when n = 2k−1 (which is,
in some sense, generic), one has A = (0).

There is a nondegenerate, skew-symmetric bilinear pairing Bω : K/A×K/A → R defined by

Bω

(
v+Am, w+Am

)
= dω(v, w),

when v, w ∈ Km. It satisfies Bfω = fBω for any nonvanishing function f on M .
Note that any subspace W ⊂ Tm on which both ω and dω vanish, must, first of all, satisfy

W ⊂ Km (since ω vanishes on W ), and, second, must have codimension at least k−1 in Km,
since dω, as a skew-symmetric form on Km, has Pfaff rank k−1. Moreover, if W does have
codimension k−1 in Km, then it must contain Am, so that W/Am is a null subspace of Bω.

2.2 Legendrian submanifolds and Grassmannians

Any submanifold L ⊂ M that satisfies L∗ω = 0, i.e., an integral manifold of ω, must also
satisfy L∗dω = 0 and hence, by the above linear algebra discussion, must have codimension at
least k in M . When L ⊂ M is an integral manifold of ω of codimension k, it is said to be an
ω-Legendrian submanifold.

In particular, if L ⊂ M is ω-Legendrian, then, for each m ∈ L, the tangent space TmL
satisfies Am ⊂ TmL ⊂ Km while Bω vanishes identically on TmL/Am ⊂ Km/Am.

This motivates defining the Legendrian Grassmannian Legm(ω) ⊂ Grk(TmM) to be the
set of subspaces W ⊂ Km that have codimension k in TmM and on which both ω and dω
vanish. By the above remarks, it follows that Legm(ω) can be canonically identified with the
Lagrangian Grassmannian Lag(Km/Am) ⊂ Grk−1(Km/Am) consisting of the (k−1)-dimensional
subspaces of Km/Am on which Bω vanishes. Hence, Legm(ω) is naturally a smooth manifold of
dimension 1

2k(k−1). Moreover, the (disjoint) union

Leg(ω) =
⋃

m∈M
Legm(ω) ⊂ Grk(TM)

is a smooth subbundle, and Leg(fω) = Leg(ω) for all nonvanishing f .
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2.3 A local normal form

One version of the Pfaff–Darboux theorem [2, Chapter II, Theorem 3.1] states that, when
ω ∈ Ω1(M) satisfies (2.1) and (2.2), each m ∈ M has an open neighborhood U ⊂ M on which
there exist smooth functions u1, . . . , uk and a1, . . . , ak (with not all ai simultaneously vanishing)
so that

U∗ω = a1 du
1 + · · ·+ ak du

k. (2.3)

Moreover, the mapping (u, [a]) : U → Rk×RPk−1 is a submersion. (In fact, the kernel subbundle
of the differential of this mapping is the restriction of A to U .)

Conversely, the existence of functions ui and ai for 1 ≤ i ≤ k on an open set U ⊂ M
satisfying (2.3) with the ai not all simultaneously vanishing and having the property that
(u, [a]) : U → Rk × RPk−1 be a submersion implies that both (2.1) and (2.2) hold on U .

2.4 Geometry of the normal form

It will be useful to have a geometric interpretation of the Pfaff–Darboux theorem. Now, in the
representation (2.3), the functions ui have independent differentials, i.e., du1∧· · ·∧duk does not
vanish on U . Consequently, the simultaneous level sets of the functions ui define a foliation L
of U ⊂ M by ω-Legendrian submanifolds, i.e., an ω-Legendrian foliation.

Conversely, given an ω-Legendrian foliation L on an open subset V ⊂ M , each point m ∈ V
will have an open neighborhood U ⊂ V in which the leaves of L are the fibers of a submer-
sion u = (ui) : U → Rk. Since ω vanishes when pulled back to any fiber of u, it follows that there
exists a mapping a = (ai) : U → Rk such that U∗ω = a1 du

1 + · · ·+ ak du
k.

Thus, a geometric interpretation of the Pfaff–Darboux theorem is the statement that, when
ω ∈ Ω1(M) satisfies (2.1) and (2.2), each point m ∈ M has an open neighborhood U ⊂ M on
which there exists an ω-Legendrian foliation.

2.5 Variants and extensions

There are a number of variants and extensions of the classical Pfaff–Darboux theorem that
can all be seen to be equivalent to the above versions by elementary arguments [2, Chapter II,
Section 3]. In this article, two such variants will be important. For convenience of reference,
they will be stated as propositions.

Proposition 2.1. Suppose that ω ∈ Ω1(M) satisfies (2.1) and (2.2). Then for each m ∈ M and
W ∈ Legm(ω), there exists a ω-Legendrian submanifold L ⊂ M such that m ∈ L and W = TmL.

Proposition 2.2. Suppose that ω ∈ Ω1(M) satisfies (2.1) and (2.2) and that L ⊂ M is an
embedded ω-Legendrian submanifold. Then each m ∈ L has an open neighborhood U ⊂ M on
which there exists an ω-Legendrian foliation L with the property that L ∩ U is a leaf of L.

3 Convexity and affine manifolds

3.1 Classical convexity

When M = Rn, there is a notion of strict convexity of a function u, which is the condition that
the Hessian quadratic form H(u) be positive definite, where

H(u) =
∂2u

∂xi∂xj
dxi ⊗ dxj (3.1)
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and where x1, . . . , xn are the usual affine linear coordinates in Rn. Note that strict convexity is
an affine-invariant notion on Rn.

Motivated by applications in economics, Ekeland and Nirenberg [5] asked what further con-
ditions one must impose on an ω ∈ Ω1(Rn) satisfying (2.1) and (2.2) in order to know that one
can choose the functions uj and aj in the representation (2.3) so that the uj be strictly convex
and the aj be positive. It is not hard to show, by example, that some further condition on ω is
necessary to guarantee the existence of such a convex representation. (See the discussion at the
beginning of Section 3.3.)

They showed that two earlier articles [3, 6] claiming to provide such necessary and sufficient
conditions were flawed (indeed, they exhibited counterexamples to the claims of these articles)
and then produced their own condition, which they showed to be necessary and sufficient.

In this note, I will show that their main result, properly formulated, holds good on an n-
manifold M endowed with a torsion-free affine connection, not just on Rn endowed with the
(flat) affine connection it inherits as a vector space.

3.2 Affine connections and convexity

Let ∇ be a torsion-free affine connection on an n-manifold Mn, i.e., ∇ is a first-order, linear
differential operator

∇ : Ω1(M) → Ω1(M)⊗ Ω1(M)

that obeys the Leibnitz rule

∇(fη) = df ⊗ η + f∇(η)

for all smooth functions f on M and smooth 1-forms η on M . The assumption that ∇ be
torsion-free is the condition that the associated (second-order) Hessian operator H(u) = ∇(du)
be a symmetric (0, 2)-tensor for each smooth function u on M .

A smooth function u on M is said to be strictly ∇-convex if, as a quadratic form, H(u) is
positive definite at every point of M .

When M = Rn and ∇ is the standard (flat) connection, satisfying ∇(dxi) = 0 for all of the
coordinate functions xi, then H(u) is the usual Hessian tensor (3.1), and this notion of convexity
is simply the classical one.

In the more general case, when x = (xi) : U → Rn is a local coordinate chart, one has

H
(
xk

)
= ∇

(
dxk

)
= Γk

ij dx
i ⊗ dxj ,

where Γk
ij = Γk

ji ∈ C∞(U) are the coefficients of the connection ∇ relative to the coordinate

chart x = (xi). The general coordinate formula for H then becomes

H(u) =

(
∂2u

∂xi∂xj
+ Γk

ij

∂u

∂xk

)
dxi ⊗ dxj .

Thus, ∇-convexity of u is expressible in terms of a condition on the 2-jet of u, slightly more
general than the condition for classical convexity.

Adopting the usual conventions

α ∧ β = 1
2(α⊗ β − β ⊗ α), α ◦ β = 1

2(α⊗ β + β ⊗ α),

one sees that, for a 1-form ω of the form

ω = a1 du
1 + · · ·+ ak du

k, (3.2)
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one has (using the summation convention)

∇ω = dai ⊗ dui + ai∇(ui) = dai ⊗ dui + aiH(ui)

= dai ∧ dui + dai ◦ dui + aiH(ui)

= dω + S∇ω,

where I have introduced the notation S∇ω to denote the symmetrization of ∇(ω). Thus, S∇ω =
∇ω − dω is a well-defined quadratic form on M . (Of course, the linear, first-order differential
operator S∇ depends on ∇.)

3.3 A positivity condition

The quadratic form S∇ω provides some insight into the question of whether a ∇-convex Pfaff–
Darboux representation of ω is possible.

Proposition 3.1. Suppose that ω ∈ Ω1(M) satisfies (2.1) and (2.2). If there exist positive
functions ai and ∇-convex functions ui for 1 ≤ i ≤ k such that (3.2) holds, then S∇ω is positive
definite on the leaves of the foliation L defined by du1 = du2 = · · · = duk = 0.

Proof. Since S∇ω = dai ◦ dui + aiH(ui), it follows that, when restricted to the plane field
N ⊂ TM defined by du1 = du2 = · · · = duk = 0, the terms dai ◦ dui in S∇ω vanish. Thus,
S∇ω = aiH(ui) as quadratic forms on N . By the positivity of the ai and the ∇-convexity of the
ui, it follows that S∇ω is positive definite on N .4 ■

This proposition provides necessary condition for the existence of a convex Pfaff–Darboux
representation.

Example 3.2 (an obstructed example). Let M = Rn with standard coordinates x = (xi), and
let ∇ be the (flat, torsion-free) connection such that ∇(dxi) = 0 for 1 ≤ i ≤ n. Let ci, fij = −fji,
and gij = gji be constants and consider the 1-form

ω =
(
ci + (fij + gij)x

j) dxi.

Then dω = fij dx
j ∧ dxi = −fij dx

i ∧ dxj and S∇ω = gij dx
i ◦ dxj .

Now assume that the skew-symmetric matrix f = (fij) has rank 2(k−1) < n, so that
(dω)k−1 ̸= 0 but (dω)k = 0. Then, for generic choice of the constants ci, ω ∧ (dω)k−1 will
be nonvanishing on an open neighborhood U ⊂ Rn of the origin 0 ∈ Rn, in which case, ω will
satisfy the hypotheses (2.1) and (2.2) on U .

If the symmetric matrix g = (gij) does not have at least n−k positive eigenvalues, then S∇ω
cannot be positive definite on any (n−k)-dimensional subbundle N ⊂ TU , and, hence, by
Proposition 3.1, ω cannot have a convex Pfaff–Darboux representation in any open subset of U .

It turns out that this necessary condition for a local ‘convex’ Pfaff–Darboux representation
compatible with an ω-Legendrian foliation L is also sufficient.

Theorem 3.3. Suppose ∇ be a torsion-free affine connection on M , that ω ∈ Ω1(M) sat-
isfy (2.1) and (2.2) for some k > 0, and that L be an ω-Legendrian foliation on M with the
property that S∇ω pulls back to each leaf of L to be positive definite. Then each m ∈ M has an
open neighborhood U ⊂ M on which there exist strictly ∇-convex functions u1, . . . , uk that are
constant on the leaves of L in U and positive functions a1, . . . , ak such that

U∗ω = a1 du
1 + · · ·+ ak du

k.
4It is worth pointing out that the same conclusion about the positive definiteness of S∇ω on the leaves of L

would have followed if one had merely assumed that each ui be only ‘strictly ∇-quasi-convex’, i.e., that dui

be nonvanishing and H(ui) be positive definite when restricted to the hyperplane field dui = 0. Compare [5,
Lemma 1], and the preceding discussion about their Problem 2.
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Before giving the proof of Theorem 3.3, I will state one of its corollaries, so that it can be
compared with the main result of Ekeland and Nirenberg [5, Theorem 1].

First, some useful terminology. As always, assume that ω satisfies (2.1) and (2.2) for
some k > 0.

Definition 3.4. An ω-Legendrian subspace W ⊂ TmM is ∇-positive for ω if the restriction of
the quadratic form S∇ω to W is positive definite.

Let Leg+(ω,∇) ⊆ Leg(ω) denote the set of ω-Legendrian subspaces that are ∇-positive
for ω. Then Leg+(ω,∇) is a (possibly empty) open subset of Leg(ω). Consequently, the set of
points m ∈ M for which there exists a ∇-positive, ω-Legendrian subspace W ⊂ TmM is an open
subset of M . Also, note that, since such a W contains Am, it follows that S∇ω must be positive
definite on Am.

Corollary 3.5. Suppose that ∇ be a torsion-free affine connection on M , that ω ∈ Ω1(M)
satisfy (2.1) and (2.2) for some k > 0, and that there exist a W ∈ Leg+(ω,∇) with W ⊂ TmM .
Then m ∈ M has an open neighborhood U ⊂ M on which there exist strictly ∇-convex func-
tions u1, . . . , uk and positive functions a1, . . . , ak such that

U∗ω = a1 du
1 + · · ·+ ak du

k.

The proof of Corollary 3.5 follows by applying Propositions 2.1 and 2.2 to produce an ω-
Legendrian foliation L on an open neighborhood V of m whose leaf through m has W as
a tangent space. Since S∇ω is positive definite on W , it follows that it is positive definite on all
the tangent spaces to the leaves of L in some (possibly) smaller m-neighborhood V ′ ⊂ V . Now
apply Theorem 3.3 to L on V ′.

Remark 3.6. In the special case in which M = Rn and ∇ is the flat connection satisfy-
ing ∇(dxi) = 0 for xi the standard coordinates on Rn, Corollary 3.5 simply becomes Theorem 1
of Ekeland and Nirenberg [5], since their Condition 3 turns out to be equivalent to the existence
of a W ∈ Leg+(ω,∇) with W ⊂ TmM in this case.

Proof of Theorem 3.3. There exists anm-neighborhood V0 ⊂ M on which there exist smooth
functions y1, . . . , yk vanishing at m so that the leaves of dy1 = · · · = dyk = 0 are intersections of
the leaves of L with V0 as well as functions p2, . . . , pk, also vanishing at m, and a nonvanishing
function a so that

V ∗
0 ω = a

(
dy1 + p2 dy

2 + · · ·+ pk dy
k
)

By reversing the signs of a and the yi, if necessary, one can assume that a(m) > 0. LetW ⊂ TmM
be the tangent to the leaf of L that passes through m, so that W is the common kernel of the dyi

evaluated at m.

Set ω̄ = a−1ω and note that, since dω̄ ≡ a−1 dω mod ω, it follows that L is also ω̄-Legendrian.
Moreover, since

S∇ω̄ = d
(
a−1

)
◦ ω + a−1S∇ω,

it follows that the tangent spaces of L (which, of course, satisfy ω = 0) are also ∇-positive for ω̄.
Since ω = aω̄ and a > 0, finding the desired convex representation for ω̄ will also yield one for ω.
Thus, it suffices to prove the theorem with ω̄ in the place of ω, i.e., to assume that a = 1, so I
will do that from now on. Thus,

V ∗
0 ω = dy1 + p2 dy

2 + · · ·+ pk dy
k.
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Since ω∧ (dω)k−1 ̸= 0, the functions y1, . . . , yk, p2, . . . , pk have linearly independent differentials
at m.

Restricting to V0, i.e., setting M = V0, one has

S∇ω = H
(
y1
)
+ dp2 ◦ dy2 + · · ·+ dpk ◦ dyk + p2H

(
y2
)
+ · · ·+ pkH

(
yk
)
.

Since the pj vanish at m, it follows that, when restricted to W ⊂ TmM , the two quadratic
forms H

(
y1
)
and S∇ω are equal. Thus H

(
y1
)
is positive definite on W , and so there is

a constant c > 0 so that H
(
y1
)
+ c

(
dy2

)2
+ · · ·+ c

(
dyk

)2
is positive definite on Km = {v ∈

TmM dy1(v) = 0}. Writing

ω = d
(
y1 + 1

2c
(
y2
)2

+ · · ·+ 1
2c
(
yk
)2)

+
(
p2 − cy2

)
dy2 + · · ·+

(
pk − cyk

)
dyk

and observing that

H
(
y1 + 1

2c
(
y2
)2

+ · · ·+ 1
2c
(
yk
)2)

= H
(
y1
)
+ c

(
dy2

)2
+ · · ·+ c

(
dyk

)2
+ cy2H

(
y2
)
+ · · ·+ cykH

(
yk
)

shows that, setting

ȳ1 = y1 + 1
2c
(
y2
)2

+ · · ·+ 1
2c
(
yk
)2
, ȳi = yi, and p̄i = pi − cyi,

one has ω = dȳ1 + p̄2 dȳ
2 + · · ·+ p̄k dȳ

k.

Thus, one could have chosen the functions y1, . . . , yk, p2, . . . , pk with H
(
y1
)
being positive

definite on the hyperplane Km. Assume now that this was done.

It still needs to be shown that one can choose the functions y1, . . . , yk, p2, . . . , pk with H
(
y1
)

being positive definite on all of TmM , not just on Km, which is the kernel of dy1 at m. To do
this, note that, if ϕ is any smooth function on a neighborhood of the origin in R, then

H
(
ϕ
(
y1
))

= ϕ′(y1)H(
y1
)
+ ϕ′′(y1)(dy1)2.

Hence, by choosing a ϕ with ϕ(0) = 0, ϕ′(0) = 1 and ϕ′′(0) > 0 sufficiently large, I can arrange
that ϕ

(
y1
)
be strictly ∇-convex at m. Since

ω =
1

ϕ′(y1)

(
d
(
ϕ
(
y1
))

+ ϕ′(y1)p2 dy
2 + · · ·+ ϕ′(y1)pk dy

k
)
,

one sees that the functions ȳ1, . . . , ȳk, p̄2, . . . , p̄k, where

ȳ1 = ϕ
(
y1
)
, and ȳi = yi, p̄i = ϕ′(y1)pi, 2 ≤ i ≤ k,

(with a = 1/ϕ′(y1) > 0), give a Pfaff–Darboux representation for ω that is compatible with the
foliation L and for which ȳ1 is strictly ∇-convex.5

Thus, one can assume henceforth that, on an open m-neighborhood V1 ⊂ M , one has a rep-
resentation of the form

ω = dy1 + p2 dy
2 + · · ·+ pk dy

k,

where the functions y1, . . . , yk, p2, . . . , pk ∈ C∞(V1) all vanish at m, the equations dyi = 0 define
the tangents to the leaves of L in V1, and y1 is strictly ∇-convex.

5This is the same idea that Ekeland and Nirenberg [5] used in their generalization of their Theorem 1 to cover
the quasi-convex case.
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Under these assumptions, there is a constant b > 0 sufficiently large so that H
(
yi + by1

)
=

H
(
yi
)
+ bH

(
y1
)
is positive definite at m for 2 ≤ i ≤ k. Thus, writing

ω =
(
1− b(p2+ · · ·+pk)

)
dy1 + p2 d

(
y2 + by1

)
+ · · ·+ pk d

(
yk + by1

)
,

it follows that I can, after restricting to an m-neighborhood V2 ⊂ V1 on which the function
a =

(
1 − b(p2+ · · ·+pk)

)
is positive, dividing by a > 0, and replacing yj by yj + by1 and pj

by pj/a for 2 ≤ j ≤ k, assume that I have a representation

ω = dy1 + p2 dy
2 + · · ·+ pk dy

k,

in which all of the H
(
yj
)
are positive definite at m, i.e., the yj are strictly ∇-convex on some

neighborhood of m and the pi all vanish at m.
Finally, for ε > 0 and sufficiently small, write

ω = d
(
y1 − ε

(
y2+ · · ·+yk

))
+ (p2 + ε) dy2 + · · ·+ (pk + ε) dyk.

Then, setting u1 = y1−ε
(
y2+ · · ·+yk

)
and uj = yj for j > 1 and setting a1 = 1 and aj = ε+ pj

for j > 1, one achieves the desired convex Pfaff–Darboux representation on an open m-neigh-
borhood U ⊂ V2. ■

Example 3.7 (dependence on ∇). Let ω be defined on Rn as in Example 3.2 with the con-
stants ci, fij and gij as specified there so that ω∧ (dω)k = 0 and ω∧ (dω)k−1 is non-vanishing on
an open neighborhood U ⊂ Rn of 0 ∈ Rn. Now, however, suppose that ∇ is the torsion-free con-
nection that satisfies ∇(dxi) = Γi

jk dx
j ⊗ dxk, where Γi

jk = Γi
kj are constants. Then calculation

yields

S∇ω =
(
gij +

(
ck + (fkl + gkl)x

l
)
Γk
ij

)
dxi ◦ dxj .

Consequently, at the origin x = 0, one finds
(
S∇ω

)
0
=

(
gij + ckΓ

k
ij

)
dxi ◦ dxj . It follows that,

no matter the value of g = (gij), one can always choose Γi
jk so that

(
S∇ω

)
0
be positive definite.

Thus, by Theorem 3.3 there always exists a torsion-free connection ∇ for which a ∇-convex
Pfaff–Darboux representation of ω exists on a neighborhood of 0 ∈ Rn.

This highlights the significance of the choice of background connection for the convex repre-
sentability of a given ω. In turn, this makes clear how the choice of coordinates in which a given
problem is described affects the existence of convex representability.

Remark 3.8 (global considerations). While Theorem 3.3 gives necessary and sufficient con-
ditions for the existence of local ∇-convex Pfaff–Darboux representations, for applications one
would like to know something about how large an open set in the model M one can cover with
such a representation, and this seems to be a subtle problem.

Even in the simplest case of a 3-manifold M endowed with a contact 1-form ω and a torsion-
free affine connection ∇ for which S∇ω is positive definite on the 2-plane bundle K ⊂ TM , it
is not clear how to characterize the domains U ⊂ M that support a ∇-convex Pfaff–Darboux
representation for ω.

Example 3.9 (global non-existence). Let S3 ⊂ R4 ≃ H be the unit sphere regarded as the Lie
group of unit quaternions. Let ωi for i = 1, 2, 3 be a basis for the left-invariant 1-forms on S3,
which obey the formulae dωi = ϵijkωj ∧ωk where ϵ is the fully skew-symmetric symbol satisfying
ϵ123 = 1. In particular, ωi ∧ (dωi) = 2ω1 ∧ ω2 ∧ ω3 ̸= 0 but ωi ∧ (dωi)

2 = 0, so that ωi satisfies
the usual hypotheses with k = 1, i.e., it is a contact form on S3.

Now let Γijk = Γikj be constants for 1 ≤ i, j, k ≤ 3 and let ∇ be the affine connection
(necessarily torsion-free) that satisfies

∇(ωi) = (ϵijk + Γijk)ωj ⊗ ωk.
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Then

S∇(ωi) = Γijkωj ◦ ωk.

Note that, if we choose Γijk = 0, so that ∇ is the Levi-Civita connection of the constant
curvature metric g = ω1

2 + ω2
2 + ω3

2 on S3, then S∇(ωi) ≡ 0, so ωi cannot have a ∇-convex
Pfaff–Darboux representation on any open set in S3.

However, with appropriate choice of constants Γijk, we could arrange that S∇(ωi) be positive
definite for each i. In this case, by [5, Theorem 1], each point m ∈ S3 will have an open
neighborhood on which ωi has a ∇-convex Pfaff–Darboux representation.

However, because S3 is compact, any smooth function u on S3 must have a local maximum,
and H(u) will be negative semidefinite there, independent of the choice of ∇. Thus, there cannot
be any global functions u on S3 that are ∇-convex. A fortiori, there cannot be a global ∇-convex
Pfaff–Darboux representation for ωi for any i.

Acknowledgements

This article is dedicated to Jean-Pierre Bourguignon, with much admiration, on the occasion
of his 75th birthday. Thanks to Duke University for its support via a research grant and to
the National Science Foundation for its support via DMS-9870164 (during which most of the
research for this article was done) and DMS-1359583 (during which this article was written).

References

[1] Browning M., Chiappori P.-A., Efficient intra-household allocations: a general characterization and empirical
tests, Econometrica 66 (1998), 1241–1278.

[2] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior differential systems,
Math. Sci. Res. Inst. Publ., Vol. 18, Springer, New York, 1991.

[3] Chiappori P.-A., Ekeland I., A convex Darboux theorem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 25 (1997),
287–297.

[4] Chiappori P.-A., Ekeland I., The economics and mathematics of aggregation: formal models of efficient
group behavior, Found. Trends Microecon. 5 (2009), 1–151.

[5] Ekeland I., Nirenberg L., A convex Darboux theorem, Methods Appl. Anal. 9 (2002), 329–344.

[6] Zakalyukin V.M., Concave Darboux theorem, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 633–638.

https://doi.org/10.2307/2999616
https://doi.org/10.1007/978-1-4613-9714-4
https://doi.org/10.1561/0700000028
https://doi.org/10.4310/MAA.2002.v9.n3.a3
https://doi.org/10.1016/S0764-4442(99)80092-5

	1 Introduction
	2 Classical Pfaff–Darboux theorems
	2.1 Canonical subbundles
	2.2 Legendrian submanifolds and Grassmannians
	2.3 A local normal form
	2.4 Geometry of the normal form
	2.5 Variants and extensions

	3 Convexity and affine manifolds
	3.1 Classical convexity
	3.2 Affine connections and convexity
	3.3 A positivity condition

	References

