Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 053, 39 pages      arXiv:2211.10601      https://doi.org/10.3842/SIGMA.2023.053

Index Theory of Chiral Unitaries and Split-Step Quantum Walks

Chris Bourne ab
a) Institute for Liberal Arts and Sciences and Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
b) RIKEN iTHEMS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Received December 04, 2022, in final form July 24, 2023; Published online July 28, 2023

Abstract
Building from work by Cedzich et al. and Suzuki et al., we consider topological and index-theoretic properties of chiral unitaries, which are an abstraction of the time evolution of a chiral-symmetric self-adjoint operator. Split-step quantum walks provide a rich class of examples. We use the index of a pair of projections and the Cayley transform to define topological indices for chiral unitaries on both Hilbert spaces and Hilbert $C^*$-modules. In the case of the discrete time evolution of a Hamiltonian-like operator, we relate the index for chiral unitaries to the index of the Hamiltonian. We also prove a double-sided winding number formula for anisotropic split-step quantum walks on Hilbert $C^*$-modules, extending a result by Matsuzawa.

Key words: index theory; $K$-theory; quantum walk; operator algebras.

pdf (651 kb)   tex (49 kb)  

References

  1. Asahara K., Funakawa D., Seki M., Tanaka Y., An index theorem for one-dimensional gapless non-unitary quantum walks, Quantum Inf. Process. 20 (2021), 287, 26 pages.
  2. Avron J., Seiler R., Simon B., The index of a pair of projections, J. Funct. Anal. 120 (1994), 220-237.
  3. Benameur M.-T., Carey A.L., Phillips J., Rennie A., Sukochev F.A., Wojciechowski K.P., An analytic approach to spectral flow in von Neumann algebras, in Analysis, Geometry and Topology of Elliptic Operators, World Sci. Publ., Hackensack, NJ, 2006, 297-352, arXiv:math.OA/0512454.
  4. Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren Math. Wiss., Vol. 298, Springer, Berlin, 1992.
  5. Blackadar B., $K$-theory for operator algebras, 2nd ed., Math. Sci. Res. Inst. Publ., Vol. 5, Cambridge University Press, Cambridge, 1998.
  6. Bourne C., Locally equivalent quasifree states and index theory, J. Phys. A 55 (2022), 104004, 38 pages, arXiv:2108.01230.
  7. Bourne C., Carey A.L., Lesch M., Rennie A., The KO-valued spectral flow for skew-adjoint Fredholm operators, J. Topol. Anal. 14 (2022), 505-556, arXiv:1907.04981.
  8. Bourne C., Kellendonk J., Rennie A., The $K$-theoretic bulk-edge correspondence for topological insulators, Ann. Henri Poincaré 18 (2017), 1833-1866, arXiv:1604.02337.
  9. Bourne C., Kellendonk J., Rennie A., The Cayley transform in complex, real and graded $K$-theory, Internat. J. Math. 31 (2020), 2050074, 50 pages, arXiv:1912.07158.
  10. Bourne C., Schulz-Baldes H., Application of semifinite index theory to weak topological phases, in 2016 MATRIX Annals, MATRIX Book Ser., Vol. 1, Springer, Cham, 2018, 203-227, arXiv:1612.01613.
  11. Carey A., Phillips J., Spectral flow in Fredholm modules, eta invariants and the JLO cocycle, $K$-Theory 31 (2004), 135-194, arXiv:math/0308161.
  12. Carey A.L., Phillips J., Rennie A., Sukochev F.A., The local index formula in semifinite von Neumann algebras. I. Spectral flow, Adv. Math. 202 (2006), 451-516, arXiv:math.OA/0411019.
  13. Cedzich C., Geib T., Grünbaum F.A., Stahl C., Velázquez L., Werner A.H., Werner R.F., The topological classification of one-dimensional symmetric quantum walks, Ann. Henri Poincaré 19 (2018), 325-383, arXiv:1611.04439.
  14. Cedzich C., Geib T., Grünbaum F.A., Velázquez L., Werner A.H., Werner R.F., Quantum walks: Schur functions meet symmetry protected topological phases, Comm. Math. Phys. 389 (2022), 31-74, arXiv:1903.07494.
  15. Cedzich C., Geib T., Stahl C., Velázquez L., Werner A.H., Werner R.F., Complete homotopy invariants for translation invariant symmetric quantum walks on a chain, Quantum 2 (2018), 95, 33 pages, arXiv:1804.04520.
  16. Cedzich C., Geib T., Werner R.F., An algorithm to factorize quantum walks into shift and coin operations, Lett. Math. Phys. 112 (2022), 85, 12 pages, arXiv:2102.12951.
  17. Gracia-Bondía J.M., Várilly J.C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Adv. Texts, Basler Lehrbüch., Birkhäuser, Boston, MA, 2001.
  18. Graf G.M., Tauber C., Bulk-edge correspondence for two-dimensional Floquet topological insulators, Ann. Henri Poincaré 19 (2018), 709-741, arXiv:1707.09212.
  19. Kasparov G.G., Hilbert $C^{\ast} $-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150.
  20. Kasparov G.G., The operator $K$-functor and extensions of $C^{\ast} $-algebras, Math. USSR Izv. 16 (1981), 513-572.
  21. Kitagawa T., Topological phenomena in quantum walks: elementary introduction to the physics of topological phases, Quantum Inf. Process. 11 (2012), 1107-1148, arXiv:1112.1882.
  22. Lance E.C., Hilbert $C^*$-modules. A toolkit for operator algebraists, London Math. Soc. Lecture Note Ser., Vol. 210, Cambridge University Press, Cambridge, 1995.
  23. Liu X., Harper F. Roy R., Chiral flow in one-dimensional Floquet topological insulators, Phys. Rev. B 98 (2018), 165116, 15 pages, arXiv:1806.00026.
  24. Matsuzawa Y., An index theorem for split-step quantum walks, Quantum Inf. Process. 19 (2020), 227, 8 pages, arXiv:1903.05061.
  25. Matsuzawa Y., Seki M., Tanaka Y., The bulk-edge correspondence for the split-step quantum walk on the one-dimensional integer lattice, arXiv:2105.06147.
  26. Matsuzawa Y., Suzuki A., Tanaka Y., Teranishi N., Wada K., The Witten index for one-dimensional split-step quantum walks under the non-Fredholm condition, Rev. Math. Phys. 35 (2023), 2350010, arXiv:2111.04108.
  27. Matsuzawa Y., Wada K., Tanaka Y., Index theorems for one-dimensional chirally symmetric quantum walks with asymptotically periodic parameters, arXiv:2111.12652.
  28. Moriyoshi H., Natsume T., Quantum walks on an integer lattice and the Noether index theorem, unpublished.
  29. Prodan E., Schulz-Baldes H., Bulk and boundary invariants for complex topological insulators. From $K$-theory to physics, Math. Phys. Stud., Springer, Berlin, 2016, arXiv:1510.08744.
  30. Reed M., Simon B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975.
  31. Richard S., Suzuki A., Tiedra de Aldecoa R., Quantum walks with an anisotropic coin I: spectral theory, Lett. Math. Phys. 108 (2018), 331-357, arXiv:1703.03488.
  32. Rieffel M.A., Connes' analogue for crossed products of the Thom isomorphism, in Operator Algebras and $K$-Theory, Contemp. Math., Vol. 10,American Mathematical Society, Providence, R.I., 1982, 143-154.
  33. Sadel C., Schulz-Baldes H., Topological boundary invariants for Floquet systems and quantum walks, Math. Phys. Anal. Geom. 20 (2017), 22, 16 pages, arXiv:1708.01173.
  34. Suzuki A., Supersymmetry for chiral symmetric quantum walks, Quantum Inf. Process. 18 (2019), 363, 23 pages.
  35. Suzuki A., Tanaka Y., The Witten index for 1D supersymmetric quantum walks with anisotropic coins, Quantum Inf. Process. 18 (2019), 377, 36 pages, arXiv:1903.00559.
  36. van den Dungen K., The index of generalised Dirac-Schrödinger operators, J. Spectr. Theory 9 (2019), 1459-1506, arXiv:1710.09206.
  37. Wahl C., On the noncommutative spectral flow, J. Ramanujan Math. Soc. 22 (2007), 135-187, arXiv:math/0602110.
  38. Wahl C., A new topology on the space of unbounded selfadjoint operators, $K$-theory and spectral flow, in $C^\ast$-Algebras and Elliptic Theory II, Trends Math., Birkhäuser, Basel, 2008, 297-309, arXiv:math.FA/0607783.
  39. Xu Q., Sheng L., Positive semi-definite matrices of adjointable operators on Hilbert $C^*$-modules, Linear Algebra Appl. 428 (2008), 992-1000.

Previous article  Next article  Contents of Volume 19 (2023)