Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 048, 23 pages      arXiv:2301.09075      https://doi.org/10.3842/SIGMA.2023.048

Koenigs Theorem and Superintegrable Liouville Metrics

Galliano Valent
Laboratoire de Physique Mathématique de Provence, 12 Rue Fabrot, 13100 Aix-en-Provence, France

Received January 26, 2023, in final form July 08, 2023; Published online July 19, 2023

Abstract
In a first part, we give a new proof of Koenigs theorem and, in a second part, we determine the local form of all the superintegrable Riemannian Liouville metrics as well as their global geometries.

Key words: Koenigs metrics; Liouville metrics; superintegrable geodesic flows; two-dimensional manifolds.

pdf (399 kb)   tex (20 kb)  

References

  1. Ballesteros A., Enciso A., Herranz F.J., Ragnisco O., Riglioni D., Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability, Ann. Physics 326 (2011), 2053-2073, arXiv:1102.5494.
  2. Bolsinov A.V., Matveev V.S., Pucacco G., Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta, J. Geom. Phys. 59 (2009), 1048-1062, arXiv:0803.0289.
  3. Boyer C.P., Kalnins E.G., Miller Jr. W., Stäckel-equivalent integrable Hamiltonian systems, SIAM J. Math. Anal. 17 (1986), 778-797.
  4. Bryant R.L., Manno G., Matveev V.S., A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields, Math. Ann. 340 (2008), 437-463, arXiv:0705.3592.
  5. Daskaloyannis C., Ypsilantis K., Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold, J. Math. Phys. 47 (2006), 042904, 38 pages, arXiv:math-ph/0412055.
  6. Fordy A.P., First integrals from conformal symmetries: Darboux-Koenigs metrics and beyond, J. Geom. Phys. 145 (2019), 103475, 13 pages, arXiv:1804.06904.
  7. Fordy A.P., Huang Q., Generalised Darboux-Koenigs metrics and 3-dimensional superintegrable systems, SIGMA 15 (2019), 037, 30 pages, arXiv:1810.13368.
  8. Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., Coupling-constant metamorphosis and duality between integrable Hamiltonian systems, Phys. Rev. Lett. 53 (1984), 1707-1710.
  9. Kalnins E.G., Kress J.M., Miller Jr. W., Winternitz P., Superintegrable systems in Darboux spaces, J. Math. Phys. 44 (2003), 5811-5848, arXiv:math-ph/0307039.
  10. Kalnins E.G., Kress J.M., Pogosyan G.S., Miller Jr. W., Completeness of superintegrability in two-dimensional constant-curvature spaces, J. Phys. A 34 (2001), 4705-4720, arXiv:math-ph/0102006.
  11. Kalnins E.G., Kress J.M., Winternitz P., Superintegrability in a two-dimensional space of nonconstant curvature, J. Math. Phys. 43 (2002), 970-983, arXiv:math-ph/0108015.
  12. Kiyohara K., Compact Liouville surfaces, J. Math. Soc. Japan 43 (1991), 555-591.
  13. Koenigs G., Sur les géodésiques à intégrales quadratiques, in Leçons sur la théorie générale des surfaces, Vol. 4, Editor J.G. Darboux, Chelsea Publishing, New York, 1972, 368-404.
  14. Matveev V.S., Lichnerowicz-Obata conjecture in dimension two, Comment. Math. Helv. 80 (2005), 541-570.
  15. Matveev V.S., Shevchishin V.V., Two-dimensional superintegrable metrics with one linear and one cubic integral, J. Geom. Phys. 61 (2011), 1353-1377, arXiv:1010.4699.
  16. Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A 46 (2013), 423001, 97 pages, arXiv:1309.2694.
  17. Valent G., Global structure and geodesics for Koenigs superintegrable systems, Regul. Chaotic Dyn. 21 (2016), 477-509, arXiv:1510.08379.
  18. Valent G., Duval C., Shevchishin V., Explicit metrics for a class of two-dimensional cubically superintegrable systems, J. Geom. Phys. 87 (2015), 461-481, arXiv:1403.0422.

Previous article  Next article  Contents of Volume 19 (2023)