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Abstract. Over algebraically closed fields of positive characteristic, for simple Lie (super)-
algebras, and certain Lie (super)algebras close to simple ones, with symmetric root systems
(such that for each root, there is minus it of the same multiplicity) and of ranks less than or
equal to 8—most needed in an approach to the classification of simple vectorial Lie super-
algebras (i.e., Lie superalgebras realized by means of vector fields on a supermanifold),—we
list the outer derivations and nontrivial central extensions. When the conjectural answer is
clear for the infinite series, it is given for any rank. We also list the outer derivations and non-
trivial central extensions of one series of non-symmetric (except when considered in charac-
teristic 2), namely periplectic, Lie superalgebras—the one that preserves the nondegenerate
symmetric odd bilinear form, and of the Lie algebras obtained from them by desuperization.
We also list the outer derivations and nontrivial central extensions of an analog of the rank 2
exceptional Lie algebra discovered by Shen Guangyu. Several results indigenous to positive
characteristic are of particular interest being unlike known theorems for characteristic 0,
some results are, moreover, counterintuitive.
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1 Introduction

Hereafter, K is an algebraically closed field of characteristic p > 0 and g is a finite-dimensional Lie
(super)algebra. This paper is a sequel to [13] which contains several vital definitions, e.g., of the
codifferentials, and both [13] and this paper are sequels to [12], a step towards the classification
of simple Lie (super)algebras over K. Laborious computations were performed with the aid of
Grozman’s SuperLie package, see [32].

There are two major types of Lie (super)algebras: having selected a maximal torus, we
say that the Lie (super)algebra is “symmetric” if with every root α it has a root −α of the
same multiplicity as that of α; the Lie (super)algebras without this property are said to be
“non-symmetric” (or “lopsided”). In this paper we consider Z-graded symmetric simple Lie (su-
per)algebras; a review of the situation with non-symmetric simple Lie (super)algebras, together
with new results, will be given elsewhere.

Appendix contains lists of derivations and central extensions of the deforms (results of defor-
mations, same as transforms are results of transformations) of the symmetric Lie (super)algebras
considered in the main text.

1.1 Background and notation we use

In the literature, it is customary to call Lie (super)algebras over K modular ; we find this term
overused, but use it for brevity.

The description of derivations and central extensions of modular Lie superalgebras reveals
several surprises, even to experts, we will dwell a bit on these phenomena, especially abundant
when p = 2 and 3.

For the most comprehensive background on specifics of Lie (super)algebras for p = 2, see [10].
For classification of isomorphism classes of orthogonal Lie (super)algebras without Cartan ma-
trix, and their periplectic analogs preserving non-degenerate odd symmetric bilinear form for
any p, and its numerous versions for p = 2, see [46] and Section 7 below.

One of the main types of our examples are Lie (super)algebras with Cartan matrix, or their
“relatives”” such as the simple subquotients, non-trivial central extensions, and algebras of
derivations. For notions and notation related to Cartan matrix, see [12] to which we gladly add
a recent paper [20] where the adequate definition of the notion of “root” over fields of positive
characteristic is suggested, see also [44]. Observe that all indecomposable Cartan matrices
of finite-dimensional modular Lie (super)algebras are symmetrizable; for their classification,
see [12].

Of course, the weights of cocycles do not depend on a realization (the choice of Cartan matrix),
but the form of cocycles does, and hence, for each Lie (super)algebra, we give the result for one
(“simplest” in some sense) incarnation, if there are several. We indicate the Cartan matrix to
which our cocycles correspond.

If p = 2, we give only the “non-super” version of the Cartan matrix; for Lie superalgebras
that superize them, we take the “same” Cartan matrix (but with 0 instead of 0̄ on the main
diagonal).

The answer for the simple subquotient g(A)(k)/c, where c is the center and the unspecified
superscript k is the smallest k for which g(k) = g(k+1), where g(k) is the kth derived algebra, of
the Lie (super)algebra of the form g(A) is given with respect to the same basis denoted by xi
for positive root vectors and yi for negative root vectors, same as for g(A) itself. The elements
hi := [xi, yi] belong to the maximal torus for every pair of Chevalley generators xi and yi (do not
confuse the generators with the other elements of the Chevalley basis). For the noninvertible
Cartan matrices, we denote the derivations representing the classes of outer derivations, denoted
by dj in [12], by symbols Dj , as in comments after the proof of Statement 1.1, in order not to
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confuse them with the codifferential d in cohomology.
We consider algebras as rank grows, but if the general answer for a series considered is clear,

we give it at the first instance. For each serial Lie (super)algebra, we give the answer for the
smallest value of p with which the domain of stabilization of the answer begins.

In Sections 2 and 5, we consider Lie (super)algebras with n×n Cartan matrix g(A) and their
simple “relatives” of the form g(A)(k)/c; by “rank” of these Lie (super)algebras we mean the
size n of the n× n matrix A.

In Section 7, we consider symmetric Lie (super)algebras without Cartan matrix—ogen(2n)
and pegen(n), their projectivisations—p(o)(2n) := o(2n)/K12n and p(pe)(n) := pe(n)/K12n, and
simple “relatives” of all these algebras.

Thanks to symmetry of the root system of these Lie (super) algebras, it suffices to give
cocycles of only nonpositive degree, and therefore we convene:

when we give cocycles representing a basis of H i, the cocycles of positive degree
symmetric to those of negative degree are assumed. In the repeatedly used phrases
“or a basis of H1(g; g) we can take the classes of derivations represented by the
following cocycles” we skip “the classes of”. The odd cocycles are underlined.

(1.1)

By [c] we denote the cohomology class of the cocycle c, but often, by abuse of notation we
write, for example, H2(g) = Span(c0, c−2) meaning H2(g) = Span([c0], [c−2], [c2]), thanks to
convention (1.1) that saves a lot of paper in multi-dimensional cases.

Let the Lie (super)algebra of “outer derivations” be out g := der (g)/(g/c(g)), where c(g) is
the center of g.

When a Lie (super)algebra g has incarnations for various p, our claim of the form “For
any p > 2” means that we have checked this conjecture for several values of p (= 3, 5, 7 and
sometimes 11 to be sure).

1.2 Goal: classify simple finite-dimensional modular Lie algebras.
What is done

1.2.1 Arbitrary p, but only algebras with indecomposable Cartan matrix

Weisfeiler and Kac [61] offered a classification of finite-dimensional Lie algebras g(A) with inde-
composable Cartan matrix A for any p > 0. For a verification of the corrections of [61] contained
in [37] and [56], precise definitions of various related notions, and superization thereof, see [12].

1.2.2 All algebras, but p ≥ 5

The Kostrikin–Shafarevich method conjecturally produced all restricted simple finite-dimen-
sional modular Lie algebras over algebraically closed fields of characteristic p > 7. Block and
Wilson proved the restricted version of the KSh-conjecture, see [7]. From [16]: “This classifi-
cation is implicit to this day when dealing with deforms: simple deforms of the divergence-free
algebras [62] and of Hamiltonian type algebras [55, 58] were classified only several years after [7]
was published. In the divergence-free case, explicit formulas of the p-structure were obtained
only recently, see [14]. (“The problem of restrictedness is approached. . . . [But] the family of
Hamiltonian algebras . . . is not yet handable”, see [59, p. 357].”)

The generalized conjecture considered all simple algebras; it consisted of two parts: one part
clearly described Z-graded Lie algebras; this part turned out to be correct for p ≥ 7.

The bigger and vague part of the generalized conjecture was more and more lucidly formu-
lated later, thanks to ideas of Kac, who suggested to reduce the description of all deformations
(infinitesimally, of H2(g; g)) to the much simpler task of the description of the tensors preserved
by g which boils down to the description of filtered deformations (infinitesimally, of H2(g−; g)).
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The latter are covered by results due to Wilson [62] (and earlier, but with an isomorphism
missed, by S. Tyurin [60]), who described classes of volume forms, and Skryabin who described
classes of symplectic and contact forms, see [55, 58]. Elsewhere, we intend to review these re-
sults together with new ones, for non-symmetric Lie superalgebras. Interestingly, the well-known
example of “quantization” of the Poisson Lie algebra was not taken into account, although it
manifestly shows that the bold idea to replace computation of H2(g; g) by that of H2(g−; g)
does not always work. For one more, very interesting exceptional example of Shchepochkina,
see [10].

In [41], it was suggested to improve the generalized KSh-procedure for non-restricted alge-
bras by a carefully study of deforms of certain “standard” examples having added to simple
“standard” objects one nontrivial central extension. This improvement works for p ≥ 5, see
[5, 41, 59]. (The proof in [41] is absolutely correct, but its English is a bit broken and the
Poisson Lie algebra is called Hamiltonian. However, the result was double-checked for the case
of smallest dimension, see [50].)

1.2.3 A conjectural method for producing all simple Lie algebras for p ≥ 3

This modification of the KSh-procedure reduce the stock of “standard” examples to Lie algebras
with indecomposable Cartan matrices. In the improved version of the KSh-procedure, we should

(a) take the nonpositive part of Lie algebras with Cartan matrix over K, construct
its generalized Cartan–Tanaka–Shchepochkina prolong (complete or partial), and called
CTS-prolong in what follows. (Most lucidly the CTS-prolong is defined in [53] with
examples for p = 0 and p > 0, see also [10].) Proceed inductively, as described in [48];

(b) deform the simple Lie algebras obtained at step (a), perhaps, after passing to
a first or second derived algebra of the prolong;

(c) select non-isomorphic examples among the above (true deforms).

For p > 3, one thus gets all simple examples. We conjecture that one thus gets all simple examples
for p = 3 as well, see interpretations of various Skryabin algebras, as well as Ermolayev and
Frank algebras, described in [33].

1.3 Phenomena indigenous to p = 2

Recall the definition of a Lie superalgebra in characteristic 2, see [13]. In [17], we suggested sev-
eral versions of restrictedness for p = 2 initiated in [12, 45]. Moreover, we reduced classification
of simple Lie superalgebras to that of simple Lie algebras and the Z/2-gradings of the latter. (To
classify Z/2-gradings might be rather tough, cf. [42].)

For p = 2, the stock of algebras for the input for the CTS-prolongation is wider than for
p ≥ 3. The process is inductive, see [48]. In [57], Skryabin showed that certain semisimple Lie
algebras also have to be added to the list of “standard” examples, see also [31]. In addition,
there are Eick algebras [29], not explained yet.

Recently, Skryabin’s approach to classification of symplectic forms was extended in [39, 38] to
“non-alternate” forms, see also [46]. (Observe that Skryabin applied the adjective “Hamiltonian”
not only to algebras preserving these forms, which is the standard usage of the term, but also to
the forms themselves, which is at variance with the usage of the term in theoretical mechanics
and differential geometry, cf. [58] with earlier [55].)

Additionally, there might appear new CTS-prolongs of certain pairs (g−, g0) with exceptional
g0-modules g−1.

There are more types of symmetric simple Lie (super)algebras: the “non-alternate” orthog-
onal ones, see [46], and queerification of symmetric Lie algebras, see [17]. For details and
examples, see [9, 10].
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1.4 Phenomena indigenous to p = 3. Pre-Lie superalgebras

Recall the definition of a Lie superalgebra in characteristic 3 and a pre-Lie superalgebra (indige-
nous to p = 3), see [13].

Any Lie (super)algebra with a non-degenerate invariant symmetric bilinear form B will be
briefly called a NIS-(super)algebra. The double extension g of a NIS-(super)algebra a is the
result of simultaneous adding to a a central element c and a derivation D so that the direct
sum as spaces g := K ⊕ a ⊕ K∗, where K := Kc and K∗ := KD, is a NIS-algebra. Most known
examples of double extensions are affine Kac–Moody algebras (over C or R).

Computing double extensions of restricted Lie superalgebras the authors of [4] discovered an
interesting phenomenon that helped us to interpret certain derivations and central extensions.

As we know from [3] succinctly summarized in [21], the double extension is indecomposable,
i.e., not isomorphic to the direct sum of two ideals a and K⊕K∗, if the following conditions are
satisfied:

a) the derivation D of a must be outer for any p; if p = 2, and D ∈ (out a)1̄, then, moreover,
the condition D2 = 0 is a must, see [15];

b) the central extension has to be non-trivial, see [21, Section 8].

If p = 3 and a derivation D preserves an invariant and symmetric (IS for short) bilinear
form B, then ω(a, b) := B(Da, b) does not have to describe a central extension of a Lie superal-
gebra g, because it may happen that

ω
(
x, x2

)
̸= 0 for an element x ∈ g1̄.

So if we try to construct a central extension using this ω, the resulting superalgebra wouldn’t
necessarily satisfy the indigenous for p = 3 part of the Jacobi identity for 3 odd elements in the
form

[
x, x2

]
= 0; though it would still satisfy

[u, [v, w]] + [v, [w, u]] + [w, [u,w]] = 0 for any u, v, w ∈ g1̄. (1.2)

Whether this ω is a cocycle or not, depends on how we define cochains and the action of the
exterior derivation on them; accordingly, we calculate the cocycles correctly or not (either by
pen on paper or by means of the code SuperLie).

If we use the used to be standard definition according to which the cochains are anti-
supersymmetric functions ω, then the condition dω = 0 assures us that ω is a cocycle but
not of a Lie superalgebra. By definition, the pre-Lie superalgebra satisfies the Jacobi identity
for different triples of arguments, e.g., (1.2), but not

[
x, x2

]
= 0 for x odd.

If p ̸= 2, 3, then a function ω such that ω
(
x, x2

)
̸= 0 for some odd x cannot be a cocycle,

since dω(x, x, x) = 3ω(x, [x, x]), therefore SuperLie, and we, consider dω ̸= 0 if ω
(
x, x2

)
̸= 0

even for p = 3.
As we have discussed in [13], the used to be standard definition of cochains is not good for

computing infinitesimal deformations of Lie superalgebras in characteristic 2. It turns out that
it is not good for finding central extensions in characteristic 3 (and, perhaps, 2) either.

The definition of cochains can be interpreted in different ways, depending on what we mean
by cochains and by a derivation preserving a symmetric bilinear form.

In the standard way, one defines cochains, as super anti-symmetric functions, then B(Dx, y)
is a cocycle, it is just that not every 2-cocycle with coefficients in the trivial module corresponds
to a central extension; SuperLie selects only those cocycle which do correspond to central
extensions.

Corrections to the standard definition: we define cochains as it is implemented in SuperLie:

� B(Dx, y) is not necessarily a cocycle.
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� We change the definition of “a derivation preserving an IS form”. Namely, in addition to
just requiring

B(Dx, y) = (−1)p(D)p(x)B(x,Dy) for any x, y ∈ g

we should add the following condition if p = 2 or 3:

If p = 2 then

B(Dx, x) = 0 for all x ∈ g1̄.

Since, for any Lie superalgebra g, we want der g be a Lie superalgebra, one has to add the
condition

D
(
x2
)
= [Dx, x] for any x ∈ g1̄ and D ∈ der g.

If p = 3, then we should add the condition

B
(
Dx, x2

)
= 0 for all x ∈ g1̄. (1.3)

If p ̸= 2, 3 or if p = 3 and D is even, then the condition (1.3) is satisfied automatically, since

B
(
Dx, x2

)
= 1

2B(Dx, [x, x]) = 1
2B([Dx, x], x) = 1

4B(D[x, x], x)

= 1
2B
(
Dx2, x

)
= 1

2B
(
x,Dx2

)
= (−1)p(D) 1

2B
(
Dx, x2

)
= 1

2B
(
Dx, x2

)
,

so B
(
Dx, x2

)
= 0.

1.5 Derivations and central extensions of simple Lie (super)algebras

The classification of derivations and central extensions of simple Lie (super)algebras is of in-
terest per se, but the knowledge of the result is also needed in one of the powerful methods of
classification of simple Lie (super)algebras: see [49].

On importance of restrictedness. At first, Shafarevich and Kostrikin considered in their
conjecture only restricted Lie algebras. Recently, on a different occasion, Deligne gave us an
advice to look, if p > 0, at the groups (geometry) rather than Lie algebras, see Deligne’s appendix
in [47]. Deligne advised us to restrict the classification problem of simple Lie (super)algebras,
and modules over them, to restricted ones—at least, to begin with—because only restricted Lie
algebras correspond to geometry. Conceding that the study of restricted Lie (super)algebras is
a natural first step, we consider in this paper naturally arising nonrestricted Lie (super)algebras
as well; they are often needed to describe restricted ones, see also [17]. The referees remind us
also that non-restricted Lie algebras are applied in the study of p-groups, and naturally appear
in representations of quantum groups (algebras) Uq(g) for the parameter q equal to a pth roots
of unity.

The lack of outer derivations is a sufficient condition for the algebra to be restricted. The
complete inventory of central extensions is of interest per se, but becomes indispensable in
classification of simple Lie (super)algebras if p = 0, see [49]. To classify (at least certain types
of) simple vectorial Lie (super)algebras (i.e., Lie superalgebras realized by means of vector fields
on a supermanifold) à la [49] if p > 0 is another possible application of the results of this paper.

In this subsection, charK = 0 and g is a Lie algebra, unless otherwise stated. For the Lie
algebra with a non-degenerate invariant symmetric bilinear form (NIS for short) b, the problems
of describing outer derivations and nontrivial central extensions are practically equivalent. In-
deed, the outer derivations are described by cocycles representing the classes of H1(g; g) whereas
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the nontrivial central extensions are defined by cocycles representing the classes of H2(g), i.e.,
with trivial coefficients. In presence of a NIS b, we have g ≃ g∗, and hence H1(g; g) ≃ H1(g; g∗).

For any cocycle ω representing the class [ω] ∈ H2(g), there is an embedding

j : H2(g) −→ H1(g; g∗),

j(ω) : X 7−→ j(ω)(X), where (j(ω)(X))(Y ) = ω(X,Y ) for any X,Y ∈ g. (1.4)

The following sequence is exact:

0 −→ H2(g)
j−→ H1(g; g∗)

v−→ (S2(g))g
K−→ H3(g) −→ H2(g; g∗) −→ H1

(
g;S2(g)

)
, (1.5)

where
(
S2(g)

)g
denotes the space of g-invariant symmetric bilinear forms on g, and the maps v

and K are defined as follows:

v(f)(X,Y ) = f(X)(Y ) + f(Y )(X) for any X,Y ∈ g and f ∈ Z1(g; g∗),

K(b)(X,Y, Z) = b([X,Y ], Z) for any X,Y, Z ∈ g and b ∈
(
S2(g)

)g
.

The beginning of the sequence (1.5) was discovered by Koszul, who introduced the map K; then
the sequence was further extended to the right, see [51]. The fact “the map j is an embedding”
is proved in [25]; the exactness of the sequence (1.5) is proved in [51, Proposition 7.2].

In 1992, in a letter to D.L., Dzhumadildaev wrote about symmetric (co)homology HS
.
, later

elaborated in [26, 28]. The term HS0 is
(
S2(g)

)g
and the exactness of the sequence (1.5) means,

for example, that for complex simple finite-dimensional Lie algebras, the 3-cocycleK(b)(−,−,−)
is nontrivial, i.e., KerK = 0, hence, H2(g) ≃ H1(g; g∗) = 0.

If g is a vectorial Lie algebra, it can happen that KerK is nontrivial, e.g., for a modu-
lar svect(3), see [15], and for Hamiltonian Lie algebras h on tori where there are invariant forms
on h. Then, “Leibniz central extensions” arise, i.e., a central extension of the Lie algebra, the
result of which is not a Lie algebra, but a Leibniz algebra which satisfies only the Jacobi identity,
but not the anti-symmetry one.

Thus, a part of H1(g; g∗) describes Lie central extensions, while the other part describes
Leibniz central extensions.

Superization of the sequence (1.5). For the case where all g-invariant symmetric bilinear
forms (S2(g))g are even, the arguments of [51] are literally applicable to Lie superalgebras and
help us to verify the results if p ̸= 2. (Note that the title of [15] is misleading: there are symmetric
and anti-symmetric bilinear forms on superspaces, but there are no ”super symmetric” forms.
For an elucidation of this, see [43, Section 2.4.2].)

If p = 2, there are subtleties we’ll discuss in what follows.
It is an open problem to construct an analog of the sequence (1.5) if NIS on g is odd.

1.5.1 What can be said a priori: “extra derivations”

Let g = g(A) be a Lie (super)algebra with a noninvertible Cartan matrix. Then, g has a central
element z and a grading element D, both lying in the maximal torus h and D ̸∈ g(1), where g(1)

is the derived algebra.
Let {X1, . . . , Xn} be a basis of g; let the X∗

i ∈ g∗ be the dual basis. Let X̂i = Π(X∗
i ) ∈ Π(g∗)

when cochains of degree > 1 are considered; otherwise, the change of parity Π can be ignored.

Statement 1.1 (unexpected). Let rk(A) = size(A)−1, so g = g(1)⋉K ·D is a semi-direct sum.
The operator M on g corresponding to the cochain z ⊗ D̂, i.e., such that

MD = z and M
(
g(1)
)
= 0, (1.6)

is an outer derivation of g.
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Proof. To show that M is a derivation, we need to show that

M [x, y] = [Mx, y] + [x,My] for any x, y ∈ g.

Indeed, the left-hand side vanishes thanks to (1.6), and the right-hand side vanishes due to the
fact that ImM ⊂ c, where c is the center of g.

There is no x ∈ g such that M = adx. Indeed, otherwise [x,D] = z, but D ∈ h, so [D, h] = 0
and [D, g±] ⊂ g±. Thus, z ̸∈ [D, g] since z ∈ h. ■

Remark 1.2. If size(A)−rk(A) = k, then, as is known from [12], there are k linearly independent
central elements z1, . . . , zk, and k grading elements D1, . . . , Dk. Similarly to the above, there
are k2 linearly independent outer derivations of g, i.e., operators Mij corresponding to the

cochains zi ⊗ D̂j .

1.5.2 On central extensions and derivations of simple Lie algebras for p > 0

The results of Ibraev [34, 35] and Permyakov [52] imply a complete description of central exten-
sions and derivations of simple Lie algebras of “classical type” (i.e., of the form g(A) or g(A)(i)/c,
except for wk and br cases) for p > 0. Therefore, we will not consider these cases, except for an
occasional illustration (but we do consider wk and br cases—new results).

1.5.3 What can not be said a priori and we have to compute

It is clear that if
(
S2(g)

)g ̸= 0, there is an isomorphism H1(g; g∗) ≃ H2(g), if p ̸= 2. This is
wonderful, but we are currently interested in H1(g; g) and not in H1(g; g∗), and therefore

if
(
S2(g)

)g
= 0 or if NIS on g is odd,

we have to compute both H1(g; g) and H2(g).

1.5.4 What can be said a posteriori

If there is a NIS on g, then dim
(
S2(g)

)g
= 1, unless p = 2; for a proof, see [43]. Let us consider

examples.

For p ̸= 2, the fact that j is an embedding implies that if there is an even NIS b on g (e.g., g
has an invertible Cartan matrix) and H1(g; g) = 0, then H2(g) = 0.

For p = 2, several results of our computations contradicted the fact that j is embedding.
But, indeed,

if p = 2, then the map j, see (1.4), is not necessarily an embedding!

By the standard definition, n-cochains of the Lie superalgebra g with values in the module V
are super anti-symmetric n-linear functions on g with values in V . In particular, 1-cochains are
just linear functions on g with values in V . The standard exterior differential (codifferential in
cohomological terms) is defined on the space of 1-cochains c1 as follows (the signs are irrelevant
if p = 2):

dc1(x, y) = c1([x, y])− xc1(y) + yc1(x) for any x, y ∈ g.

Thus defined, the codifferential d does not take squaring into account if p = 2.

The definition for p = 2: The definition of n-cochains of Lie superalgebras used in SuperLie
is not equivalent to the above definition of n-cochains as super anti-symmetric n-linear functions
when n ≥ p > 0. In particular, in the case of p = 2, the SuperLie definition of C2(g;M) is
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equivalent to the space of all pairs (c, q), where c is an anti-symmetric1 bilinear function on g
with values in M and q is a quadratic form on g1̄ with values in M such that its polar form is
the restriction of c to g1̄.

Recall the definition of (c, q) ∈ C2(g) and d1, see [13, Section “Cohomology of Lie superalge-
bras in degrees 1 and 2 for p = 2”]. In what follows, we use the notation a ∧ b to represent the
pair a, b ∈ g∗ such that

c(x, y) := a(x)b(y) + a(y)b(x) for all x, y ∈ g and q(x) := a(x)b(x) for all x ∈ g1̄.

The codifferential d1 maps a 1-cochain c1 ∈ C1(g;M) (the definition of C1(g;M) is equivalent
to the classical one, i.e., linear functions from g to M) to the pair (dc1, q) where dc1 is as in the
classical definition and

q(x) = c1(x
2) + xc1(x) for any x ∈ g1̄.

In particular, if x ∈ g1̄ and c1 ∈ C1(g) is such that c1(x) = 0 and c1(x
2) = 1, then d1c1 is

non-zero, since q(x) = 1.

For several Lie superalgebras g in characteristic 2 we got

dimH2(g) ≥ dimH1(g; g∗). (1.7)

This can indeed be so if p = 2, but this can not be true for the classical cochains (i.e., super
anti-symmetric functions on which the codifferential does not take squaring into account) for
p ̸= 2. Observe that for p = 3, the definition of 3-cochains is also different from the classical, so
a new phenomena concerning H2 may arise.

Remarks 1.3. 1) out(h) ≃ H1(h; h) is not a must only for p = 2. Since the polar form is always
anti-symmetric (i.e., c(x, x) = 0) for p = 2, we could equivalently define c ∈ C2(g;M) to be
anti-symmetric whatever the parity of x.

In characteristic 2, in all examples computed in this paper, the space out(g) of outer deriva-
tions is isomorphic to H1(g; g). Although the Chevalley–Eilenberg codifferential does not con-
sider the squaring, SuperLie does take squaring into account when computing Lie superalgebra
cohomology.

The isomorphism out(g) ≃ H1(g; g) does not take place in general. Consider a 1|1-dimensional
Lie superalgebra g spanned by an odd basis element x and even x2 (with

[
x, x2

]
= 0 by the

Jacobi identity). Since the bracket in g identically vanishes, it follows that d is the zero operator
on C

.
(g; g); this means that Z1(g; g) = C1(g; g) ≃ gl(g) and B1(g; g) = 0, and hence H1(g; g) ≃

gl(g), so sdimH1(g; g) = 2|2. However, any derivation f of g must satisfy

f
(
x2
)
= [x, f(x)] for any x ∈ g1̄ (1.8)

since [x, y] = 0 for any y ∈ g, so out(g) = der g is 1|1-dimensional. (The idea is that to be
a derivation, a linear map f : g → g has to satisfy the only condition (1.8). So we can freely
choose f(x), which gives 1|1-dimensional space of degrees of freedom, and f(x2) is determined
by the condition (1.8), so there is no additional freedom.)

2) On the other hand, we have the following lemma.

Lemma 1.4. If p = 2, then out(h) ≃ H1(h; h) for any centerless Lie superalgebra h.

1Note that it is antisymmetric, not super anti-symmetric; i.e., c(x, x) = 0 for all x ∈ g, independently of the
parity of x.
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Proof. A linear map f : h −→ h belongs to Z1(h; h) if and only if it satisfies the condition (we
skip signs since p = 2)

f([x, y]) = [f(x), y] + [x, f(y)] for any x, y ∈ h. (1.9)

Observe that f is a derivation of h if and only if it satisfies conditions (1.9) and (1.8).
But if h has no center, then (1.8) follows from (1.9): if f satisfies (1.9), then for x odd and

any y, we have

f
([
x2, y

])
=
[
f
(
x2
)
, y
]
+
[
x2, f(y)

]
.

On the other hand,

f
([
x2, y

])
= f([x, [x, y]]) = [f(x), [x, y]] + [x, f([x, y])]

= [f(x), [x, y]] + [x, [f(x), y]] + [x, [x, f(y)]]

= [[x, f(x)], y] +
[
x2, f(y)

]
.

So we see that[
f
(
x2
)
, y
]
= [[x, f(x)], y] for any y.

Since h has no center, this means that f
(
x2
)
= [x, f(x)]. So, Z1(h; h) ≃ der h. And since B1(h; h)

is the space of inner derivations of h in any case, we have H1(h; h) ≃ out(h). ■

Conjecture 1.5 (on inequalities between dimH1(g; g∗) and dimH2(g)). For p = 2, the in-
equality (1.7) should be modified to

dimH1(g; g∗) ≤ dimH2(g) ≤ dimH1(g; g∗) + dim g1̄ − codim g[1],

where g[1] := Span([x, y] | x, y ∈ g). Do not confuse g[1] with the first derived algebra g(1).

Since codim g[1] is the dimension of the space of 2-coboundaries of the form a ∧ a, we have

dim g1̄ − codim g[1] = dimKer j,

see formula (1.4).

1.6 Super goal: classify simple finite-dimensional modular Lie superalgebras

First, let us perform an inventory. For the classification of simple Lie superalgebras of the form
g(A) for A indecomposable and invertible, and simple subquotients of g(A) for A indecomposable
but non-invertible, see [12]. All other types of simple Lie superalgebras are not classified yet.

For p > 5, we have only conjectural methods for producing all of them (see the list of examples
in Sections 1.6.1 and 1.6.2), but we are sure these methods yield the complete classification.

For p = 3 and 5, we only hope our methods produce all simple Lie superalgebras.
For p = 2, expectedly the most difficult case, we offered two methods that produce all simple

Lie superalgebras out of simple Lie algebras, and proved that every simple Lie superalgebra
is obtained from a simple Lie algebra by one of these two methods, see [17]. This result is
astonishing: in the most difficult case we have a complete classification! But there is a catch:
the classification is modulo the classification of the simple Lie algebras which seems to be far
out of reach at the moment. Moreover, one of these two methods requires classification of Z/2-
gradings of simple Lie algebras, which is a very tough, if not wild, problem, see [42] where it is
solved in a particular case.
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1.6.1 Symmetric simple Lie superalgebras

Here is the list. Deforms of non-symmetric algebras can be symmetric. We are not aware of the
opposite examples.

A) Lie superalgebras with indecomposable Cartan matrices, their simple subquotients. These
are classified in [12].

B) Queer Lie superalgebras (any p) and queerified symmetric simple Lie algebras (p = 2).

The deforms of the symmetric Lie (super)algebras (except for numerous queerifications and
superizations of Chebochko’s examples, see [23]) are completely described in [13], where, apart
from simple Lie (super)algebras with indecomposable Cartan matrices and their simple relatives,
there are considered other types of simple Lie (super)algebras, but only of rank ≤ 8.

1.6.2 Non-symmetric simple Lie superalgebras

These simple Lie superalgebras are usually realized as vectorial, i.e., by means of vector fields
(unlike matrix or linear superalgebras realized by matrices or linear operators). In this paper we
consider symmetric simple Lie superalgebras, the non-symmetric simple Lie superalgebras will
be considered separately with one exception: periplectic Lie superalgebras become symmetric
for p = 2, so we consider periplectic cases here, for any p for consistency.

For p > 5, one can consider the direct modular versions of the simple vectorial Lie superalge-
bras over C, see [49], and their filtered deforms analogous to the Lie algebra case, see, e.g., [40].
For the input of CTS-procedure (most lucidly described in [53]) take

� nonpositive parts of Lie superalgebras of the form g(A), or

� nonpositive parts of g(i)(A)/c, see [8, 12]; or

� pairs (g−, g0) producing simple exceptional vectorial Lie superalgebras, cf. [49].

Then, conjecturally (but undoubtedly), we get as the result of the CTS-procedure all simple
non-symmetric Z-graded Lie superalgebras. Together with their deforms, we get all simple
superalgebras.

For p = 5, new examples (not discovered yet) could be added to these inputs. For p < 5,
examples already found should be added. In particular,

For p = 3, see [11, 19]; two super analogs of Melikyan examples appear; unlike the Melikyan
algebras, both these super analogs seem to qualify as “standard” examples, hopefully exhausting
them, together with the modular versions of simple vectorial Lie superalgebras over C, see [49].

For p = 2, the candidates for the role of “standard” examples are numerous and diverse, see
[9, 10, 16, 17, 33, 36, 46].

1.7 Symmetric Lie algebras (known results)

The derivations and central extensions are computed at the moment only for certain of Z-graded
simple Lie (super)algebras.

For p > 2, the spaces of outer derivations of Lie algebras with indecomposable Cartan ma-
trix and their simple relatives of the form g(i)(A)/c are computed in [34]; they are at most
1-dimensional, except for psl(3) for p = 3.

For p = 2, the dimensions of the spaces of outer derivations of “symmetric” simple Lie
algebras with Cartan matrix and simple relatives of the form g(i)(A)/c of Lie algebras with
indecomposable Cartan matrix (except for wk and br cases) are described in [52]. In [52], there
are also described dimensions of the spaces of outer derivations of the Lie algebras gK := gZ⊗ZK
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obtained from the integer form gZ spanned by the Chevalley basis of the simple complex Lie
algebra g and their quotients modulo center, gK/c.

Observe that Lie algebras with roots of series B and C, and the exception F4 yield non-simple
Lie algebras2 of the form gK/c, while the exceptional Lie algebra g(2) (often denoted by its root
system: G2) turns under the passage to the simple subquotient into psl(4) if p = 2.

1.8 Double extension: an interesting and important notion

Recently, there was distinguished a notion in which a central extension, and a derivation, and
a NIS on a given Lie (super)algebra are considered simultaneously. Among the most inter-
esting and most known examples of double extensions we encounter affine Kac–Moody Lie
(super)algebras with Cartan matrix over C and gl(np) in characteristic p > 0; for a succinct
overview of double extensions together with several new results explaining certain known facts,
see [21].

Let h be a Lie superalgebra over any field with a NIS Bh on it, and D ∈ der h a derivation
such that Bh is D-invariant, i.e.,

Bh(D(a), b) +Bh(a,D(b)) = 0 for any a, b ∈ h.

Then, if g has a non-trivial central extension, there exists a Lie superalgebra structure on the
space g := K⊕h⊕K∗, called the double extension (or just D-extension) of h, where K = Kc and
K∗ = Kc∗, where c∗ = D, is the dual space, defined as follows (for any a, b ∈ h and D := c∗):

[c, g] = 0, [a, b]g = [a, b]h +Bh(D(a), b)c, [D, a] = D(a).

If p ̸= 2, the notion of D-extension has a natural super version provided D2 = 0 if D is odd,
see [1, 2].

If p = 2, the definition of double extension is non-trivial, see [3, 4]; it helps us to interpret
one example in Lemma 2.17 below.

1.9 Our results

Over K for p > 0, we listed the outer derivations and nontrivial central extensions of simple
finite-dimensional Lie (super)algebras of rank ≤ 8 for algebras with symmetric root systems.

If p = 2, we considered several types of algebras admitting both symmetric and non-symmetric
root system—periplectic Lie superalgebras, and their desuperizations.

When the pattern was clear we gave the answer for any rank. Computations were performed
with the aid of SuperLie package, see [32].

These computations confirmed the results of Ibraev [34] and Permyakov [52] concerning the
simple Lie algebras; moreover, we exhibit the explicit cocycles; they are sometimes needed. In
certain cases we prove our claim concerning the general rank thanks to Permyakov’s result [52].
He gives arguments to prove that “there are that many cocycles”; here we exhibit exactly that
many cochains and it is easy to check that they are (a) cocycles, (b) correspond to the outer
derivations, (c) are linearly independent.

Observe that for p = 2, there are other simple Lie algebras of “symmetric” type in addition
to those considered in [52]; we considered these algebras as well. For all cases where the descrip-
tion of central extensions did not follow from the general theory of formula (1.5), we gave the
description separately.

2It is unclear to us where such non-simple Lie algebras and their outer derivations might be of interest; however,
see Section 3.3.1.
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� Certain results concerning outer derivations of Lie algebras with noninvertible Cartan
matrix are counterintuitive, e.g., see Remark 2.2.1; they are based on the innocent-looking
Statement 1.1.

� Answering the remarks of the referees we added several new results related to the latest
studies of double extensions.

� Andrey Krutov wrote an appendix classifying derivations and central extensions of the
deforms with even parameter (listed in [13]) of the Lie (super)algebras considered in the
main text.

In what follows “rank” refers to the size of Cartan matrix, or m+n for ooB(m|n) which has
no Cartan matrix.

Open Problems.

1a) What is the analog of the exact sequence (1.5) for Lie superalgebras with an even symmetric
g-invariant bilinear form on it for any p?

1b) What is the analog of the exact sequence (1.5) for Lie superalgebras with an odd symmetric
g-invariant bilinear form on it for any p?

1c) Does the sequence (1.5) remain exact if p > 2? If not, what happens?

2) For p = 2, what are the rules according to which the spaces H1(g; g), where g = g(A),
vary as 0̄’s turn into 0’s on the diagonal of “the same” Cartan matrix, see [12]?

3) Describe (super)groups of automorphisms of simple Lie (super)algebras not considered
in [30].

2 Symmetric Lie (super)algebras

In this section, we consider “symmetric” Lie (super)algebras, except for—if p = 2—the orthogo-
nal series and queerifications of symmetric Lie algebras. For further notions and notation related
to Cartan matrix, see [12]. We let the positive Chevalley generators be of degree 1, and the
elements of Chevalley basis they generate, by xi, the corresponding negative basis elements by
yi; we set hi := [xi, yi] for the generators xi and yi of degree ±1 only—this grading is referred
to as standard or principal. The cocycles are indexed by their degree induced by the Z-grading
of g; the superscript labels independent cocycles of the same degree or weight.

If {X1, . . . , Xn} is a basis of g, we set X̂i := X∗
i ∈ g∗ or X̂i := Π(X∗

i ) ∈ Π(g∗) when cochains
of degree > 1 are considered.

A tough choice: what to compute? The distinction between the Lie algebra with Cartan
matrix and its derived or quotient or simple subquotient (such as gl(pn), sl(pn), pgl(pn), and
psl(pn)) was often disregarded. We insist on careful distinction, but are puzzled by the question:
if A is not invertible, so there are g(A), g(A)(i), g(A)/c, g(A)(i)/c,

should we compute H1(g; g) and H2(g) for all four relatives of g(A)?

We think not all these cases are usually interesting. Our choice is as follows: since the most
often encountered are g(A) and its simple subquotient g(A)(i)/c, we should definitely consider
these two cases. If some other relative proved to be especially nice, e.g., sl(pn), we consider it
as well; otherwise, we ignore the other two cases.
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2.1 Rank 1: Lie (super)algebras with Cartan matrices (1̄) or (2) and (0̄)
(resp. (1) and (0)). One more superization

The case where size of the Cartan matrix A is equal to 1 is exceptional, some of its subcases
have no analogs of Cartan matrices of larger size.

For p = 2, these are

� the simple Lie algebra o(1)(3) with Cartan matrix (1̄), and its superizations oo
(1)
IΠ(1|2) with

Cartan matrix (1), and oo
(1)
II (1|2) without any Cartan matrix;

� the Lie (super)algebra with Cartan matrix (0̄) (resp. (0)) is gl(2) (resp. gl(1|1)); the derived
of this algebra is hei(2|0) ≃ sl(2) (resp. hei(0|2) ≃ sl(1|1));

� there is also a totally different superization of hei(2|0), namely ba(1|1), the anti-bracket
analog of the Heisenberg algebra with an odd center spanned by ζ and two more elements:
even a and odd a+ with the only non-zero bracket [a+, a] = ζ. Same as hei(2|0) (resp.
hei(0|2)) can be realized as the negative part g− := ⊕i<0gi of the Lie superalgebra of
contact vector fields k(3|0) (resp. k(1|2)), the Lie superalgebra ba(1|1) can be realized as
the negative part of the vectorial Lie superalgebra g = m(1)—the “odd” (a.k.a. pericontact)
version of the contact algebra in its standard Z-grading, see (2.1). For details, see [10]; we
recall only the necessary formulas.

For any f ∈ K[τ, q, ξ], where τ and ξ are odd, and q is even, let

Mf := (2− E)(f)
∂

∂τ
− (−1)p(f)∂f

∂τ
E − ∂f

∂q

∂

∂ξ
− (−1)p(f)∂f

∂ξ

∂

∂q
,

where E := ξ ∂
∂ξ + q ∂

∂q . Set

deg τ = 2, deg q = deg ξ = 1, degMf = deg f − 2, p(Mf ) = p(f) + 1̄. (2.1)

Clearly,

ba(1|1) = Span
(
ζ =M1, a =Mξ, a

+ =Mq

)
.

Lemma 2.1.

1) For g = ba(1|1), for any p we have: H1(g; g) is spanned by

a+ ⊗ â, a⊗ â + a+ ⊗ â+, a⊗ â − ζ ⊗ ζ̂.

Indeed: out ba(1|1) = Span(Mτ ,Mqξ,Mq2).

2) The space H2(g) is spanned by

c2 = â+ ∧ â+, c3 = â ∧ ζ̂ (both for any p),

c4 =

{
0 for p ̸= 2,

ζ̂ ∧ ζ̂ for p = 2.

Remark 2.2. Assuming that ba(1|1) = m(1)−, the negative part of m(1), is an analog of sl(2),
or rather hei(2|0), we can say that the non-positive part m(1)≤0 of m(1) is a (far fetched and ad
hoc) analog of gl(2). What are the derivations and central extensions of m(1)≤0?

Answer: For p = 2, the space H2(g) is spanned by

c10 = M̂τ ∧ M̂qξ, c20 = M̂q(2) ∧ M̂q(2) c2 = M̂q ∧ M̂q, c4 = M̂1 ∧ M̂1.



16 S. Bouarroudj, P. Grozman, A. Lebedev and D. Leites

For p ̸= 2, the space H2(g) is spanned by

c0 = M̂τ ∧ M̂qξ.

The space of H1(g; g) is spanned by M1 ⊗ M̂q(2) if p = 2, otherwise H1(g; g) = 0.

For p > 2, the simple Lie algebra o(3) ≃ sl(2) has Cartan matrix (2) and its super versions
sl(1|1), or rather gl(1|1), has Cartan matrix (0), whereas osp(1|2) has Cartan matrix (1).

Lemma 2.3. For any p and g = hei(2|0):
1) We have out g ≃ gl(2); for a basis of H1(g; g) we can take the following derivations (recall

convention (1.1))

c−2 = y1 ⊗ x̂1, c10 = h1 ⊗ ĥ1 + x1 ⊗ x̂1, c20 = −x1 ⊗ x̂1 + y1 ⊗ ŷ1.

2) We have H2(g) = Span
(
x̂1 ∧ ĥ1, ŷ1 ∧ ĥ1

)
.

Comment 2.4. Let us show that the Lie algebra out g, is not “too big”, i.e., Lemma 2.3 is
correct. The basis of the space of 0-degree 1-cochains is

{
h1 ⊗ ĥ1, x1 ⊗ x̂1, y1 ⊗ ŷ1

}
. We have

d
(
ah1 ⊗ ĥ1 + bx1 ⊗ x̂1 + cy1 ⊗ ŷ1

)
= (a+ b+ c)h1 ⊗ x̂1 ∧ ŷ1. (2.2)

For the linear combination to be a cocycle, the expression (2.2) should vanish, i.e., a+ b+ c = 0.
Besides, there are coboundaries of degree 0 because d(h1) = 0. Now, SuperLie is taking a basis
with a = b = 1, c = 0 and a = 0, b = c = 1. To have a symmetric answer, we’d take a basis with
a = b = 1, c = 0 and a = c = 1, b = 0, but the code SuperLie has different esthetic criteria.

Lemma 2.5. For any p and g = hei(0|2), for a basis of H1(g; g) we can take the following
derivations:

c10 = h1 ⊗ ĥ1 − x1 ⊗ x̂1, c20 = −x1 ⊗ x̂1 + y1 ⊗ ŷ1,

and hence out g ≃

{
oΠ(2)⊕Kz for p ̸= 2,

o
(1)
Π (2)⊕Kz for p = 2.

We have H2(g) = Span
(
x̂1 ∧ ĥ1, ŷ1 ∧ ĥ1

)
.

Lemma 2.6. Let g = osp(1|2). Let p > 3. Then, H1(g; g) = 0 and H2(g) = 0.
Let p = 3.

a) For g = osp(1|2), for a basis of H1(g; g) we can take the following odd derivations (recall
convention (1.1) and that x2 := x21, y2 := y21)

c−3 = −y1 ⊗ x̂2 + y2 ⊗ x̂1.

b) H2(g) = 0.

Let p = 2. (Recall that for p = 2, there is no osp(1|2), there are two non-isomorphic Lie
superalgebras ooB(1|2) for B = IΠ ∼ ΠΠ and B = II ∼ ΠI.)

Lemma 2.7. For g = oo
(1)
IΠ(1|2) and ooIΠ(1|2), as well as for oo

(1)
II (1|2) and ooII(1|2), we have

H1(g; g) = 0 and H2(g) = 0.

One might expect the same result for oo
(1)
IΠ(1|2) as for o

(1)
Π (3). Lemma 2.7 is, however, correct:

let us prove it.

Proof. There is one coboundary: x1⊗ x̂1+y1⊗ ŷ1. The space of cochains is 5-dimensional, that

of cocycles is equal to 2. For o
(1)
Π (3), the situation is different (first, the dimensions are smaller):

the space of cochains is 3-dimensional, and that of cocycles is equal to 1. The coboundary, which
is also x1 ⊗ x̂1 + y1 ⊗ ŷ1, reduces the answer to 0. ■

For g = sl(2), we have H1(g; g) = 0 and H2(g) = 0 for any p ̸= 2, see Section 1.5.2.
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2.2 Rank 2: sl(3) and gl(3) for p = 3; sl(1|2) for any p;
br(2; ε) and brj(2; 3) for p = 3; brj(2; 5) for p = 5

Lemma 2.8. Let p ̸= 2 and g = sl(1|2). We have H1(g; g) = 0 and H2(g) = 0.

For p = 2, we have H1(g; g) = 0 and the space H2(g) is spanned by x̂1 ∧ x̂1 and x̂3 ∧ x̂3.

Proof. For p ̸= 2: same arguments as in [24]; for p = 2 we used SuperLie. ■

Conjecture 2.9. For p = 2, if x ∈ g1̄ and x2 = 0, then x̂ ∧ x̂ is a nontrivial cocycle, see cases
gl(a|a+ pk) in Section 2.3.

Lemma 2.10. Let p = 3.

(a1) For g = gl(3), for a basis of H1(g; g) we can take the following derivation:

c0 = 2h1 ⊗ D̂3 + h2 ⊗ D̂3,

where D3 denotes the grading operator, see Remark 1.2.

(a2) We have H2(gl(3)) = 0.

(b1) See [27, 34, 35]. For g = psl(3), for a basis of H1(g; g) we can take the following 7
derivations (recall convention (1.1))

deg = −3: c1−3 = y1 ⊗ x̂3 + y3 ⊗ x̂1, c2−3 = y2 ⊗ x̂3 + y3 ⊗ x̂2,
deg = 0: c10 = 2x2 ⊗ x̂1 + y1 ⊗ ŷ2, c20 = 2x1 ⊗ x̂2 + y2 ⊗ ŷ1,

c30 = x1 ⊗ x̂1 + 2x2 ⊗ x̂2 + 2y1 ⊗ ŷ1 + y2 ⊗ ŷ2.

(b2) See [34, 35]. We have dimH2(psl(3)) = 7, for a basis we can take the following cocycles
(recall convention (1.1))

deg = −3: c1−3 = x̂2 ∧ x̂3, c2−3 = x̂1 ∧ x̂3;
deg = 0: c10 = x̂1 ∧ ŷ2, c20 = x̂2 ∧ ŷ2 − x̂1 ∧ ŷ1, c30 = x̂2 ∧ ŷ1.

2.2.1 Clarifying an incredible result

We precede the proof of Lemma 2.10 with these remarks: they are for those who, like the authors
themselves at first, can not believe the claims in headings a) of Lemma 2.10 are true.

(a1) It is doubtful because “gl can not have outer derivations by definition”. The expression
in quotation marks is not true unless p = 0, see Statement 1.1. Since the Cartan matrix of gl(3)
for p = 3 is not invertible, there is a grading operator D, see [12]. For such a D one can take,
e.g., D3 = 2E1,1 + E2,2 + E3,3, or simply E1,1, both of which, of course, belong to the algebra,
but are outer derivations from the cohomological point of view.

(a2) Having read the arXiv version of this paper, A. Dzhumadildaev and P. Zusmanovich
wrote to us that they doubted claims of item (a2) of Lemma 2.10 because of the following
fact (due to J. Dixmier, and in a more general setting of a subalgebra i, not an ideal, due to
A. Dzhumadildaev; for a proof in characteristic 0 and references, see [63]):

Fact 2.11. Let g = i⊂+Kx. Then,

Hm(g;V ) = Hm(i;V )⊕Hm−1(i;V ) ∧ x. (2.3)
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Proof of equality (2.3) in the particular case i = sl(n) ⊂ g = gl(n) is supposed to be as follows.
Let ix be the inner multiplication of cochains by x ∈ gl(n), and ψ a degree m−1 cocycle of sl(n)
with values in V . Since the trace tr is a 1-cocycle of gl(n), it follows that tr∧ψ is a cocycle
of gl(n) of degree m. Therefore, (since the codifferential is a derivation) any degree m cocycle α
of gl(n) can be decomposed into a sum of cocycles

α = β + γ, where ixβ = 0 and ixγ induces a degree m− 1 cocycle of sl(n).

Therefore, α induces a degree m cocycle of sl(n). Hence, α = tr∧i1nγ.
However, this proof works if x = 1n complements sl(n) to gl(n), but fails if p divides n.

Proof of Lemma 2.10. Recall that p = 3.

(a1) The grading deg(Chevalley generator) = ±1 of both sl and gl yields a grading of depth 4
of C1(sl(3); gl(3)). No 1-cocycle exists in degrees −4 and −3. In degree −2, we have just one
1-cocycle (of weight (−1,−1,−1)):

2y2 ⊗ x̂1 + h1 ⊗ x̂3 + h2 ⊗ x3 + y3 ⊗ ĥ1 + y3 ⊗ ĥ2 + y1 ⊗ x̂2.

This 1-cocycle is trivial, because it is just d(y3), where y3 = [y1, y2]. In degree −1 we have the
following two cocycles

(−2, 1,−1) : 2x2 ⊗ x̂3 + 2y3 ⊗ ŷ2 + h1 ⊗ x̂1 + y1 ⊗ ĥ1 + y1 ⊗ ĥ2,

(1,−2, 0) : h2 ⊗ x̂2 + y2 ⊗ ĥ1 + y2 ⊗ ĥ2 + x1 ⊗ x̂3 + y3 ⊗ ŷ1.

These 1-cocycles are trivial because they are the coboundaries of y1 and y2, respectively. In
degree 0, we have the following 1-cocycles

(0, 0, 0) : 2x2 ⊗ x̂2 + 2y1 ⊗ ŷ1 + x1 ⊗ x̂1 + y2 ⊗ ŷ2,
(0, 0, 0) : 2x3 ⊗ x̂3 + 2x1 ⊗ x̂1 + y1 ⊗ ŷ1 + y3 ⊗ ŷ3.

These cocycles are coboundaries of h2 − h3 and 2h3, respectively. Hence, H
1(sl(3); gl(3)) = 0.

(a2) Observe that H2(sl(3)) is spanned by (the classes of) the following cocycles:

deg = −3: x̂1 ∧ x̂3, x̂2 ∧ x̂3,
deg = 0: x̂1 ∧ ŷ2, x̂2 ∧ ŷ1.

Let us verify that H2(gl(3)) = 0, although H2(sl(3)) ̸= 0. It is easy to check manually that
the following list exhausts all 2-cochains of sl(3) and of gl(3) with trivial coefficients:

(−2, 1, 1) : Ê1,2 ∧ Ê1,3, (1,−2, 1) : Ê2,3 ∧ Ê2,1,

(−1,−1, 2) : Ê2,3 ∧ Ê1,3, (1, 1,−2) : Ê3,2 ∧ Ê3,1,

(−1, 2,−1) : Ê1,2 ∧ Ê3,2, (2,−1,−1) : Ê2,1 ∧ Ê3,1.

For gl(3), there are no 1-cochains of these weights, so it suffices to check if the above cochains
are closed cocycles. For example

d
(
Ê1,2 ∧ Ê1,3

)
= −1̂3 ∧ Ê1,2 ∧ Ê1,3.

Evidently, this is not zero on gl(3), but vanishes on sl(3). ■
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2.3 Lie superalgebra gl(a|a + kp) and its simple relatives (A. Krutov)

Let us collect here all these cases of rank ≤ 8. For the elements of Chevalley basis, see [13,
Section 9.2].

Let p = 5: For g = gl(5), the space H1(g; g) is spanned by

c0 = (4h1 + 3h2 + 2h3 + h4)⊗ D̂

and H2(g) = 0.
For g = psl(5), the space H1(g; g) is spanned by

c0 = 4x2 ⊗ x̂2 + x3 ⊗ x̂3 + 4x5 ⊗ x̂5 + x7 ⊗ x̂7 + y2 ⊗ ŷ2 + 4y3 ⊗ ŷ3 + y5 ⊗ ŷ5 + 4y7 ⊗ ŷ7

and the space H2(g) is spanned by

c0 = x̂2 ∧ ŷ2 + 4x̂3 ∧ ŷ3 + 4x̂5 ∧ ŷ5 + x̂7 ∧ ŷ7.

For psl(1|6), we see that H2(g) is spanned by

c0 = x̂4 ∧ ŷ4 + 4x̂5 ∧ ŷ5 + 4x̂9 ∧ ŷ9 + x̂11 ∧ ŷ11 + x̂13 ∧ ŷ13 + x̂16 ∧ ŷ16

and H1(g; g) is spanned by

c0 = x2 ⊗ x̂2 + 4x3 ⊗ x̂3 + 4x7 ⊗ x̂7 + 4x9 ⊗ x̂9 + 4x14 ⊗ x̂14 + 4x18 ⊗ x̂18
+ 4y2 ⊗ ŷ2 + y3 ⊗ ŷ3 + y7 ⊗ ŷ7 + y9 ⊗ ŷ9 + y14 ⊗ ŷ14 + y18 ⊗ ŷ18.

For g = gl(2|7), we see that H2(g) = 0 and H1(g; g) is spanned by

c0 = (4h1 + 3h2 + h3 + 4h5 + 3h6 + 2h7 + h8)⊗ D̂.

For g = psl(2|7), we see that H2(g) is spanned by

c0 = 4x̂5 ∧ ŷ5 + x̂6 ∧ ŷ6 + x̂12 ∧ ŷ12 + 4x̂14 ∧ ŷ14 + 4x̂18 ∧ ŷ18 + x̂21 ∧ ŷ21
+ 4x̂23 ∧ ŷ23 + x̂27 ∧ ŷ27,

and H1(g; g) is spanned by

c0 = x4 ⊗ x̂4 + 4x5 ⊗ x̂5 + x11 ⊗ x̂11 + 4x13 ⊗ x̂13 + 4x17 ⊗ x̂17 + 4x20 ⊗ x̂20
+ 4x22 ⊗ x̂22 + 4x26 ⊗ x̂26 + 4y4 ⊗ ŷ4 + y5 ⊗ ŷ5 + 4y11 ⊗ ŷ11 + y13 ⊗ ŷ13
+ y17 ⊗ ŷ17 + y20 ⊗ ŷ20 + y22 ⊗ ŷ22 + y26 ⊗ ŷ26.

Let p = 3:
For gl(3) and psl(3), see Section 2.10.
For gl(6) and psl(6), see Section 2.17.
For g = gl(1|4), the space H1(g; g) is spanned by

c0 = 2h1 ⊗ D̂ + 2h3 ⊗ D̂ + h4 ⊗ D̂

and H2(g) = 0.
For g = psl(1|4), the space H1(g; g) is spanned by (see Lemma 2.22)

c0 = x2 ⊗ x̂2 + 2x3 ⊗ x̂3 + 2x5 ⊗ x̂5 + 2x7 ⊗ x̂7 + 2y2 ⊗ ŷ2 + y3 ⊗ ŷ3 + y5 ⊗ ŷ5 + y7 ⊗ ŷ7

and H2(g) is spanned by

c0 = 2x̂3 ∧ ŷ3 + x̂4 ∧ ŷ4 + x̂6 ∧ ŷ6 + x̂8 ∧ ŷ8.
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For g = gl(1|7), we see that H2(g) = 0 and H1(g; g) is spanned by

c0 = (2h1 + 2h3 + h4 + 2h6 + h7)⊗ D̂.

For g = psl(1|7), we see that H2(g) is spanned by

c0 = 2x̂4 ∧ ŷ4 + x̂5 ∧ ŷ5 + x̂10 ∧ ŷ10 + 2x̂12 ∧ ŷ12 + 2x̂15 ∧ ŷ15 + x̂18 ∧ ŷ18 + 2x̂19 ∧ ŷ19,

and H1(g; g) is spanned by

c0 = x3 ⊗ x̂3 + 2x4 ⊗ x̂4 + x9 ⊗ x̂9 + 2x11 ⊗ x̂11 + 2x14 ⊗ x̂14 + 2x17 ⊗ x̂17 + 2x22 ⊗ x̂22
+ 2y3 ⊗ ŷ3 + y4 ⊗ ŷ4 + 2y9 ⊗ ŷ9 + y11 ⊗ ŷ11 + y14 ⊗ ŷ14 + y17 ⊗ ŷ17 + y22 ⊗ ŷ22.

For g = gl(2|5), we see that H2(g) = 0 and H1(g; g) is spanned by

c0 = (2h1 + h2 + h3 + 2h5 + h6)⊗ D̂.

For g = psl(2|5), we see that H2(g) is spanned by

c0 = x̂4 ∧ ŷ4 + 2x̂5 ∧ ŷ5 + 2x̂9 ∧ ŷ9 + x̂11 ∧ ŷ11 + 2x̂13 ∧ ŷ13 + x̂16 ∧ ŷ16,

and H1(g; g) is spanned by

c0 = x3 ⊗ x̂3 + 2x4 ⊗ x̂4 + 2x8 ⊗ x̂8 + 2x10 ⊗ x̂10 + 2x12 ⊗ x̂12 + 2x15 ⊗ x̂15
+ 2y3 ⊗ ŷ3 + y4 ⊗ ŷ4 + y8 ⊗ ŷ8 + y10 ⊗ ŷ10 + y12 ⊗ ŷ12 + y15 ⊗ ŷ15.

For gl(3|3) and psl(3|3), see Section 2.17.
For g = gl(3|6), we see that H2(g) = 0, and H1(g; g) is spanned by

c0 = (2h1 + h2 + 2h4 + h5 + 2h7 + h8)⊗ D̂.

For g = psl(3|6), we see that H2(g) is spanned by

c0 = 2x̂1 ∧ ŷ1 + x̂2 ∧ ŷ2 + 2x̂10 ∧ ŷ10 + x̂17 ∧ ŷ17 + 2x̂23 ∧ ŷ23 + x̂28 ∧ ŷ28
+ 2x̂32 ∧ ŷ32 + x̂35 ∧ ŷ35,

and H1(g; g) is spanned by

c0 = 2x3 ⊗ x̂3 + 2x4 ⊗ x̂4 + 2x10 ⊗ x̂10 + 2x12 ⊗ x̂12 + 2x16 ⊗ x̂16 + 2x19 ⊗ x̂19
+ 2x25 ⊗ x̂25 + 2x30 ⊗ x̂30 + y3 ⊗ ŷ3 + y4 ⊗ ŷ4 + y10 ⊗ ŷ10 + y12 ⊗ ŷ12
+ y16 ⊗ ŷ16 + y19 ⊗ ŷ19 + y25 ⊗ ŷ25 + y30 ⊗ ŷ30.

Let p = 2:

For gl(4) and psl(4) ≃ F(h
(1)
Π (0|4)) (for this exceptional case, see Sections 2.17 and 2.5).

For gl(6) and psl(6), see Section 2.25.
For g = psl(8), the space H2(g) is spanned by

c0 = x̂4 ∧ ŷ4 + x̂5 ∧ ŷ5 + x̂10 ∧ ŷ10 + x̂12 ∧ ŷ12 + x̂15 ∧ ŷ15 + x̂18 ∧ ŷ18 + x̂19 ∧ ŷ19,

and H1(g; g) is spanned by

c0 = x4 ⊗ x̂4 + x5 ⊗ x̂5 + x10 ⊗ x̂10 + x12 ⊗ x̂12 + x15 ⊗ x̂15 + x18 ⊗ x̂18 + x19 ⊗ x̂19
+ y4 ⊗ ŷ4 + y5 ⊗ ŷ5 + y10 ⊗ ŷ10 + y12 ⊗ ŷ12 + y15 ⊗ ŷ15 + y18 ⊗ ŷ18 + y19 ⊗ ŷ19.
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For g = gl(1|3), we see that H2(g) is spanned by x̂i ∧ x̂i for all i such that xi is odd, and

H1(g; g) = K
[
(h1 + h3)⊗ D̂

]
.

For g = psl(1|3), we see that H2(g) is spanned by (in the standard format of gl(1|3), the
only simple root, the one corresponding to x1, is odd; the other odd positive root vectors are x4
and x6:

c−6 = x̂6 ∧ x̂6, c−4,1 = x̂4 ∧ x̂4, c−4,2 = x̂2 ∧ x̂6 + x̂4 ∧ x̂5, c−2,1 = x̂1 ∧ x̂1,
c−2,2 = x̂6 ∧ ŷ2 + x̂1 ∧ x̂3, c0,1 = x̂1 ∧ ŷ3 + x̂4 ∧ ŷ5, c0,2 = x̂3 ∧ ŷ1 + x̂5 ∧ ŷ4,
c0,3 = x̂2 ∧ ŷ2 + x̂3 ∧ ŷ3 + x̂4 ∧ ŷ4.

For gl(1|5) and psl(1|5), see Section 2.25.

For g = gl(1|7), we see that H2(g) is spanned by x̂i ⊗ x̂i for all i such that xi is odd, and

H1(g; g) = K
[
(h1 + h3 + h5 + h7)⊗ D̂

]
.

For g = psl(1|7), we see that H2(g) is spanned by

x̂i ∧ x̂i for all i such that xi is odd,

c0 = x̂4 ∧ ŷ4 + x̂5 ∧ ŷ5 + x̂10 ∧ ŷ10 + x̂12 ∧ ŷ12 + x̂15 ∧ ŷ15 + x̂18 ∧ ŷ18 + x̂19 ∧ ŷ19,

and H1(g; g) is spanned by

c0 = x4 ⊗ x̂4 + x5 ⊗ x̂5 + x10 ⊗ x̂10 + x12 ⊗ x̂12 + x15 ⊗ x̂15 + x18 ⊗ x̂18 + x19 ⊗ x̂19
+ y4 ⊗ ŷ4 + y5 ⊗ ŷ5 + y10 ⊗ ŷ10 + y12 ⊗ ŷ12 + y15 ⊗ ŷ15 + y18 ⊗ ŷ18 + y19 ⊗ ŷ19.

For gl(2|2) and psl(2|2) ≃ h
(1)
Π (0|4) (for this exceptional case, see Sections 2.17 and 2.5).

For gl(2|4) and psl(2|4), see Section 2.25.

For g = gl(2|6), we see that H2(g) is spanned by x̂i ⊗ x̂i for all i such that xi is odd, and

H1(g; g) = K
[
(h1 + h3 + h5 + h7)⊗ D̂

]
.

For g = psl(2|6), we see that H2(g) is spanned by

x̂i ∧ x̂i for all i such that xi is odd,

c0 = x̂4 ∧ ŷ4 + x̂5 ∧ ŷ5 + x̂10 ∧ ŷ10 + x̂12 ∧ ŷ12 + x̂15 ∧ ŷ15 + x̂18 ∧ ŷ18 + x̂19 ∧ ŷ19,

and H1(g; g) is spanned by

c0 = x4 ⊗ x̂4 + x5 ⊗ x̂5 + x10 ⊗ x̂10 + x12 ⊗ x̂12 + x15 ⊗ x̂15 + x18 ⊗ x̂18 + x19 ⊗ x̂19
+ y4 ⊗ ŷ4 + y5 ⊗ ŷ5 + y10 ⊗ ŷ10 + y12 ⊗ ŷ12 + y15 ⊗ ŷ15 + y18 ⊗ ŷ18 + y19 ⊗ ŷ19.

For g = gl(3|5), we see that H2(g) is spanned by x̂i ⊗ x̂i for all i such that xi is odd, and

H1(g; g) = K
[
(h1 + h3 + h5 + h7)⊗ D̂

]
.

For g = psl(3|5), we see that H2(g) is spanned by

x̂i ∧ x̂i for all i such that xi is odd,

c0 = x̂4 ∧ ŷ4 + x̂5 ∧ ŷ5 + x̂10 ∧ ŷ10 + x̂12 ∧ ŷ12 + x̂15 ∧ ŷ15 + x̂18 ∧ ŷ18 + x̂19 ∧ ŷ19,
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and H1(g; g) is spanned by

c0 = x4 ⊗ x̂4 + x5 ⊗ x̂5 + x10 ⊗ x̂10 + x12 ⊗ x̂12 + x15 ⊗ x̂15 + x18 ⊗ x̂18 + x19 ⊗ x̂19
+ y4 ⊗ ŷ4 + y5 ⊗ ŷ5 + y10 ⊗ ŷ10 + y12 ⊗ ŷ12 + y15 ⊗ ŷ15 + y18 ⊗ ŷ18 + y19 ⊗ ŷ19.

For g = gl(4|4), we see that H2(g) is spanned by x̂i ⊗ x̂i for all i such that xi is odd and

H1(g; g) = K
[
(h1 + h3 + h5 + h7)⊗ D̂

]
.

For g = psl(4|4), we see that H2(g) is spanned by

x̂i ∧ x̂i for all i such that xi is odd,

c0 = x̂4 ∧ ŷ4 + x̂5 ∧ ŷ5 + x̂10 ∧ ŷ10 + x̂12 ∧ ŷ12 + x̂15 ∧ ŷ15 + x̂18 ∧ ŷ18 + x̂19 ∧ ŷ19,

and H1(g; g) is spanned by

c0 = x4 ⊗ x̂4 + x5 ⊗ x̂5 + x10 ⊗ x̂10 + x12 ⊗ x̂12 + x15 ⊗ x̂15 + x18 ⊗ x̂18 + x19 ⊗ x̂19
+ y4 ⊗ ŷ4 + y5 ⊗ ŷ5 + y10 ⊗ ŷ10 + y12 ⊗ ŷ12 + y15 ⊗ ŷ15 + y18 ⊗ ŷ18 + y19 ⊗ ŷ19.

Lemma 2.12. Let p = 3. Let g = brj(2; 3) with Cartan matrix(
0 −1
−2 1

)

and basis

x1, x2, x3 = [x1, x2], x4 = [x2, x2], x5 = [x2, [x1, x2]], x6 = [[x1, x2], [x2, x2]],

x7 = [[x2, x2], [x2, [x1, x2]]], x8 = [[x2, [x1, x2]], [x2, [x1, x2]]].

(a1) For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

c−3 = x1 ⊗ x̂6 + x3 ⊗ x̂7 + 2y2 ⊗ x̂4 + y4 ⊗ x̂2 + 2y6 ⊗ ŷ1 + y7 ⊗ ŷ3.

(a2) We have H2(g) = 0.

Lemma 2.13. Let p = 3. Let g = br(2; ε), where ε ̸= 0, with Cartan matrix(
2 −1
−2 1− ε

)

and basis

x1, x2, x3 = [x1, x2], x4 = − ad2x2
(x1),

Then, H1(g; g) = 0 and H2(g) = 0.

Lemma 2.14. Let p > 3. For g = sl(1|2), osp(3|2), and osp(1|4), we have H1(g; g) = 0 and
H2(g) = 0.

Proof. We use the arguments of [24]. ■

Lemma 2.15. Let p = 5. For g = brj(2; 5), we have H1(g; g) = 0 and H2(g) = 0.
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2.4 Rank 3: psl(4) and gl(4) for p = 2; ag(2) for p > 3; br(3) and g(1, 6),
g(2, 3) and g(1)(2, 3)/c for p = 3; wk(3; a) and bgl(3; a) for p = 2

Lemma 2.16. Let p = 2. Let g = wk(3;α) and g = bgl(3;α) with Cartan matrix0̄ α 0

α 0̄ 1

0 1 0̄


and basis

x1, x2, x3, x4 = [x1, x2], x5 = [x2, x3], x6 = [x3, [x1, x2]], x7 = [[x1, x2], [x2, x3]]. (2.4)

(a1) For a basis of H1(g; g) we can take the following derivation, where D4 is an outer derivation
(see Remark 1.2):

c0 = h1 ⊗ D̂4 + αh3 ⊗ D̂4.

(a2) We have H2(g) = 0.

(b1) For g = wk(3; a)/c and bgl(3; a)/c, we have dimH1
(
g(1); g(1)

)
= 1 and der g(1) = g.

(b2) The space H2(g(1)) is spanned by

c0 = x̂1 ∧ ŷ1 + αx̂4 ∧ ŷ4 + αx̂6 ∧ ŷ6 + α(α+ 1)x̂7 ∧ ŷ7.

Lemma 2.17.

(a1) Let p = 2. For g = gl(4), for a basis of H1(g; g) we can take the following derivation
where D4 is an outer derivation (see Remark 1.2):

c0 = h1 ⊗ D̂4 + h3 ⊗ D̂4.

(a2) We have H2(gl(4)) = 0.

(b1) Let p > 2. For g = gl(2|2), for a basis of H1(g; g) we can take the following derivation,
where D4 is an outer derivation (see Remark 1.2):

c0 = −h1 ⊗ D̂4 + (p− 2)h2 ⊗ D̂4 + h3 ⊗ D̂4.

(b2) Let p > 2. We have H2(gl(2|2)) = 0.

(c1) For any p > 2, for g = gl(1|3), for a basis of H1(g; g) we can take the following derivatives,
where D4 is an outer derivation (see Remark 1.2):

c0 = (p− 3)h1 ⊗ D̂4 + 2h2 ⊗ D̂4 + h3 ⊗ D̂4 + 2D4 ⊗ D̂4.

(c2) For any p > 2, we have H2(gl(1|3)) = 0.
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2.5 psl(2|2) ≃ h
(1)
Π (0|4)

Recall that the space of Poisson superalgebra poΠ(0|2n) is the Grassmann algebra generated by
ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηn) with the Poisson bracket

{f, g} := −(−1)p(f)
∑(

∂f

∂ξi

∂g

∂ηi
+
∂f

∂ηi

∂g

∂ξi

)
.

The Hamiltonian Lie superalgebra is hΠ(0|2n) := poΠ(0|2n)/c, where c is spanned by constants.

An isomorphism psl(2|2) ≃ h
(1)
Π (0|4) is explicitly given on generators by the following corre-

spondences (other elements are obtained by bracketing): take all basis monomials, except for 1
and ξ1ξ2η1η2:

η1 ←→E3,2, ξ1η2←→E2,1, ξ1ξ2←→E4,3, ξ1ξ2η2 ←→E2,3,

ξ2η1←→E1,2, η1η2←→E3,4, 1 ←→ I, ξ1ξ2η1η2←→E2,2.

Lemma 2.18. In this Lemma we use convention (1.1) and F denotes the desuperization functor
which forgets the squaring if p = 2. Let p = 2.

(Aa) The space H1
(
h
(1)
Π (0|4); h(1)Π (0|4)

)
is spanned by the 7 cocycles (in formula (2.5) the super-

script denotes the weight and the subscript the degree):

D−1 = ξ1 ⊗
(
ξ̂1ξ2η2

)
+ ξ2 ⊗

(
ξ̂1ξ2η1

)
+ η1 ⊗

(
ξ̂2η1η2

)
+ η2 ⊗

(
ξ̂1η1η2

)
,

D−2,0
0 = η1 ⊗

(
ξ̂1
)
+ ξ2η1 ⊗

(
ξ̂1ξ2

)
+ η1η2 ⊗

(
ξ̂1η2

)
+ ξ2η1η2 ⊗

(
ξ̂1ξ2η2

)
,

D0,−2
0 = η2 ⊗

(
ξ̂2
)
+ ξ1η2 ⊗

(
ξ̂1ξ2

)
+ η1η2 ⊗

(
ξ̂2η1

)
+ ξ1η1η2 ⊗

(
ξ̂1ξ2η1

)
,

D0,0
0 = ξ2 ⊗

(
ξ̂2
)
+ η1 ⊗

(
η̂1
)
+ ξ1η2 ⊗

(
ξ̂1η2

)
+ ξ2η1 ⊗

(
ξ̂2η1

)
+ ξ1ξ2η2 ⊗

(
ξ̂1ξ2η2

)
+ ξ1η1η2 ⊗

(
ξ̂1η1η2

)
. (2.5)

(Ab) The space H2
(
h
(1)
Π (0|4)

)
is spanned by the 15 cocycles (2.6) and (2.7)

c10,−2 =
(
ξ̂2
)
∧
(
ξ̂1ξ2η1

)
+
(
ξ̂1ξ2

)
∧
(
ξ̂2η1

)
,

c1−2,0 =
(
ξ̂1
)
∧
(
ξ̂1ξ2η2

)
+
(
ξ̂1ξ2

)
∧
(
ξ̂1η2

)
,

c10,0 =
(
ξ̂1
)
∧
(
η̂1
)
+
(
ξ̂2
)
∧
(
η̂2
)
,

c20,0 =
(
ξ̂1
)
∧
(
ξ̂2η1η2

)
+
(
ξ̂2
)
∧
(
ξ̂1η1η2

)
+
(
ξ̂1ξ2

)
∧
(
η̂1η2

)
,

c30,0 =
(
ξ̂1ξ2η1

)
∧
(
ξ̂1η1η2

)
+
(
ξ̂1ξ2η2

)
∧
(
ξ̂2η1η2

)
, (2.6)

c2−2,0 =
(
ξ̂1
)2
, c3−2,0 =

(
ξ̂1ξ2η2

)2
,

c20,−2 =
(
ξ̂2
)2
, c30,−2 =

(
ξ̂1ξ2η1

)2
. (2.7)

(B) The non-isomorphic double extensions corresponding to the above outer derivations and
central extensions are the three Lie superalgebras described in [3]: gl(2|2), po(0|4), and one
more, denoted p̃o(0|4); for further clarifications, see [21].

(Ca) Let g = psl(4) ≃ F
(
h
(1)
Π (0|4)

)
. For a basis of H1(g; g) we can take the following derivations

and the corresponding subalgebra of der g generated by adding just one outer derivation
to the inner ones is indicated on the right if we can identify it (recall that a ⋉ b denotes
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a semi-direct sum in which a is an ideal):

c−4 = y2 ⊗ x̂6 + y4 ⊗ x̂5 + y5 ⊗ x̂4 + y6 ⊗ x̂2

c−2 = x2 ⊗ x̂6 + y1 ⊗ x̂3 + y3 ⊗ x̂1 + y6 ⊗ ŷ2 F(hΠ(0|4))
c10 = x3 ⊗ x̂1 + x5 ⊗ x̂4 + y1 ⊗ ŷ3 + y4 ⊗ ŷ5
c20 = x1 ⊗ x̂3 + x4 ⊗ x̂5 + y3 ⊗ ŷ1 + y5 ⊗ ŷ4
c30 = x2 ⊗ x̂2 + x3 ⊗ x̂3 + x4 ⊗ x̂4 + y2 ⊗ ŷ2

+ y3 ⊗ ŷ3 + y4 ⊗ ŷ4 pgl(4) ≃ F
(
h
(1)
Π (0|4)⋉KE

)
(Cb) The nontrivial central extensions of psl(4): the right-most column contains the description

of the result when we can identify the algebra; the independent cocycles are as follows:

c−4 = x̂2 ∧ x̂6 + x̂4 ∧ x̂5
c−2 = x̂1 ∧ x̂3 + x̂6 ∧ ŷ2 F

(
po(1)(0|4)

)
= po(1)(4;1)

c10 = x̂1 ∧ ŷ3 + x̂4 ∧ ŷ5
c20 = x̂3 ∧ ŷ1 + x̂5 ∧ ŷ4
c30 = x̂2 ∧ ŷ2 + x̂3 ∧ ŷ3 + x̂4 ∧ ŷ4 sl(4)

(2.8)

Lemma 2.19. For any p ̸= 2 (for p = 2, see Section 3.3.1), we have the following (recall
convention (1.1)).

(a1) Let g = psl(2|2). For a basis of H1(g; g) we can take the following derivations (recall
convention (1.1))

c−4 = −y2 ⊗ x̂6 + y4 ⊗ x̂5 + y5 ⊗ x̂4 − y6 ⊗ x̂2,
c0 = −x2 ⊗ x̂2 − x3 ⊗ x̂3 − x4 ⊗ x̂4 + y2 ⊗ ŷ2 + y3 ⊗ ŷ3 + y4 ⊗ ŷ4

computed for the Cartan matrix 2 −1 0

−1 0 1

0 −1 2


and the basis

x1, x2, x3, x4 = [x1, x2], x5 = [x2, x3], x6 = [x3, [x1, x2]].

So der g ≃ osp−1(4|2), see formula (3.2).

(a2) For a basis of H2(psl(2|2)) we can take

x̂2 ∧ ŷ2 + x̂3 ∧ ŷ3 − x̂4 ∧ ŷ4, ŷ2 ∧ ŷ6 + ŷ4 ∧ ŷ5, x̂2 ∧ x̂6 + x̂4 ∧ x̂5;

the central extension is, clearly, osp0(4|2), see formula (3.2).

Lemma 2.20. Let p = 3.

(a1) For g = g(2, 3) with Cartan matrix 2 −1 −1
−1 2 −1
−1 −1 0
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and basis

x1, x2, x3, x4 = [x1, x2], x5 = [x1, x3], x6 = [x2, x3], x7 = [x3, [x1, x2]],

x8 = [[x1, x2], [x1, x3]], x9 = [[x1, x2], [x2, x3]], x10 = [[x1, x2], [x3, [x1, x2]]],

x11 = [[x3, [x1, x2]], [x3, [x1, x2]]]

for a basis of H1(g; g) we can take the following derivation, whereD4 is an outer derivation,
see Remark 1.2:

c0 = −h1 ⊗ D̂4 + h2 ⊗ D̂4.

(a2) We have H2(g) = 0.

(b1) For g = bj := g(2, 3)(1)/c, for a basis of H1(g; g) we can take the following derivations
(recall convention (1.1))

deg = −3: c1−3 = 2x3 ⊗ x̂8 + x6 ⊗ x̂10 + y1 ⊗ x̂4 + y4 ⊗ x̂1 + 2y8 ⊗ ŷ3 + y10 ⊗ ŷ6,
c2−3 = x3 ⊗ x̂9 + x5 ⊗ x̂10 + 2y2 ⊗ x̂4 + 2y4 ⊗ x̂2 + y9 ⊗ ŷ3 + y10 ⊗ ŷ5;

deg = 0: c10 = x2 ⊗ x̂1 + 2x6 ⊗ x̂5 + 2x9 ⊗ dx8 + 2y1 ⊗ ŷ2 + y5 ⊗ ŷ6 + y8 ⊗ ŷ9,
c20 = x1 ⊗ x̂1 + 2x2 ⊗ x̂2 + 2x5 ⊗ dx5 + x6 ⊗ x̂6 + 2x8 ⊗ x̂8 + x9 ⊗ x̂9

+ 2y1 ⊗ ŷ1 + y2 ⊗ ŷ2 + y5 ⊗ ŷ5 + 2y6 ⊗ ŷ6 + y8 ⊗ ŷ8 + 2y9 ⊗ ŷ9,
c30 = x1 ⊗ x̂2 + 2x5 ⊗ x̂6 + 2x8 ⊗ x̂9 + 2y2 ⊗ ŷ1 + y6 ⊗ ŷ5 + y9 ⊗ ŷ8.

(b2) We have dimH2(g) = 7; for a basis we can take the following cocycles (recall conven-
tion (1.1))

deg = −3: c1−3 = 2x̂1 ∧ x̂4 + x̂8 ∧ ŷ3 + x̂10 ∧ ŷ6,
c2−3 = x̂2 ∧ x̂4 + 2x̂9 ∧ ŷ3 + x̂10 ∧ ŷ5,

deg = 0: c10 = 2x̂1 ∧ ŷ2 + x̂5 ∧ ŷ6 + x̂8 ∧ ŷ9,
c20 = 2x̂1 ∧ ŷ1 + x2 ∧ ŷ2 + x̂5 ∧ ŷ5 + 2x̂6 ∧ ŷ6 + x̂8 ∧ ŷ8 + 2x̂9 ∧ ŷ9,
c30 = x̂2 ∧ ŷ1 + 2x̂6 ∧ ŷ5 + 2x̂9 ∧ ŷ8.

Lemma 2.21.

(a) For p ≥ 5 and g = ag(2), we have H1(g; g) = 0 and H2(g) = 0.

(b) For p = 3 and g = br(3), we have H1(g; g) = 0 and H2(g) = 0.

(c) For p ≥ 3 and g = g(1, 6), osp(1|6), osp(2|4), osp(3|4), osp(4|2), osp(5|2), sl(1|3), we have
H1(g; g) = 0 and H2(g) = 0.

2.6 Rank 4: sl(5) and gl(5) for p = 5; ab(3) for p > 3; g(3, 6), g(4, 3), g(3, 3)
and g(1)(3, 3)/c for p = 3; wk(4; a) and bgl(4; a) for p = 2

Lemma 2.22.

(a) For p = 2 and g = sl(1|4), sl(3|2), wk(4; a), we have H1(g; g) = 0 and H2(g) = 0.

(b) For p = 3 and g = g(4, 3), g(3, 6), we have H1(g; g) = 0 and H2(g) = 0.

(c) For p = 3 and g = osp(1|8), osp(2|6), osp(3|6), osp(4|4), osp(5|2), we have H1(g; g) = 0
and H2(g) = 0.
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For p = 3 and g = sl(1|4), we see that H1(g; g) is spanned by

x2 ⊗ x̂2 − x3 ⊗ x̂3 − x5 ⊗ x̂5 − x7 ⊗ x̂7 − y2 ⊗ ŷ2 + y3 ⊗ ŷ3 + y5 ⊗ ŷ5 + y7 ⊗ ŷ7,

where
0 −1 0 0

−1 2 −1 0

0 −1 2 −1
0 0 −1 2


and the basis

x1, x2, x3, x4, x5 = [x1, x2], x6 = [x2, x3], x7 = [x3, x4],

x8 = [x3, [x1, x2]], x9 = [x4, [x2, x3]], x10 = [[x1, x2], [x3, x4]].

For g = sl(2|3), we see that H2(g) = 0 and H1(g; g) is spanned by

−x2 ⊗ x̂2 − x3 ⊗ x̂3 + x5 ⊗ x̂5 − x7 ⊗ x̂7 + y2 ⊗ ŷ2 + y3 ⊗ ŷ3 − y5 ⊗ ŷ5 + y7 ⊗ ŷ7,

where the following Cartan matrix was used for computations
0 1 0 0

−1 0 1 0

0 −1 2 −1
0 0 −1 2


and the basis

x1, x2, x3, x4, x5 = [x1, x2], x6 = [x2, x3], x7 = [x3, x4],

x8 = [x3, [x1, x2]], x9 = [x4, [x2, x3]], x10 = [[x1, x2], [x3, x4]].

Lemma 2.23. Let p = 3.

(a1) Let g = g(3, 3) with the following Cartan matrix and basis
2 −1 0 0

−1 2 −1 0

0 −2 2 −1
0 0 1 0

 ,

x1, x2, x3, x4, x5 = [x1, x2], x6 = [x2, x3], x7 = [x3, x4],

x8 = [x3, [x1, x2]], x9 = [x3, [x2, x3]], x10 = [x4, [x2, x3]],

x11 = [x3, [x3, [x1, x2]]], x12 = [[x1, x2], [x3, x4]], x13 = [[x2, x3], [x3, x4]],

x14 = [[x2, x3], [x3, [x1, x2]]], x15 = [[x3, x4], [x3, [x1, x2]]],

x16 = [[x3, [x1, x2]], [x4, [x2, x3]]], x17 = [[x4, [x2, x3]], [x3, [x3, [x1, x2]]]].

For a basis of H1(g; g) we can take the following derivation, where D5 is an outer deriva-
tion, see Remark 1.2:

c0 = −h1 ⊗ D̂5 + h2 ⊗ D̂5 + h4 ⊗ D̂5.
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(a2) We have H2(g) = 0.

(b1) Let g = g(3, 3)(1)/c. For a basis of H1(g; g) we can take the following derivations (recall
convention (1.1))

c−8 = y4 ⊗ x̂17 + y7 ⊗ x̂16 + 2y10 ⊗ x̂15 + y12 ⊗ x̂13 + y13 ⊗ x̂12 + 2y15 ⊗ x̂10
+ y16 ⊗ x̂7 + y17 ⊗ x̂4,

c0 = 2x4 ⊗ x̂4 + 2x7 ⊗ x̂7 + 2x10 ⊗ x̂10 + 2x12 ⊗ x̂12 + 2x13 ⊗ x̂13 + 2x15 ⊗ x̂15
+ 2x16 ⊗ x̂16 + 2x17 ⊗ x̂17 + y4 ⊗ ŷ4 + y7 ⊗ ŷ7 + y10 ⊗ ŷ10 + y12 ⊗ ŷ12
+ y13 ⊗ ŷ13 + y15 ⊗ ŷ15 + y16 ⊗ ŷ16 + y17 ⊗ ŷ17.

(b2) For a basis of H2(g) we can take (the classes of) the following cocycles (recall conven-
tion (1.1))

c−8 = x̂4 ∧ x̂17 + x̂7 ∧ x̂16 + x̂10 ∧ x̂15 + x̂12 ∧ x̂13,
c0 = x̂4 ∧ ŷ4 + 2x̂7 ∧ ŷ7 + x̂10 ∧ ŷ10 + 2x̂12 ∧ ŷ12 + 2x̂13 ∧ ŷ13 + x̂15 ∧ ŷ15

+ 2x̂16 ∧ ŷ16 + x̂17 ∧ ŷ17.

Lemma 2.24. Let p = 5. For g = osp(1|8), osp(2|6), osp(3|6), osp(4|4), osp(5|2), we have
H1(g; g) = H2(g) = 0.

2.7 Rank 5: sl(6) and gl(6) for p = 2, 3; g(8, 3), g(2, 6)
and g(1)(2, 6)/c, el(5; 3) for p = 3; el(5; 5) for p = 5

Lemma 2.25. Let p = 2, g = gl(6) or its simple relative, or a superization.

(a) For g = gl(6), as well as g = gl(5|1), gl(4|2), gl(3|3), we have

H1(g; g) = K
[
h1 ⊗ D̂6 + h3 ⊗ D̂6 + h5 ⊗ D̂6

]
,

where D6 is an outer derivation, see Remark 1.2.

We have H2(g) = 0 for gl(6), whereas for its superizations, for a basis of H2(g) we can
take the following cocycles (recall convention (1.1))

gl(5|1) gl(4|2) gl(3|3)
deg = −10: x̂15 ∧ x̂15 x̂15 ∧ x̂15 x̂15 ∧ x̂15,
deg = −8: x̂13 ∧ x̂13 x̂13 ∧ x̂13, x̂14 ∧ x̂14 x̂13 ∧ x̂13, x̂14 ∧ x̂14,
deg = −6: x̂10 ∧ x̂10 x̂10 ∧ x̂10, x̂11 ∧ x̂11 x̂10 ∧ x̂10, x̂11 ∧ x̂11, x̂12 ∧ x̂12,
deg = −4: x̂6 ∧ x̂6 x̂7 ∧ x̂7, x̂6 ∧ x̂6 x̂7 ∧ x̂7, x̂8 ∧ x̂8,
deg = −2: x̂1 ∧ x̂1 x̂2 ∧ x̂2 x̂3 ∧ x̂3,

for the following Chevalley basis
⋆ 1 0 0 0

1 ⋆ 1 0 0

0 1 ⋆ 1 0

0 0 1 ⋆ 1

0 0 0 1 ⋆


x1, x2, x3, x4, x5, x6 = [x1, x2], x7 = [x2, x3], x8 = [x3, x4], x9 = [x4, x5],
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x10 = [x3, [x1, x2]], x11 = [x4, [x2, x3]], x12 = [x5, [x3, x4]], x13 = [[x1, x2], [x3, x4]],

x14 = [[x2, x3], [x4, x5]], x15 = [[x4, x5], [x3, [x1, x2]]].

Distribution of parities: For psl(5|1), we take {1̄, 0̄, 0̄, 0̄, 0̄}; for psl(4|2), we take
{0̄, 1̄, 0̄, 0̄, 0̄}; for psl(3|3), we take {0̄, 0̄, 1̄, 0̄, 0̄}.

(b) For g = psl(6), as well as for psl(5|1), psl(4|2), psl(3|3), for a basis of H1(g; g) we can
take the following derivation turning psl into pgl:

c0 = x3 ⊗ x̂3 + x4 ⊗ x̂4 + x7 ⊗ x̂7 + x9 ⊗ x̂9 + x10 ⊗ x̂10 + y3 ⊗ ŷ3 + y4 ⊗ ŷ4
+ y7 ⊗ ŷ7 + y9 ⊗ ŷ9 + y10 ⊗ ŷ10.

The space H2(psl(6)) is spanned by the following cocycle:

x̂3 ∧ ŷ3 + x̂4 ∧ ŷ4 + x̂7 ∧ ŷ7 + x̂9 ∧ ŷ9 + x̂10 ∧ ŷ10.

For superizations of psl(6), i.e., for g = psl(5|1), psl(4|2), and psl(3|3), the space of H2(g)
is spanned by the following cocycles (recall convention (1.1))

deg = −10: x̂15 ∧ x̂15,

deg = −8:

{
x̂13 ∧ x̂13, for g = psl(5|1),

x̂13 ∧ x̂13, x̂14 ∧ x̂14 for g = psl(4|2) and psl(3|3),

deg = −6:


x̂10 ∧ x̂10, for g = psl(5|1),

x̂10 ∧ x̂10, x̂11 ∧ x̂11 for g = psl(4|2),

x̂10 ∧ x̂10, x̂11 ∧ x̂11, x̂12 ∧ x̂12 for g = psl(3|3),

deg = −4:


x̂6 ∧ x̂6 for g = psl(5|1),

x̂7 ∧ x̂7, x̂6 ∧ x̂6 for g = psl(4|2) and psl(3|3),

x̂7 ∧ x̂7, x̂8 ∧ x̂8 for g = psl(3|3),

deg = −2:


x̂1 ∧ x̂1 for g = psl(5|1),

x̂2 ∧ x̂2 for g = psl(4|2),

x̂3 ∧ x̂3 for g = psl(3|3),
deg = 0: x̂3 ∧ ŷ3 + x̂4 ∧ ŷ4 + x̂7 ∧ ŷ7 + x̂9 ∧ ŷ9 + x̂10 ∧ ŷ10.

Lemma 2.26. For p = 3, consider gl(6), its simple relative, and super versions.

(a1) For g = gl(6), and gl(3|3), for a basis of H1(g; g) we can take the following derivation:

c0 =

2h1 ⊗ D̂6 + h2 ⊗ D̂6 + 2h4 ⊗ D̂6 + h5 ⊗ D̂6 for p = 3,

4h1 ⊗ D̂6 + 3h2 ⊗ D̂6 + 2h3 ⊗ D̂6 + 2h4 ⊗ D̂6 + h5 ⊗ D̂6 for p = 5,

where D6 is an outer derivation, see Remark 1.2.

(a2) We have H2(g) = 0.

(b1) For g = psl(6), we have dimH1(g; g) = 1; the outer derivation turns psl(6) into pgl(6).

(b2) The space H2(g) is spanned by the following cocycle:

c0 = x̂3 ∧ ŷ3 − x̂4 ∧ ŷ4 − x̂7 ∧ ŷ7 + x̂9 ∧ ŷ9 + x̂10 ∧ ŷ10.
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(c1) For g = psl(3|3), we have dimH1(g; g) = 1; the outer derivation turns psl(3|3) into
pgl(3|3).

(c2) The space H2(g) is spanned by the following cocycle (for the parities of Chevalley gen-
erators distributed as (0̄, 0̄, 1̄, 0̄, 0̄)):

c0 = x̂2 ∧ ŷ2 − x̂1 ∧ ŷ1 − x̂7 ∧ ŷ7 + x̂11 ∧ ŷ11 − x̂14 ∧ ŷ14.

Lemma 2.27. Let p = 3.

(a1) For g = g(2, 6) with Cartan matrix and basis
2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 −1
0 0 −1 2 0

0 0 1 0 0


x1, x2, x3, x4, x5, x6 = [x1, x2], x7 = [x2, x3], x8 = [x3, x4], x9 = [x3, x5],

x10 = [x3, [x1, x2]], x11 = [x4, [x2, x3]], x12 = [x5, [x2, x3]], x13 = [x5, [x3, x4]],

x14 = [x5, [x4, [x2, x3]]], x15 = [[x1, x2], [x3, x4]], x16 = [[x1, x2], [x3, x5]],

x17 = [[x1, x2], [x5, [x3, x4]]], x18 = [[x3, x5], [x4, [x2, x3]]],

x19 = [[x3, [x1, x2]], [x5, [x3, x4]]], x20 = [[x5, [x2, x3]], [x5, [x3, x4]]],

x21 = [[x5, [x2, x3]], [[x1, x2], [x3, x4]]], [x22 = [[x5, [x3, x4]], [[x1, x2], [x3, x5]]],

x23 = [[x5, [x4, [x2, x3]]], [[x1, x2], [x3, x5]]],

x24 = [[[x1, x2], [x3, x5]], [[x3, x5], [x4, [x2, x3]]]],

x25 = [[[x1, x2], [x5, [x3, x4]]], [[x3, x5], [x4, [x2, x3]]]]

and grading operator D6 = (1, 0, 0, 0, 0), see Statement 1.1, we have

H1(g; g) = K
[
2h1 ⊗ D̂6 + h2 ⊗ D̂6 + h5 ⊗ D̂6

]
.

(a2) We have H2(g) = 0.

(b1) Let g = g(2, 6)(1)/c. For a basis of H1(g; g) we can take the following derivation

c0 = 2x4 ⊗ x̂4 + 2x5 ⊗ x̂5 + 2x8 ⊗ x̂8 + 2x9 ⊗ x̂9 + 2x11 ⊗ x̂11 + 2x12 ⊗ x̂12
+ 2x15 ⊗ x̂15 + 2x16 ⊗ x̂16 + x20 ⊗ x̂20 + x22 ⊗ x̂22 + x23 ⊗ x̂23 + x24 ⊗ x̂24
+ y4 ⊗ ŷ4 + y5 ⊗ ŷ5 + y8 ⊗ ŷ8 + y9 ⊗ ŷ9 + y11 ⊗ ŷ11 + y12 ⊗ ŷ12 + y15 ⊗ ŷ15
+ y16 ⊗ ŷ16 + 2y20 ⊗ ŷ20 + 2y22 ⊗ ŷ22 + 2y23 ⊗ ŷ23 + 2y24 ⊗ ŷ24.

(b2) The space H2(g) is spanned by the following cocycle:

c0 = x̂1 ∧ ŷ1 − x̂5 ∧ ŷ5 − x̂6 ∧ ŷ6 + x̂9 ∧ ŷ9 + x̂10 ∧ ŷ10 − x̂12 ∧ ŷ12 − x̂13 ∧ ŷ13
+ x̂14 ∧ ŷ14 − x̂15 ∧ ŷ15 − x̂16 ∧ ŷ16 + x̂17 ∧ ŷ17 − x̂18 ∧ ŷ18 − x̂19 ∧ ŷ19
+ x̂20 ∧ ŷ20 + x̂21 ∧ ŷ21.

Lemma 2.28. Let p ≥ 3. For g = osp(1|10), osp(2|8), osp(6|4), osp(3|8), osp(4|6), osp(5|6),
osp(7|4), osp(8|2), osp(9|2), gl(4|2), and gl(1|5), we have H1(g; g) = 0 and H2(g) = 0.

Lemma 2.29. Let p = 3. For g = g(8, 3) and el(5; 3), we have H1(g; g) = 0 and H2(g) = 0.

Lemma 2.30. Let p = 5. For g = el(5; 5), we have H1(g; g) = 0 and H2(g) = 0.
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2.8 Rank 6: sl(7) and gl(7) for p = 7; g(4, 6), g(6, 6),
and e(1)(6)/c for p = 3; e(6) and e(6, i) for p = 2

Lemma 2.31. Let p = 3, g = e(6) and the simple relative. For the Chevalley basis

x1, x2, x3, x4, x5, x6, x7 = [x1, x2], x8 = [x2, x3], x9 = [x3, x4], x10 = [x3, x6],

x11 = [x4, x5], x12 = [x3, [x1, x2]], x13 = [x4, [x2, x3]], x14 = [x5, [x3, x4]],

x15 = [x6, [x2, x3]], x16 = [x6, [x3, x4]], x17 = [x6, [x4, [x2, x3]]], x18 = [[x1, x2], [x3, x4]],

x19 = [[x1, x2], [x3, x6]], x20 = [[x2, x3], [x4, x5]], x21 = [[x3, x6], [x4, x5]],

x22 = [[x1, x2], [x6, [x3, x4]]], x23 = [[x3, x6], [x4, [x2, x3]]], x24 = [[x4, x5], [x3, [x1, x2]]],

x25 = [[x4, x5], [x6, [x2, x3]]], x26 = [[x4, x5], [[x1, x2], [x3, x6]]],

x27 = [[x3, [x1, x2]], [x6, [x3, x4]]], x28 = [[x5, [x3, x4]], [x6, [x2, x3]]],

x29 = [[x5, [x3, x4]], [[x1, x2], [x3, x6]]], x30 = [[x6, [x2, x3]], [[x1, x2], [x3, x4]]],

x31 = [[x6, [x3, x4]], [[x2, x3], [x4, x5]]], x32 = [[[x1, x2], [x3, x4]], [[x3, x6], [x4, x5]]],

x33 = [[[x1, x2], [x3, x6]], [[x2, x3], [x4, x5]]], x34 = [[[x2, x3], [x4, x5]], [[x1, x2], [x6, [x3, x4]]]],

x35 = [[[x3, x6], [x4, [x2, x3]]], [[x4, x5], [x3, [x1, x2]]]],

x36 = [[[x4, x5], [x6, [x2, x3]]], [[x3, [x1, x2]], [x6, [x3, x4]]]]

we have

(a1) For g = e(6), we have H1(g; g) spanned by

2h1 ⊗ D̂7 + h2 ⊗ D̂7 + 2h4 ⊗ D̂7 + h5 ⊗ D̂7,

where D7 is the outer derivation, see Remark 1.2.

(a2) We have H2(g) = 0.

(b1) For g = e(1)(6)/c, we have dim
(
H1(g; g)

)
= 1, and der g = e(6)/c.

(b2) The space H2(g) is spanned by the following cocycle:

c0 = x̂5 ∧ ŷ5 − x̂1 ∧ ŷ1 + x̂7 ∧ ŷ7 − x̂11 ∧ ŷ11 − x̂12 ∧ ŷ12 + x̂14 ∧ ŷ14 + x̂18 ∧ ŷ18
+ x̂19 ∧ ŷ19 − x̂20 ∧ ŷ20 − x̂21 ∧ ŷ21 − x̂22 ∧ ŷ22 + x̂25 ∧ ŷ25 + x̂27 ∧ ŷ27
− x̂28 ∧ ŷ28 − x̂30 ∧ ŷ30 + x̂31 ∧ ŷ31.

(C1) For p = 2 and g = e(6; 1), e(6, 6), we have H1(g; g) = 0.

(C2) For e(6, 1), for a basis of H2(g) we can take the following cocycles (recall convention (1.1))

deg = −22: x̂36 ∧ x̂36, deg = −10: x̂22 ∧ x̂22, x̂24 ∧ x̂24,
deg = −20: x̂35 ∧ x̂35, deg = −8: x̂18 ∧ x̂18, x̂19 ∧ x̂19,
deg = −18: x̂34 ∧ x̂34, deg = −6: x̂12 ∧ x̂12,
deg = −16: x̂33 ∧ x̂33, x̂32 ∧ x̂32, deg = −4: x̂7 ∧ x̂7,
deg = −14: x̂30 ∧ x̂30, x̂29 ∧ x̂29, deg = −2: x̂1 ∧ x̂1.
deg = −12: x̂27 ∧ x̂27, x̂26 ∧ x̂26,

(C3) For e(6, 6), for a basis of H2(g) we can take the following cocycles (recall convention (1.1))

deg = −20: x̂35 ∧ x̂35,
deg = −18: x̂34 ∧ x̂34,
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deg = −16: x̂33 ∧ x̂33, x̂32 ∧ x̂32,
deg = −14: x̂30 ∧ x̂30, x̂29 ∧ x̂29, x̂31 ∧ x̂31,
deg = −12: x̂27 ∧ x̂27, x̂28 ∧ x̂28, x̂26 ∧ x̂26,
deg = −10: x̂23 ∧ x̂23, x̂22 ∧ x̂22, x̂25 ∧ x̂25,
deg = −8: x̂19 ∧ x̂19, x̂17 ∧ x̂17, x̂21 ∧ x̂21,
deg = −6: x̂15 ∧ x̂15, x̂16 ∧ x̂16,
deg = −4: x̂10 ∧ x̂10,
deg = −2: x̂6 ∧ x̂6.

Lemma 2.32. For p = 3 and g = g(4, 8), g(6, 6), we have H1(g; g) = 0 and H2(g) = 0.

2.9 Rank 7: sl(8) and gl(8) for p = 2; e(1)(7)/c
and e(1)(7, 1)/c, e(1)(7, 6)/c, e(1)(7, 7)/c for p = 2; g(8, 6) for p = 3

Lemma 2.33. For p = 2, let the Chevalley basis of g = e(7, i), where i = 1, 6 or 7, differ from
that of g = e(7) in that p(xi) = p(yi) = 1̄.

(A) For g = e(7, i), where i = 1, 6 or 7; we have (where D8 is the outer derivation, see
Remark 1.2)

H1(g; g) = K
[
h1 ⊗ D̂8 + h3 ⊗ D̂8 + h7 ⊗ D̂8

]
.

In the rest of Lemma we consider the Chevalley basis

x1, x2, x3, x4, x5, x6, x7, x8 = [x1, x2], x9 = [x2, x3], x10 = [x3, x4], x11 = [x4, x5],

x12 = [x4, x7], x13 = [x5, x6], x14 = [x3, [x1, x2]], x15 = [x4, [x2, x3]], x16 = [x5, [x3, x4]],

x17 = [x6, [x4, x5]], x18 = [x7, [x3, x4]], x19 = [x7, [x4, x5]], x20 = [x7, [x5, [x3, x4]]],

x21 = [[x1, x2], [x3, x4]], x22 = [[x2, x3], [x4, x5]], x23 = [[x2, x3], [x4, x7]],

x24 = [[x3, x4], [x5, x6]], x25 = [[x4, x7], [x5, x6]], x26 = [[x2, x3], [x7, [x4, x5]]],

x27 = [[x4, x5], [x3, [x1, x2]]], x28 = [[x4, x7], [x3, [x1, x2]]], x29 = [[x4, x7], [x5, [x3, x4]]],

x30 = [[x5, x6], [x4, [x2, x3]]], x31 = [[x5, x6], [x7, [x3, x4]]],

x32 = [[x5, x6], [[x2, x3], [x4, x7]]], x33 = [[x3, [x1, x2]], [x6, [x4, x5]]],

x34 = [[x3, [x1, x2]], [x7, [x4, x5]]], x35 = [[x4, [x2, x3]], [x7, [x4, x5]]],

x36 = [[x6, [x4, x5]], [x7, [x3, x4]]], x37 = [[x3, [x1, x2]], [[x4, x7], [x5, x6]]],

x38 = [[x6, [x4, x5]], [[x2, x3], [x4, x7]]], x39 = [[x7, [x3, x4]], [[x2, x3], [x4, x5]]],

x40 = [[x7, [x4, x5]], [[x1, x2], [x3, x4]]], x41 = [[x7, [x4, x5]], [[x3, x4], [x5, x6]]],

x42 = [[x7, [x5, [x3, x4]]], [[x1, x2], [x3 x4]]], x43 = [[[x1, x2][x3, x4]], [[x4, x7], [x5, x6]]],

x44 = [[[x2, x3], [x4 x5]], [[x4, x7], [x5, x6]]], x45 = [[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]],

x46 = [[[x2, x3], [x4, x7]], [[x4, x5], [x3, [x1, x2]]]],

x47 = [[[x3, x4], [x5, x6]], [[x2, x3], [x7, [x4, x5]]]],

x48 = [[[x3, x4], [x5, x6]], [[x4, x7], [x3, [x1, x2]]]],

x49 = [[[x4, x7], [x5, x6]], [[x4, x5], [x3, [x1, x2]]]],

x50 = [[[x4, x5], [x3, [x1, x2]]], [[x5, x6], [x7, [x3, x4]]]],

x51 = [[[x4, x7], x3 [x1, x2]]], [[x5, x6], [x4, [x2, x3]]]],

x52 = [[[x4, x7], [x5, [x3, x4]]], [[x5, x6], [x4, [x2, x3]]]],

x53 = [[[x4, x7], [x5, [x3, x4]]], [[x3, [x1, x2]], [x6, [x4, x5]]]],
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x54 = [[[x5, x6], [x4, [x2, x3]]], [[x3, [x1, x2]], [x7, [x4, x5]]]],

x55 = [[[x5, x6], [x7, [x3, x4]]], [[x4, [x2, x3]], [x7, [x4, x5]]]],

x56 = [[[x3, [x1, x2]], [x6, [x4, x5]]], [[x4, [x2, x3]], [x7, [x4, x5]]]],

x57 = [[[x3, [x1, x2]], [x7, [x4, x5]]], [[x6, [x4, x5]], [x7, [x3, x4]]]],

x58 = [[[x3, [x1, x2]], [x6, [x4, x5]]], [[x7, [x3, x4]], [[x2, x3], [x4, x5]]]],

x59 = [[[x4, [x2, x3]], [x7, [x4, x5]]], [[x3, [x1, x2]], [[x4, x7], [x5, x6]]]],

x60 = [[[x3, [x1, x2]], [[x4, x7], [x5, x6]]], [[x7, [x3, x4]], [[x2, x3], [x4 x5]]]],

x61 = [[[x7, [x4, x5]], [[x1, x2], [x3, x4]]], [[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]]],

x62 = [[[x7 [x5, [x3, x4]]], [[x1, x2], [x3, x4]]], [[[x2, x3], [x4, x5]], [[x4, x7], [x5, x6]]]],

x63 = [[[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]], [[[x4, x7], [x5, x6]], [[x4, x5], [x3, [x1, x2]]]]].

(A1) For g = e(7, 1), for a basis of H2(g) we can take the following cocycles (recall conven-
tion (1.1))

deg = −34: x̂63 ∧ x̂63, deg = −16: x̂42 ∧ x̂42, x̂43 ∧ x̂43,
deg = −32: x̂62 ∧ x̂62, deg = −14: x̂40 ∧ x̂40, x̂37 ∧ x̂37,
deg = −30: x̂61 ∧ x̂61, deg = −12: x̂34 ∧ x̂34, x̂33 ∧ x̂33,
deg = −28: x̂60 ∧ x̂60, deg = −10: x̂27 ∧ x̂27, x̂28 ∧ x̂28,
deg = −26: x̂58 ∧ x̂58, x̂59 ∧ x̂59, deg = −8: x̂21 ∧ x̂21,
deg = −24: x̂56 ∧ x̂56, x̂57 ∧ x̂57, deg = −6: x̂14 ∧ x̂14,
deg = −22: x̂54 ∧ x̂54, x̂53 ∧ x̂53, deg = −4: x̂8 ∧ x̂8,
deg = −20: x̂51 ∧ x̂51, x̂50 ∧ x̂50, deg = −2: x̂1 ∧ x̂1.
deg = −18: x̂46 ∧ x̂46, x̂48 ∧ x̂48, x̂49 ∧ x̂49,

(A6) For g = e(7, 6), for a basis of H2(g) we can take the following cocycles (recall conven-
tion (1.1))

deg = −24: x̂57 ∧ x̂57,
deg = −22: x̂53 ∧ x̂53, x̂55 ∧ x̂55,
deg = −20: x̂50 ∧ x̂50, x̂52 ∧ x̂52,
deg = −18: x̂48 ∧ x̂48, x̂47 ∧ x̂47, x̂49 ∧ x̂49,
deg = −16: x̂42 ∧ x̂42, x̂45 ∧ x̂45, x̂43 ∧ x̂43, x̂44 ∧ x̂44,
deg = −14: x̂39 ∧ x̂39, x̂40 ∧ x̂40, x̂37 ∧ x̂37, x̂38 ∧ x̂38,
deg = −12: x̂34 ∧ x̂34, x̂33 ∧ x̂33, x̂35 ∧ x̂35, x̂32 ∧ x̂32,
deg = −10: x̂27 ∧ x̂27, x̂28 ∧ x̂28, x̂26 ∧ x̂26, x̂30 ∧ x̂30,
deg = −8: x̂21 ∧ x̂21, x̂22 ∧ x̂22, x̂23 ∧ x̂23,
deg = −6: x̂14 ∧ x̂14,
deg = −4: x̂9 ∧ x̂9, x̂8 ∧ x̂8,
deg = −2: x̂2 ∧ x̂2.

(A7) For g = e(7, 7), for a basis of H2(g) we can take the following cocycles (recall conven-
tion (1.1))

deg = −34: x̂63 ∧ x̂63,
deg = −32: x̂62 ∧ x̂62,
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deg = −30: x̂61 ∧ x̂61,
deg = −28: x̂60 ∧ x̂60,
deg = −26: x̂58 ∧ x̂58,
deg = −18: x̂49 ∧ x̂49,
deg = −16: x̂44 ∧ x̂44, x̂43 ∧ x̂43,
deg = −14: x̂40 ∧ x̂40, x̂37 ∧ x̂37, x̂38 ∧ x̂38, x̂41 ∧ x̂41,
deg = −12: x̂34 ∧ x̂34, x̂33 ∧ x̂33, x̂35 ∧ x̂35, x̂32 ∧ x̂32, x̂36 ∧ x̂36,
deg = −10: x̂27 ∧ x̂27, x̂28 ∧ x̂28, x̂26 ∧ x̂26, x̂30 ∧ x̂30, x̂29 ∧ x̂29, x̂31 ∧ x̂31,
deg = −8: x̂21 ∧ x̂21, x̂22 ∧ x̂22, x̂23 ∧ x̂23, x̂20 ∧ x̂20, x̂24 ∧ x̂24,
deg = −6: x̂14 ∧ x̂14, x̂15 ∧ x̂15, x̂16 ∧ x̂16, x̂18 ∧ x̂18,
deg = −4: x̂9 ∧ x̂9, x̂10 ∧ x̂10,
deg = −2: x̂3 ∧ x̂3.

(b1) For g = e(1)(7, i)/c, where i = 1, 6 or 7, we have dimH1(g; g) = 1 and der g = e(7, i)/c.

(b2) For g = e(1)(7, i)/c, where i = 1, 6 or 7, we have: H2(g) is spanned by the same cocycles
as for e(7, i) and the cocycle

c0 = x̂1 ∧ ŷ1 + x̂3 ∧ ŷ3 + x̂4 ∧ ŷ4 + x̂7 ∧ ŷ7 + x̂8 ∧ ŷ8 + x̂9 ∧ ŷ9 + x̂11 ∧ ŷ11
+ x̂17 ∧ ŷ17 + x̂18 ∧ ŷ18 + x̂20 ∧ ŷ20 + x̂21 ∧ ŷ21 + x̂23 ∧ ŷ23 + x̂26 ∧ ŷ26
+ x̂27 ∧ ŷ27 + x̂31 ∧ ŷ31 + x̂32 ∧ ŷ32 + x̂33 ∧ ŷ33 + x̂39 ∧ ŷ39 + x̂40 ∧ ŷ40
+ x̂43 ∧ ŷ43 + x̂45 ∧ ŷ45 + x̂47 ∧ ŷ47 + x̂49 ∧ ŷ49 + x̂53 ∧ ŷ53 + x̂55 ∧ ŷ55
+ x̂56 ∧ ŷ56 + x̂60 ∧ ŷ60.

Lemma 2.34. For p = 3 and g = g(8, 8), we have H1(g; g) = 0 and H2(g) = 0.

2.10 Rank 8: e(8) and e(8, 1), e(8, 8) for p = 2

Lemma 2.35. For p = 2: for g = e(8), we have H1(g; g) = 0 and H2(g) = 0. For g = e(8; 1)
and g = e(8, 8), we have H1(g; g) = 0 whereas

H2(g) = Span(x̂i ∧ x̂i, ŷi ∧ ŷi for all i such that xi and yi are odd).

3 Orthogonal series oΠ(2n) and its super versions
in characteristic 2

Here we consider Lie (super)algebras with Cartan matrix, and their relatives.

Lemma 3.1. Let Hs be the space of cocycles of degree s representing classes in H1(g; g). For
g = o(i, 2k)/c, where k > 4, we have

dimH0 = 3 for k odd,

dimH0 = 4 for k even,

dimH2s = 1 for −2k + 2 ≤ 2s < 0 and 0 < 2s ≤ 2k − 2,

H2s+1 = 0. (3.1)

Let now H̃s denote the space of cocycles of degree s representing classes in H2(g). We have
the same distribution of dimensions of H̃s as that of dimHs in (3.1).
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3.1 Double-checking our results

Permyakov’s L, see [52], for the root system Dn is precisely the simple relative of oΠ(2n), at
least for n > 4. If p = 0, the elements of oΠ(2n) can be represented by matrices of the form(

A B

C −AT

)
,

where A,B,C ∈ gl(n) with B and C antisymmetric.
The root elements of the Chevalley basis are

Ei,j − En+j,n+i, Ei,n+j − Ej,n+i, En+i,j − En+j,i,

where 1 ≤ i, j ≤ n and i ̸= j. For a basis of the Cartan subalgebra take

hi = Ei,i − Ei+1,i+1 − En+i,n+i + En+i+1,n+i+1, where 1 ≤ i ≤ n− 1,

hn = En−1,n−1 + En,n − E2n−1,2n−1 − E2n,2n.

These same elements for p = 2 span o
(2)
Π (2n), but they are not linearly independent: hn−1 =

hn. But hn−1 + hn is a central element if p = 2, so o
(2)
Π (2n) is the quotient of the corresponding

Permyakov’s L modulo the ideal spanned by this central element.

If n is odd, this ideal is the whole center of L, so L = o
(2)
Π (2n).

If n is even, then the dimension of the center of L is equal to 2; it is spanned by hn−1 + hn
and h1 + h3 + · · ·+ hn−1 (to which the unit matrix corresponds in o

(2)
Π (2n)), and hence L is the

quotient of o
(2)
Π (2n) modulo the 1-dimensional center, i.e., anyway, the simple relative of oΠ(2n).

Therefore, describing the algebras of derivations of simple relatives of oΠ(2n) for n > 4, we
can refer to [52], same as for sl and psl.

It is easy to see that the algebra denoted by õΠ in [42] does indeed consist of derivations
of simple relatives of oΠ, and the dimension of its outer derivations is exactly as Permyakov
computed, so it contains all of them.

Permyakov’s answer dim(out o
(2)
Π (8)/c) = 26 obtained analytically is also confirmed: for

g = o
(2)
Π (8)/c, SuperLie tells us that H1(g; g) is spanned by

c−6,1 = y1 ⊗ x̂12 + y5 ⊗ x̂11 + y8 ⊗ x̂9 + y9 ⊗ x̂8 + y11 ⊗ x̂5 + y12 ⊗ x̂1,
c−6,2 = y3 ⊗ x̂12 + y6 ⊗ x̂11 + y8 ⊗ x̂10 + y10 ⊗ x̂8 + y11 ⊗ x̂6 + y12 ⊗ x̂3,
c−6,3 = y4 ⊗ x̂12 + y7 ⊗ x̂11 + y9 ⊗ x̂10 + y10 ⊗ x̂9 + y11 ⊗ x̂7 + y12 ⊗ x̂4,
c−4,1 = y2 ⊗ x̂10 + y6 ⊗ x̂7 + y7 ⊗ x̂6 + y10 ⊗ x̂2 + x1 ⊗ x̂12 + y12 ⊗ ŷ1,
c−4,2 = y2 ⊗ x̂9 + y5 ⊗ x̂7 + y7 ⊗ x̂5 + y9 ⊗ x̂2 + x3 ⊗ x̂12 + y12 ⊗ ŷ3,
c−4,3 = y2 ⊗ x̂8 + y5 ⊗ x̂6 + y6 ⊗ x̂5 + y8 ⊗ x̂2 + x4 ⊗ x̂12 + y12 ⊗ ŷ4,
c−2,1 = y3 ⊗ x̂4 + y4 ⊗ x̂3 + x2 ⊗ x̂10 + x5 ⊗ x̂11 + y10 ⊗ ŷ2 + y11 ⊗ ŷ5,
c−2,2 = y1 ⊗ x̂4 + y4 ⊗ x̂1 + x2 ⊗ x̂9 + x6 ⊗ x̂11 + y9 ⊗ ŷ2 + y11 ⊗ ŷ6,
c−2,3 = y1 ⊗ x̂3 + y3 ⊗ x̂1 + x2 ⊗ x̂8 + x7 ⊗ x̂11 + y8 ⊗ ŷ2 + y11 ⊗ ŷ7,
c0,1 = x4 ⊗ x̂3 + x7 ⊗ x̂6 + x9 ⊗ x̂8 + y3 ⊗ ŷ4 + y6 ⊗ ŷ7 + y8 ⊗ ŷ9,
c0,2 = x4 ⊗ x̂1 + x7 ⊗ x̂5 + x10 ⊗ x̂8 + y1 ⊗ ŷ4 + y5 ⊗ ŷ7 + y8 ⊗ ŷ10,
c0,3 = x3 ⊗ x̂4 + x6 ⊗ x̂7 + x8 ⊗ x̂9 + y4 ⊗ ŷ3 + y7 ⊗ ŷ6 + y9 ⊗ ŷ8,
c0,4 = x3 ⊗ x̂1 + x6 ⊗ x̂5 + x10 ⊗ x̂9 + y1 ⊗ ŷ3 + y5 ⊗ ŷ6 + y9 ⊗ ŷ10,
c0,5 = x1 ⊗ x̂4 + x5 ⊗ x̂7 + x8 ⊗ x̂10 + y4 ⊗ ŷ1 + y7 ⊗ ŷ5 + y10 ⊗ ŷ8,
c0,6 = x1 ⊗ x̂3 + x5 ⊗ x̂6 + x9 ⊗ x̂10 + y3 ⊗ ŷ1 + y6 ⊗ ŷ5 + y10 ⊗ ŷ9,
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c0,7 = x1 ⊗ x̂1 + x3 ⊗ x̂3 + x5 ⊗ x̂5 + x6 ⊗ x̂6 + x9 ⊗ x̂9 + x10 ⊗ x̂10 + y1 ⊗ ŷ1 + y3 ⊗ ŷ3
+ y5 ⊗ ŷ5 + y6 ⊗ ŷ6 + y9 ⊗ ŷ9 + y10 ⊗ ŷ10,

c0,8 = x1 ⊗ x̂1 + x4 ⊗ x̂4 + x5 ⊗ x̂5 + x7 ⊗ x̂7 + x8 ⊗ x̂8 + x10 ⊗ x̂10 + y1 ⊗ ŷ1 + y4 ⊗ ŷ4
+ y5 ⊗ ŷ5 + y7 ⊗ ŷ7 + y8 ⊗ ŷ8 + y10 ⊗ ŷ10.

Since o
(2)
Π (6) ≃ psl(4), our description of der o

(2)
Π (6) matches that by Permyakov. The iso-

morphism is given by the following correspondence:

E2,3 7−→ E1,2 + E5,4, E1,3 7−→ E1,3 + E6,4,

E1,2 7−→ E2,3 + E6,5, E2,4 7−→ E1,6 + E3,4,

E3,4 7−→ E2,6 + E3,5, E1,4 7−→ E1,5 + E2,4,

and the basis elements, obtained from the above ones on the left, go to the transposed images
on the right, i.e., E3,2 7−→ E2,1 + E4,5 and so on; besides,

E1,1 + E2,2
(
= E3,3 + E4,4 in psl

)
7−→ E2,2 + E3,3 + E5,5 + E6,6

whereas

E2,2 + E3,3
(
= E1,1 + E4,4 in psl

)
7−→ E1,1 + E2,2 + E4,4 + E5,5.

3.2 Rank 2

Lemma 3.2. Let g = oo
(1)
IΠ(1|4). Then, H1(g; g) = 0 and H2(g) = 0.

Lemma 3.3. Let g = oo
(1)
IΠ(3|2) with Cartan matrix(

0 1

1 1

)

and a basis

x1, x2, x3 = x22, x4 = [x1, x2], x5 = [x2, x
2
2],

(a1) For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

c−4 = y2 ⊗ x̂5 + y4 ⊗ x̂4 + y5 ⊗ x̂2.

(a2) For a basis of H2(g) we can take (the classes of) the following cocycles (recall conven-
tion (1.1))

deg = −6: x̂5 ∧ x̂5, deg = −2: x̂2 ∧ x̂2.

3.3 Rank 3

3.3.1 The analog of the Lie superalgebra ospa(4|2) for p = 2

As we know (e.g., from [12]), over C, one of the Cartan matrices of ospa(4|2) is 2 −1 0

−1 0 −a
0 −1 2

 ,
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so osp1(4|2) = osp(4|2), and ospa(4|2) is simple except for a = 0 and −1, where we have exact
sequences

0 −→ psl(2|2) −→ osp−1(4|2) −→ sl(2) −→ 0,

0 −→ sl(2) −→ osp0(4|2) −→ psl(2|2) −→ 0. (3.2)

In other words, der psl(2|2) ≃ osp−1(4|2) and on the space of three nontrivial central extensions
of psl(2|2), as well on the space of outer derivations of psl(2|2), a natural structure of the Lie
algebra sl(2) can be defined.

Remark 3.4. We wished to conjecture that over K the central extensions of psl(4)—i.e., of the
desuperization of psl(2|2)—constitute the Lie algebra o(3)⊕K and something similar is true for
psl(2|2):

0 −→ o(3)⊕K −→ ? −→ psl(4) −→ 0

but the actual answers (2.8) and (3.3) are quite different. For p = 2, there are considerably more
of both outer derivations and central extensions of psl(2|2) than there are outer derivations and
central extensions of psl(2|2) over C; the same applies to its desuperization, psl(4). Thanks

to the fact that psl(2|2) ≃ h
(1)
Π (0|4) and psl(4) = h

(1)
Π (4;1) ≃ F(h

(1)
Π (0|4)), where F is the

desuperization functor, and recent results [3], we were able to understand the meaning of the
answers (2.8) and (3.3), see Lemma 2.17.

Lemma 3.5. Over K for p = 2, the role of ospa(4|2) is played by bgl(3; a), where a ̸= 0, 1,
and its desuperization, wk(3; a). For these algebras we have the following analogs of exact se-
quences (3.2):

0 −→ K3 −→ wk(3; 1) −→ psl(4) −→ 0,

0 −→ K7 −→ wk(3; 0) −→ K2 ⊕ sl(3) −→ 0,

where K7 is a commutative ideal which, as the wk(3; 0)-module, is the direct sum of three irre-
ducible modules of dimensions 1⊕ 3⊕ 3,

0 −→ K3 −→ bgl(3; 1) −→ psl(2|2) −→ 0,

0 −→ K5|2 −→ bgl(3; 0) −→ Π(K2)⊕ sl(1|2) −→ 0, (3.3)

where K5|2 is a commutative ideal which, as the bgl(3; 0)-module, is the direct sum of three
irreducible modules of dimensions 1⊕ 2|1⊕ 2|1.

3.4 Rank 4

Lemma 3.6.

(a) Let g = oc(1; 8)⋉KI0, ooc(1; 4|4)⋉KI0, and ooc(1; 6|2)/c with Cartan matrix
0̄ 0 0 1

0 0̄ 0 1

0 0 0̄ 1

1 1 1 0̄


and basis

x1, x2, x3, x4, x5 = [x1, x4], x6 = [x2, x4], x7 = [x3, x4], x8 = [x2, [x1, x4]],
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x9 = [x3, [x1, x4]], x10 = [x3, [x2, x4]], x11 = [x3, [x2, [x1, x4]]],

x12 = [[x3, x4], [x2, [x1, x4]]].

For a basis of H1(g; g) we can take the following derivations:

c10 = h1 ⊗ ĥ5 + h2 ⊗ ĥ5, c20 = h1 ⊗ ĥ6 + h2 ⊗ ĥ6,

c30 = h1 ⊗ ĥ5 + h3 ⊗ ĥ5, c40 = h1 ⊗ ĥ6 + h3 ⊗ ĥ6.

For ooc(1; 8)⋉KI0, we have H2(g) = Span(ĥ5 ∧ ĥ6).
Let g = ooc(1; 4|4) ⋉ KI0, where the parity is distributed as follows: all simple roots are
even except x4 and y4. For a basis of H1(g; g) we can take

deg = −8: x̂11 ∧ x̂11,
deg = −6: c1−6 = x̂8 ∧ x̂8, c2−6 = x̂9 ∧ x̂9, c3−6 = x̂10 ∧ x̂10,
deg = −4: c1−4 = x̂5 ∧ x̂5, c2−4 = x̂6 ∧ x̂6, c3−4 = x̂7 ∧ x̂7,
deg = −2: x̂4 ∧ x̂4,

deg = 0: ĥ5 ∧ ĥ6.

Let g = ooc(1; 6|2) ⋉ KI0, where the parity is distributed as follows: all simple roots are
even except x1 and y1. For a basis of H1(g; g) we can take

deg = −12: x̂12 ∧ x̂12, deg = −4: x̂5 ∧ x̂5,
deg = −8: x̂11 ∧ x̂11, deg = −2: x̂1 ∧ x̂1,

deg = −6: c1−6 = x̂8 ∧ x̂8, c2−6 = x̂9 ∧ x̂9, deg = 0: ĥ5 ∧ ĥ6.

(b) Let g = oc(1; 8)/c, ooc(1; 4|4)/c and ooc(1; 6|2)/c. For a basis of H1(g; g) we can take the
following derivations (recall convention (1.1))

c1−6 = y1 ⊗ x̂12 + y5 ⊗ x̂11 + y8 ⊗ x̂9 + y9 ⊗ x̂8 + y11 ⊗ x̂5 + y12 ⊗ x̂1,
c2−6 = y2 ⊗ x̂12 + y6 ⊗ x̂11 + y8 ⊗ x̂10 + y10 ⊗ x̂8 + y11 ⊗ x̂6 + y12 ⊗ x̂2,
c3−6 = y3 ⊗ x̂12 + y7 ⊗ x̂11 + y9 ⊗ x̂10 + y10 ⊗ x̂9 + y11 ⊗ x̂7 + y12 ⊗ x̂3,
c1−4 = x1 ⊗ x̂12 + y4 ⊗ x̂10 + y6 ⊗ x̂7 + y7 ⊗ x̂6 + y10 ⊗ x̂4 + y12 ⊗ ŷ1,
c2−4 = x2 ⊗ x̂12 + y4 ⊗ x̂9 + y5 ⊗ x̂7 + y7 ⊗ x̂5 + y9 ⊗ x̂4 + y12 ⊗ ŷ2,
c3−4 = x3 ⊗ x̂12 + y4 ⊗ x̂8 + y5 ⊗ x̂6 + y6 ⊗ x̂5 + y8 ⊗ x̂4 + y12 ⊗ ŷ3,
c1−2 = x4 ⊗ x̂10 + x5 ⊗ x̂11 + y2 ⊗ x̂3 + y3 ⊗ x̂2 + y10 ⊗ ŷ4 + y11 ⊗ ŷ5,
c2−2 = x4 ⊗ x̂9 + x6 ⊗ x̂11 + y1 ⊗ x̂3 + y3 ⊗ x̂1 + y9 ⊗ ŷ4 + y11 ⊗ ŷ6,
c3−2 = x4 ⊗ x̂8 + x7 ⊗ x̂11 + y1 ⊗ x̂2 + y2 ⊗ x̂1 + y8 ⊗ ŷ4 + y11 ⊗ ŷ7,
c10 = x3 ⊗ x̂2 + x7 ⊗ x̂6 + x9 ⊗ x̂8 + y2 ⊗ ŷ3 + y6 ⊗ ŷ7 + y8 ⊗ ŷ9,
c20 = x3 ⊗ x̂1 + x7 ⊗ x̂5 + x10 ⊗ x̂8 + y1 ⊗ ŷ3 + y5 ⊗ ŷ7 + y8 ⊗ ŷ10,
c30 = x2 ⊗ x̂3 + x6 ⊗ x̂7 + x8 ⊗ x̂9 + y3 ⊗ ŷ2 + y7 ⊗ ŷ6 + y9 ⊗ dy8,

c40 = x2 ⊗ x̂1 + x6 ⊗ x̂5 + x10 ⊗ x̂9 + y1 ⊗ ŷ2 + y5 ⊗ ŷ6 + y9 ⊗ ŷ10,
c50 = x1 ⊗ x̂3 + x5 ⊗ x̂7 + x8 ⊗ x̂10 + y3 ⊗ ŷ1 + y7 ⊗ ŷ5 + y10 ⊗ ŷ8,
c60 = x1 ⊗ x̂2 + x5 ⊗ x̂6 + x9 ⊗ x̂10 + y2 ⊗ ŷ1 + y6 ⊗ ŷ5 + y10 ⊗ ŷ9,
c70 = x1 ⊗ x̂1 + x2 ⊗ x̂2 + x5 ⊗ x̂5 + x6 ⊗ x̂6 + x9 ⊗ x̂9 + x10 ⊗ x̂10 + y1 ⊗ ŷ1
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+ y2 ⊗ ŷ2 + y5 ⊗ ŷ5 + y6 ⊗ ŷ6 + y9 ⊗ ŷ9 + y10 ⊗ ŷ10,
c80 = x1 ⊗ x̂1 + x3 ⊗ x̂3 + x5 ⊗ x̂5 + x7 ⊗ x̂7 + x8 ⊗ x̂8 + x10 ⊗ x̂10 + y1 ⊗ ŷ1

+ y3 ⊗ ŷ3 + y5 ⊗ ŷ5 + y7 ⊗ ŷ7 + y8 ⊗ ŷ8 + y10 ⊗ ŷ10.

(c) For a basis of H2(g) we can take the following cocycles (recall convention (1.1)).

(c1) For g = oc(1; 8)/c:

deg = −6: c1−6 = x̂1 ∧ x̂12 + x̂5 ∧ x̂11 + x̂8 ∧ x̂9,
c2−6 = x2 ∧ x̂12 + x̂6 ∧ x̂11 + x̂8 ∧ x̂10,
c3−6 = x̂3 ∧ x̂12 + x̂7 ∧ x̂11 + x̂9 ∧ x̂10,

deg = −4: c1−4 = x̂4 ∧ x̂10 + x̂6 ∧ x̂7 + x̂12 ∧ ŷ1,
c2−4 = x̂4 ∧ x̂9 + x̂5 ∧ x̂7 + x̂12 ∧ ŷ2,
c3−4 = x̂4 ∧ x̂8 + x̂5 ∧ x̂6 + x̂12 ∧ ŷ3,

deg = −2: c1−2 = x̂2 ∧ x̂3 + x̂10 ∧ ŷ4 + x̂11 ∧ ŷ5,
c2−2 = x̂1 ∧ x̂3 + x̂9 ∧ ŷ4 + x11 ∧ ŷ6,
c3−2 = x̂1 ∧ x̂2 + x̂8 ∧ ŷ4 + x̂11 ∧ ŷ7,

deg = 0: c10 = x̂2 ∧ ŷ3 + x̂6 ∧ ŷ7 + x̂8 ∧ ŷ9,
c20 = x̂1 ∧ ŷ3 + x̂5 ∧ ŷ7 + x̂8 ∧ ŷ10,
c30 = x̂3 ∧ ŷ2 + x̂7 ∧ ŷ6 + x̂9 ∧ ŷ8,
c40 = x̂1 ∧ ŷ2 + x̂5 ∧ ŷ6 + x̂9 ∧ ŷ10,
c50 = x̂3 ∧ ŷ1 + x̂7 ∧ ŷ5 + x10 ∧ ŷ8,
c60 = x̂2 ∧ ŷ1 + x̂6 ∧ ŷ5 + x̂10 ∧ ŷ9,
c70 = x̂2 ∧ ŷ2 + x̂3 ∧ ŷ3 + x̂6 ∧ ŷ6 + x̂7 ∧ ŷ7 + x8 ∧ ŷ8 + x̂9 ∧ ŷ9,
c80 = x̂1 ∧ ŷ1 + x̂3 ∧ ŷ3 + x5 ∧ ŷ5 + x7 ∧ ŷ7 + x8 ∧ ŷ8 + x̂10 ∧ ŷ10.

(c2) For g = oc(1; 4|4)/c:

deg = −8: c−8 = x̂11 ∧ x̂11,
deg = −6: c1−6 = x̂8 ∧ x̂8, x̂9 ∧ x̂9, x̂10 ∧ x̂10,

c2−6 = x̂1 ∧ x̂12 + x̂5 ∧ x̂11 + x̂8 ∧ x̂9,
c3−6 = x̂2 ∧ x̂12 + x̂6 ∧ x̂11 + x̂8 ∧ x̂10,
c4−6 = x̂3 ∧ x̂12 + x̂7 ∧ x̂11 + x̂9 ∧ x̂10,

deg = −4: c1−4 = x̂5 ∧ x̂5, x̂6 ∧ x̂6, x̂7 ∧ x̂7,
c2−4 = x̂4 ∧ x̂10 + x̂6 ∧ x̂7 + x̂12 ∧ ŷ1,
c3−4 = x̂4 ∧ x̂9 + x̂5 ∧ x̂7 + x̂12 ∧ ŷ2,
c4−4 = x̂4 ∧ x̂8 + x̂5 ∧ x̂6 + x̂12 ∧ ŷ3,

deg = −2: c1−2 = x̂4 ∧ x̂4,
c2−2 = x̂2 ∧ x̂3 + x̂10 ∧ ŷ4 + x̂11 ∧ ŷ5,
c3−2 = x̂1 ∧ x̂3 + x̂9 ∧ ŷ4 + x̂11 ∧ ŷ6,
c4−2 = x̂1 ∧ x̂2 + x̂8 ∧ ŷ4 + x̂11 ∧ ŷ7,

deg = 0: c10 = x̂2 ∧ ŷ3 + x̂5 ∧ ŷ7 + x̂8 ∧ ŷ9,
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c20 = x̂1 ∧ ŷ3 + x̂5 ∧ ŷ7 + x̂8 ∧ ŷ10,
c30 = x̂3 ∧ ŷ2 + x̂7 ∧ ŷ6 + x̂9 ∧ ŷ8,
c40 = x̂1 ∧ ŷ2 + x̂5 ∧ ŷ6 + x̂9 ∧ ŷ10,
c50 = x̂3 ∧ ŷ1 + x̂7 ∧ ŷ5 + x̂10 ∧ ŷ8,
c60 = x̂2 ∧ ŷ1 + x̂6 ∧ ŷ5 + x̂10 ∧ ŷ9,
c70 = x̂2 ∧ ŷ2 + x̂3 ∧ ŷ3 + x̂6 ∧ ŷ6 + x̂7 ∧ ŷ7 + x̂8 ∧ ŷ8 + x̂9 ∧ ŷ9,
c80 = x̂1 ∧ ŷ1 + x̂3 ∧ ŷ3 + x̂5 ∧ ŷ5 + x̂7 ∧ ŷ7 + x̂8 ∧ ŷ8 + x̂10 ∧ ŷ10.

(c3) For g = oc(1; 6|2)/c:

deg = −10: c−10 = x̂12 ∧ x̂12,
deg = −8: c−8 = x̂11 ∧ x̂11,
deg = −6: c1−6 = x̂8 ∧ x̂8,

c2−6 = x̂1 ∧ x̂12 + x̂5 ∧ x̂11 + x̂8 ∧ x̂9,
c3−6 = x̂2 ∧ x̂12 + x̂6 ∧ x̂11 + x̂8 ∧ x̂10,
c4−6 = x̂9 ∧ x̂9,
c5−6 = x̂3 ∧ x̂12 + x̂7 ∧ x̂11 + x̂9 ∧ x̂10,

deg = −4: c1−4 = x̂5 ∧ x̂5,
c2−4 = x̂4 ∧ x̂10 + x̂6 ∧ x̂7 + x̂12 ∧ ŷ1,
c3−4 = x̂4 ∧ x̂9 + x̂5 ∧ x̂7 + x̂12 ∧ ŷ2,
c4−4 = x̂4 ∧ x̂8 + x̂5 ∧ x̂6 + x̂12 ∧ ŷ3,

deg = −2: c1−2 = x̂1 ∧ x̂1,
c2−2 = x̂2 ∧ x̂3 + x̂10 ∧ ŷ4 + x̂11 ∧ ŷ5,
c3−2 = x̂1 ∧ x̂3 + x̂9 ∧ ŷ4 + x̂11 ∧ ŷ6,
c4−2 = x̂1 ∧ x̂2 + x̂8 ∧ ŷ4 + x̂11 ∧ ŷ7,

deg = 0: c10 = x̂2 ∧ ŷ3 + x̂6 ∧ ŷ7 + x̂8 ∧ ŷ9,
c20 = x̂1 ∧ ŷ3 + x̂5 ∧ ŷ7 + x̂8 ∧ ŷ10,
c30 = x̂3 ∧ ŷ2 + x̂7 ∧ ŷ6 + x̂9 ∧ ŷ8,
c40 = x̂1 ∧ ŷ2 + x̂5 ∧ ŷ6 + x̂9 ∧ ŷ10,
c50 = x̂3 ∧ ŷ1 + x̂7 ∧ ŷ5 + x̂10 ∧ ŷ8,
c60 = x̂2 ∧ ŷ1 + x̂6 ∧ ŷ5 + x̂10 ∧ ŷ9,
c70 = x̂2 ∧ ŷ2 + x̂3 ∧ ŷ3 + x̂6 ∧ ŷ6 + x̂7 ∧ ŷ7 + x̂8 ∧ ŷ8 + x̂9 ∧ ŷ9,
c80 = x̂1 ∧ ŷ1 + x̂3 ∧ ŷ3 + x̂5 ∧ ŷ5 + x̂7 ∧ ŷ7 + x̂8 ∧ ŷ8 + x̂10 ∧ ŷ10.

Lemma 3.7.

(a1) Let g = oo
(1)
IΠ(3|6) with Cartan matrix

0̄ 1 0 0

1 0̄ 1 0

0 1 0 1

0 0 1 1̄
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and basis

x1, x2, x3, x4, x5 = [x1, x2], x6 = [x2, x3], x7 = [x3, x4], x8 = [x3, [x1, x2]],

x9 = [x4, [x2, x3]], x10 = [x4, [x3, x4]], x11 = [x4, [x4, [x2, x3]]],

x12 = [[x1, x2], [x3, x4]], x13 = [x3, x4]
2, x14 = [[x1, x2], [x4, [x3, x4]]],

x15 = [[x3, x4], [x4, [x2, x3]]], x16 = [[x3, [x1, x2]], [x4, [x3, x4]]], x17 = [x4, [x2, x3]]
2,

x18 = [[x4, [x2, x3]], [[x1, x2], [x3, x4]]], x19 = [[x1, x2], [x3, x4]]
2.

For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

c−2 = x3 ⊗ x̂10 + x6 ⊗ x̂11 + x8 ⊗ x̂14 + y4 ⊗ x̂4 + y10 ⊗ ŷ3 + y11 ⊗ ŷ6 + y14 ⊗ ŷ8.

(a2) For a basis of H2(g) we can take the following cocycles (Recall convention (1.1))

deg = −10: c−10 = x̂14 ∧ x̂14,
deg = −8: c−8 = x̂11 ∧ x̂11,
deg = −6: c1−6 = x̂8 ∧ x̂8, c2−6 = x̂10 ∧ x̂10,
deg = −4: c−4 = x̂6 ∧ x̂6,
deg = −2: c−2 = x̂3 ∧ x̂3.

(b1) Let g = oo
(1)
IΠ(5|4) with Cartan matrix

0̄ 1 0 0

1 0 1 0

0 1 0̄ 1

0 0 1 1̄


and basis

x1, x2, x3, x4, x5 = [x1, x2], x6 = [x2, x3], x7 = [x3, x4], x8 = [x3, [x1, x2]],

x9 = [x4, [x2, x3]], x10 = [x4, [x3, x4]], x11 = [x4, [x4, [x2, x3]]],

x12 = [[x1, x2], [x3, x4]], x13 = [[x1, x2], [x4, [x3, x4]]], x14 = [[x3, x4], [x4, [x2, x3]]],

x15 = [[x3, [x1, x2]], [x4, [x3, x4]]], x16 = [x4, [x2, x3]]
2,

x17 = [[x4, [x2, x3]], [[x1, x2], [x3, x4]]], x18 = [[x1, x2], [x3, x4]]
2.

For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

c−4 = x2 ⊗ x̂14 + x5 ⊗ x̂15 + y3 ⊗ x̂10 + y7 ⊗ x̂7 + y10 ⊗ x̂3 + y14 ⊗ ŷ2 + y15 ⊗ ŷ5,
c−2 = x3 ⊗ x̂10 + x6 ⊗ x̂11 + x8 ⊗ x̂13 + y4 ⊗ x̂4 + y10 ⊗ ŷ3 + y11 ⊗ ŷ6 + y13 ⊗ ŷ8.

(b2) For a basis of H2(g) we can take the following cocycles (recall convention (1.1))

c−12 = x̂15 ∧ x̂15, c1−10 = x̂14 ∧ x̂14, c2−10 = x̂13 ∧ x̂13, c−8 = x̂11 ∧ x̂11,
c−6 = x̂8 ∧ x̂8, c1−4 = x̂6 ∧ x̂6, c2−4 = x̂5 ∧ x̂5, c−2 = x̂2 ∧ x̂2.

(c1) Let g = oo
(1)
IΠ(7|2) with Cartan matrix

0 1 0 0

1 0̄ 1 0

0 1 0̄ 1

0 0 1 1
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and basis

x1, x2, x3, x4, x5 = [x1, x2], x6 = [x2, x3], x7 = [x3, x4], x8 = [x3, [x1, x2]],

x9 = [x4, [x2, x3]], x10 = [x4, [x3, x4]], x11 = [x4, [x4, [x2, x3]]],

x12 = [[x1, x2], [x3, x4]], x13 = [[x1, x2], [x4, [x3, x4]]], x14 = [[x3, x4], [x4, [x2, x3]]],

x15 = [[x3, [x1, x2]], [x4, [x3, x4]]], x16 = [[x4, [x2, x3]], [[x1, x2], [x3, x4]]],

x17 = [[x1, x2], [x3, x4]]
2.

For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

c−6 = x1 ⊗ x̂16 + y2 ⊗ x̂14 + y6 ⊗ x̂11 + y9 ⊗ x̂9 + y11 ⊗ x̂6 + y14 ⊗ x̂2 + y16 ⊗ ŷ1,
c−4 = x2 ⊗ x̂14 + x5 ⊗ x̂15 + y3 ⊗ x̂10 + y7 ⊗ x̂7 + y10 ⊗ x̂3 + y14 ⊗ ŷ2 + y15 ⊗ ŷ5,
c−2 = x3 ⊗ x̂10 + x6 ⊗ x̂11 + x8 ⊗ x̂13 + y4 ⊗ x̂4 + y10 ⊗ ŷ3 + y11 ⊗ ŷ6 + y13 ⊗ ŷ8.

(c2) For a basis of H2(g) we can take (the classes of) the following cocycles (recall conven-
tion (1.1))

c−6 = x̂8 ∧ x̂8, c−4 = x̂5 ∧ x̂5, c−2 = x̂1 ∧ x̂1.

(d1) For g = oo
(1)
IΠ(1|8), we have H1(g; g) = 0 and H2(g) = 0.

3.5 Rank 5

Lemma 3.8.

(a1) Let g = oo
(1)
IΠ(7|4) with the following Cartan matrix

0̄ 1 0 0 0

1 0 1 0 0

0 1 0̄ 1 0

0 0 1 0̄ 1

0 0 0 1 1̄


and basis

x1, x2, x3, x4, x5, x6 = [x1, x2], x7 = [x2, x3], x8 = [x3, x4], x9 = [x4, x5],

x10 = [x3, [x1, x2]], x11 = [x4, [x2, x3]], x12 = [x5, [x3, x4]], x13 = [x5, [x4, x5]],

x14 = [x5, [x5, [x3, x4]]], x15 = [[x1, x2], [x3, x4]], x16 = [[x2, x3], [x4, x5]],

x17 = [[x2, x3], [x5, [x4, x5]]], x18 = [[x4, x5], [x3, [x1, x2]]],

x19 = [[x4, x5], [x5, [x3, x4]]], x20 = [[x3, [x1, x2]], [x5, [x4, x5]]],

x21 = [[x4, [x2, x3]], [x5, [x4, x5]]], x22 = [[x5, [x3, x4]], [[x2, x3], [x4, x5]]],

x23 = [[x5, [x4, x5]], [[x1, x2], [x3, x4]]], x24 = [[x5, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]]

x25 = [[x2, x3], [x4, x5]]
2, x26 = [[[x2, x3], [x4, x5]], [[x4, x5], [x3, [x1, x2]]]],

x27 = [[x4, x5], [x3, [x1, x2]]]
2.

For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

c−6 = x2 ⊗ x̂22 + x6 ⊗ x̂24 + y3 ⊗ x̂19 + y8 ⊗ x̂14 + y12 ⊗ x̂12 + y14 ⊗ x̂8 + y19 ⊗ x̂3
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+ y22 ⊗ ŷ2 + y24 ⊗ ŷ6,
c−4 = x3 ⊗ x̂19 + x7 ⊗ x̂21 + x10 ⊗ x̂23 + y4 ⊗ x̂13 + y9 ⊗ x̂9 + y13 ⊗ x̂4 + y19 ⊗ ŷ3

+ y21 ⊗ ŷ7 + y23 ⊗ ŷ10,
c−2 = x4 ⊗ x̂13 + x8 ⊗ x̂14 + x11 ⊗ x̂17 + x15 ⊗ x̂20 + y5 ⊗ x̂5 + y13 ⊗ ŷ4 + y14 ⊗ ŷ8

+ y17 ⊗ ŷ11 + y20 ⊗ ŷ15.

(a2) For a basis of H2(g) we can take the following cocycles (recall convention (1.1))

deg = −16: x̂24 ∧ x̂24, deg = −8: x̂15 ∧ x̂15,
deg = −14: x̂22 ∧ x̂22, x̂23 ∧ x̂23, deg = −6: x̂10 ∧ x̂10, x̂11 ∧ x̂11,
deg = −12: x̂20 ∧ x̂20, x̂21 ∧ x̂21, deg = −4: x̂7 ∧ x̂7, x̂6 ∧ x̂6,
deg = −10: x̂17 ∧ x̂17, deg = −2: x̂2 ∧ x̂2.

(b1) Let g = oo
(1)
IΠ(9|2) with the following Cartan matrix

0 1 0 0 0

1 0̄ 1 0 0

0 1 0̄ 1 0

0 0 1 0̄ 1

0 0 0 1 1̄


and basis

x1, x2, x3, x4, x5, x6 = [x1, x2], x7 = [x2, x3], x8 = [x3, x4], x9 = [x4, x5],

x10 = [x3, [x1, x2]], x11 = [x4, [x2, x3]], x12 = [x5, [x3, x4]], x13 = [x5, [x4, x5]],

x14 = [x5, [x5, [x3, x4]]], x15 = [[x1, x2], [x3, x4]], x16 = [[x2, x3], [x4, x5]],

x17 = [[x2, x3], [x5, [x4, x5]]], x18 = [[x4, x5], [x3, [x1, x2]]],

x19 = [[x4, x5], [x5, [x3, x4]]], x20 = [[x3, [x1, x2]], [x5, [x4, x5]]],

x21 = [[x4, [x2, x3]], [x5, [x4, x5]]], x22 = [[x5, [x3, x4]], [[x2, x3], [x4, x5]]],

x23 = [[x5, [x4, x5]], [[x1, x2], [x3, x4]]], x24 = [[x5, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]],

x25 = [[x2, x3], [x4, x5]], [[x4, x5], [x3, [x1, x2]]]], x26 = [[x4, x5], [x3, [x1, x2]]]
2.

For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

c−8 = y2 ⊗ x̂22 + y7 ⊗ x̂21 + y11 ⊗ x̂17 + y16 ⊗ x̂16 + y17 ⊗ x̂11 + y21 ⊗ x̂7 + y22 ⊗ x̂2
+ x1 ⊗ x̂25 + y25 ⊗ ŷ1,

c−6 = x2 ⊗ x̂22 + x6 ⊗ x̂24 + y3 ⊗ x̂19 + y8 ⊗ x̂14 + y12 ⊗ x̂12 + y14 ⊗ dx8 + y19 ⊗ x̂3
+ y22 ⊗ ŷ2 + y24 ⊗ ŷ6,

c−4 = x3 ⊗ x̂19 + x7 ⊗ x̂21 + x10 ⊗ x̂23 + y4 ⊗ x̂13 + y9 ⊗ x̂9 + y13 ⊗ x̂4 + y19 ⊗ ŷ3
+ y21 ⊗ ŷ7 + y23 ⊗ ŷ10,

c−2 = x4 ⊗ x̂13 + x8 ⊗ x̂14 + x11 ⊗ x̂17 + x15 ⊗ x̂20 + y5 ⊗ x̂5 + y13 ⊗ dy4 + y14 ⊗ ŷ8
+ y17 ⊗ ŷ11 + y20 ⊗ ŷ15.

(b2) For a basis of H2(g) we can take the following cocycles (recall convention (1.1))

deg = −18: x̂25 ∧ x̂25, deg = −8: x̂15 ∧ x̂15,
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deg = −16: x̂24 ∧ x̂24, deg = −6: x̂10 ∧ x̂10,
deg = −14: x̂23 ∧ x̂23, deg = −4: x̂6 ∧ x̂6,
deg = −12: x̂20 ∧ x̂20, deg = −2: x̂1 ∧ x̂1.

(c1) Let g = oo
(1)
IΠ(5|6) with the following Cartan matrix

0̄ 1 0 0 0

1 0̄ 1 0 0

0 1 0 1 0

0 0 1 0̄ 1

0 0 0 1 1̄


and basis

x1, x2, x3, x4, x5, x6 = [x1, x2], x7 = [x2, x3], x8 = [x3, x4], x9 = [x4, x5],

x10 = [x3, [x1, x2]], x11 = [x4, [x2, x3]], x12 = [x5, [x3, x4]], x13 = [x5, [x4, x5]],

x14 = [x5, [x5, [x3, x4]]], x15 = [[x1, x2], [x3, x4]], x16 = [[x2, x3], [x4, x5]],

x17 = [[x2, x3], [x5, [x4, x5]]], x18 = [[x4, x5], [x3, [x1, x2]]],

x19 = [[x4, x5], [x5, [x3, x4]]], x20 = [[x3, [x1, x2]], [x5, [x4, x5]]],

x21 = [[x4, [x2, x3]], [x5, [x4, x5]]], x22 = [[x5, [x3, x4]]
2,

x23 = [[x5, [x3, x4]], [[x2, x3], [x4, x5]]], x24 = [[x5, [x4, x5]], [[x1, x2], [x3, x4]]],

x25 = [[x5, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]], x26 = [[x2, x3], [x4, x5]]
2,

x27 = [[[x2, x3], [x4, x5]], [[x4, x5], [x3, [x1, x2]]]], x28 = [[x4, x5], [x3, [x1, x2]]]
2.

For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

c−4 = x3 ⊗ x̂19 + x7 ⊗ x̂21 + x10 ⊗ x̂24 + y4 ⊗ x̂13 + y9 ⊗ x̂9 + y13 ⊗ x̂4 + y19 ⊗ ŷ3
+ y21 ⊗ ŷ7 + y24 ⊗ ŷ10;

c−2 = x4 ⊗ x̂13 + x8 ⊗ x̂14 + x11 ⊗ x̂17 + x15 ⊗ x̂20 + y5 ⊗ x̂5 + y13 ⊗ ŷ4 + y14 ⊗ ŷ8
+ y17 ⊗ ŷ11 + y20 ⊗ ŷ15.

(c2) For a basis of H2(g) we can take the following cocycles (recall convention (1.1))

deg = −14: x̂24 ∧ x̂24, deg = −6: x̂10 ∧ x̂10, x̂11 ∧ x̂11,
deg = −12: x̂20 ∧ x̂20, x̂21 ∧ x̂21, deg = −4: x̂7 ∧ x̂7, x̂8 ∧ x̂8,
deg = −10: x̂17 ∧ x̂17, x̂19 ∧ x̂19, deg = −2: x̂3 ∧ x̂3.
deg = −8: x̂15 ∧ x̂15, x̂14 ∧ x̂14,

(d1) Let g = oo
(1)
IΠ(3|8) with the following Cartan matrix

0̄ 1 0 0 0

1 0̄ 1 0 0

0 1 0̄ 1 0

0 0 1 0 1

0 0 0 1 1̄
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and basis

x1, x2, x3, x4, x5, x6 = [x1, x2], x7 = [x2, x3], x8 = [x3, x4], x9 = [x4, x5],

x10 = [x3, [x1, x2]], x11 = [x4, [x2, x3]], x12 = [x5, [x3, x4]], x13 = [x5, [x4, x5]],

x14 = [x5, [x5, [x3, x4]]], x15 = [[x1, x2], [x3, x4]], x16 = [[x2, x3], [x4, x5]],

x17 = [x4, x5]
2, x18 = [[x2, x3], [x5, [x4, x5]]], x19 = [[x4, x5], [x3, [x1, x2]]],

x20 = [[[x4, x5], [x5, [x3, x4]]], x21 = [[x3, [x1, x2]], [x5, [x4, x5]]],

x22 = [[x4, [x2, x3]], [x5, [x4, x5]]], x23 = [[x5, [x3, x4]]
2,

x24 = [[x5, [x3, x4]], [[x2, x3], [x4, x5]]], x25 = [[x5, [x4, x5]], [[x1, x2], [x3, x4]]],

x26 = [[x5, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]], x27 = [[x2, x3], [x4, x5]]
2,

x28 = [[[x2, x3], [x4, x5]], [[x4, x5], [x3, [x1, x2]]]].

For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

c−2 = x4 ⊗ x̂13 + x8 ⊗ x̂14 + x11 ⊗ x̂18 + x15 ⊗ x̂21 + y5 ⊗ x̂5 + y13 ⊗ ŷ4
+ y14 ⊗ ŷ8 + y17 ⊗ ŷ11 + y21 ⊗ ŷ15.

(d2) For a basis of H2(g) we can take the following cocycles (recall convention (1.1))

deg = −12: x̂21 ∧ x̂21, deg = −6: x̂11 ∧ x̂11, x̂13 ∧ x̂13,
deg = −10: x̂18 ∧ x̂18, deg = −4: x̂8 ∧ x̂8,
deg = −8: x̂15 ∧ x̂15, x̂14 ∧ x̂14, deg = −2: x̂4 ∧ x̂4.

(e) For g = oo
(1)
IΠ(1|10), we have H2(g) = 0 and H1(g; g) = 0.

Lemma 3.9.

(a) For g = oc(2; 10)⋉KI0, with the following Cartan matrix
0̄ 0 1 0 0

0 0̄ 1 0 0

1 1 0̄ 1 0

0 0 1 0̄ 1

0 0 0 1 0̄


and basis

x1, x2, x3, x4, x5, x6 = [x1, x3], x7 = [x2, x3], x8 = [x3, x4], x9 = [x4, x5],

x10 = [x2, [x1, x3]], x11 = [x4, [x1, x3]], x12 = [x4, [x2, x3]], x13 = [x5, [x3, x4]],

x14 = [x4, [x2, [x1, x3]]], x15 = [[x1, x3], [x4, x5]], x16 = [[x2, x3], [x4, x5]],

x17 = [[x3, x4], [x2, [x1, x3]]], x18 = [[x4, x5], [x2, [x1, x3]]],

x19 = [[x2, [x1, x3]], [x5, [x3, x4]]], x20 = [[x5, [x3, x4]], [x4, [x2, [x1, x3]]]].

as well as for ooc(2; 8|2) ⋉ KI0, and ooc(2; 6|4) ⋉ KI0, and g = pec(2; 5) ⋉ KI0, with the
same Cartan matrix, but 0 instead of 0̄ in the respective places on the main diagonal, for
a basis of H1(g; g) we can take the following derivation:

c0 = h1 ⊗ D̂6 + h2 ⊗ D̂6,

(see Remark 1.2). We have H2(g) = 0.
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(b) For g = oc(2; 10)/c, ooc(2; 8|2)/c, and ooc(2; 6|4)/c, as well as g = pec(2; 5)/c, for a basis
of H1(g; g) we can take the following derivations (recall convention (1.1))

c−8 = y5 ⊗ x̂20 + y9 ⊗ x̂19 + y13 ⊗ x̂18 + y15 ⊗ x̂16 + y16 ⊗ x̂15 + y18 ⊗ x̂13
+ y19 ⊗ x̂9 + y20 ⊗ x̂5,

c−6 = x5 ⊗ x̂20 + y4 ⊗ x̂17 + y8 ⊗ x̂14 + y11 ⊗ x̂12 + y12 ⊗ x̂11 + y14 ⊗ x̂8
+ y17 ⊗ x̂4 + y20 ⊗ ŷ5,

c−4 = x4 ⊗ x̂17 + x9 ⊗ x̂19 + y3 ⊗ x̂10 + y6 ⊗ x̂7 + y7 ⊗ x̂6 + y10 ⊗ x̂3
+ y17 ⊗ ŷ4 + y19 ⊗ ŷ9,

c−2 = x3 ⊗ x̂10 + x8 ⊗ x̂14 + x13 ⊗ x̂18 + y1 ⊗ x̂2 + y2 ⊗ x̂1 + y10 ⊗ ŷ3
+ y14 ⊗ ŷ8 + y18 ⊗ ŷ13,

c10 = x2 ⊗ x̂1 + x7 ⊗ x̂6 + x12 ⊗ x̂11 + x16 ⊗ x̂15 + y1 ⊗ ŷ2 + y6 ⊗ ŷ7
+ y11 ⊗ ŷ12 + y15 ⊗ ŷ16,

c20 = x1 ⊗ x̂2 + x6 ⊗ x̂7 + x11 ⊗ x̂12 + x15 ⊗ x̂16 + y2 ⊗ ŷ1 + y7 ⊗ ŷ6
+ y12 ⊗ ŷ11 + y16 ⊗ ŷ15,

c30 = x2 ⊗ x̂2 + x4 ⊗ x̂4 + x7 ⊗ x̂7 + x8 ⊗ x̂8 + x9 ⊗ x̂9 + x10 ⊗ x̂10 + x11 ⊗ x̂11
+ x13 ⊗ x̂13 + x15 ⊗ x̂15 + x20 ⊗ x̂20 + y2 ⊗ ŷ2 + y4 ⊗ ŷ4 + y7 ⊗ ŷ7 + y8 ⊗ ŷ8
+ y9 ⊗ ŷ9 + y10 ⊗ ŷ10 + y11 ⊗ ŷ11 + y13 ⊗ ŷ13 + y15 ⊗ ŷ15 + y20 ⊗ ŷ20.

(c) For g = ooc(2; 6|4)/c and parities of the Chevalley generators being (0, 0, 1, 0, 0), for a basis
of H2(g) we can take the following cocycles (recall convention (1.1))

c−10 = x̂18 ∧ x̂18,
c1−8 = x̂14 ∧ x̂14, c2−8 = x̂15 ∧ x̂15, c3−8 = x̂16 ∧ x̂16,
c4−8 = x̂5 ∧ x̂20 + x̂9 ∧ x̂19 + x̂13 ∧ x̂18 + x̂15 ∧ x̂16,
c1−6 = x̂11 ∧ x̂11, c2−6 = x̂12 ∧ x̂12, c3−6 = x̂10 ∧ x̂10, c4−6 = x̂13 ∧ x̂13,
c5−6 = x̂4 ∧ x̂17 + x̂8 ∧ x̂14 + x̂11 ∧ x̂12 + x̂20 ∧ ŷ5,
c1−4 = x̂6 ∧ x̂6, c2−4 = x̂7 ∧ x̂7, c3−4 = x̂3 ∧ x̂10 + x̂6 ∧ x̂7 + x̂17 ∧ ŷ4 + x̂19 ∧ ŷ9,
c1−2 = x̂3 ∧ x̂3, c2−2 = x̂1 ∧ x̂2 + x̂10 ∧ ŷ3 + x̂14 ∧ ŷ8 + x̂18 ∧ ŷ13,
c10 = x̂1 ∧ ŷ2 + x̂6 ∧ ŷ7 + x̂11 ∧ ŷ12 + x̂15 ∧ ŷ16,
c20 = x̂2 ∧ ŷ1 + x̂7 ∧ ŷ6 + x̂12 ∧ ŷ11 + x̂16 ∧ ŷ15,
c30 = x̂2 ∧ ŷ2 + x̂5 ∧ ŷ5 + x̂7 ∧ ŷ7 + x̂9 ∧ ŷ9 + x̂10 ∧ ŷ10 + x̂12 ∧ ŷ12 + x̂13 ∧ ŷ13

+ x̂14 ∧ ŷ14 + x̂15 ∧ ŷ15 + x̂17 ∧ ŷ17.

(d) For g = ooc(2; 8|2)/c and parities of the Chevalley generators being (0, 0, 0, 0, 1), for a basis
of H2(g) we can take the following cocycles (recall convention (1.1))

c−14 = x̂20 ∧ x̂20,
c−12 = x̂19 ∧ x̂19,
c−10 = x̂18 ∧ x̂18,
c1−8 = x̂15 ∧ x̂15, c2−8 = x̂16 ∧ x̂16, c3−8 = x̂5 ∧ x̂20 + x̂9 ∧ x̂19 + x̂13 ∧ x̂18 + x̂15 ∧ x̂16,
c1−6 = x̂4 ∧ x̂17 + x̂8 ∧ x̂14 + x̂11 ∧ x̂12 + x̂20 ∧ ŷ5, c2−6 = x̂13 ∧ x̂13,
c1−4 = x̂6 ∧ x̂6, c2−4 = x̂9 ∧ x̂9, c3−4 = x̂3 ∧ x̂10 + x̂6 ∧ x̂7 + x̂17 ∧ ŷ4 + x̂19 ∧ ŷ9,
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c1−2 = x̂1 ∧ x̂2 + x̂10 ∧ ŷ3 + x̂14 ∧ ŷ8 + x̂18 ∧ ŷ13, c2−2 = x̂5 ∧ x̂5,
c10 = x̂1 ∧ ŷ2 + x̂6 ∧ ŷ7 + x̂11 ∧ ŷ12 + x̂15 ∧ ŷ16, c20 = x̂2 ∧ ŷ1 + x̂7 ∧ ŷ6 + x̂12 ∧ ŷ11

+ x̂16 ∧ ŷ15,
c30 = x̂2 ∧ ŷ2 + x̂5 ∧ ŷ5 + x̂7 ∧ ŷ7 + x̂9 ∧ ŷ9 + x̂10 ∧ ŷ10 + x̂12 ∧ ŷ12 + x̂13 ∧ ŷ13

+ x̂14 ∧ ŷ14 + x̂15 ∧ ŷ15 + x̂17 ∧ ŷ17.

(e) For g = pec(2; 5)/c and parities of the Chevalley generators being (1, 0, 0, 0, 0), for a basis
of H2(g) we can take the following cocycles (recall convention (1.1))

c−14 = x̂20 ∧ x̂20, c−12 = x̂19 ∧ x̂19, c−10 = x̂18 ∧ x̂17,
c1−8 = x̂14 ∧ x̂14, c2−8 = x̂15 ∧ x̂15, c3−8 = x̂5 ∧ x̂20 + x̂9 ∧ x̂19 + x̂13 ∧ x̂18 + x̂15 ∧ x̂16,
c1−6 = x̂11 ∧ x̂11, c2−6 = x̂10 ∧ x̂10, c3−6 = x̂4 ∧ x̂17 + x̂8 ∧ x̂14 + x̂11 ∧ x̂12 + x̂20 ∧ ŷ5,
c1−4 = x̂6 ∧ x̂6, c2−4 = x̂3 ∧ x̂10 + x̂6 ∧ x̂7 + x̂17 ∧ ŷ4 + x̂19 ∧ ŷ9,
c1−2 = x̂1 ∧ x̂2 + x̂10 ∧ ŷ3 + x̂14 ∧ ŷ8 + x̂18 ∧ ŷ13, c2−2 = x̂1 ∧ x̂1,
c10 = x̂1 ∧ ŷ2 + x̂6 ∧ ŷ7 + x̂11 ∧ ŷ12 + x̂15 ∧ ŷ16,
c20 = x̂2 ∧ ŷ1 + x̂7 ∧ ŷ6 + x̂12 ∧ ŷ11 + x̂16 ∧ ŷ15,
c30 = x̂2 ∧ ŷ2 + x̂5 ∧ ŷ5 + x̂7 ∧ ŷ7 + x̂9 ∧ ŷ9 + x̂10 ∧ ŷ10 + x̂12 ∧ ŷ12 + x̂13 ∧ ŷ13

+ x̂14 ∧ ŷ14 + x̂15 ∧ ŷ15 + x̂17 ∧ ŷ17.

(f) For g = oc(2; 10)/c, for a basis of H2(g) we can take the following cocycles (recall conven-
tion (1.1))

c1−8 = x̂5 ∧ x̂20 + x̂9 ∧ x̂19 + x̂13 ∧ x̂18 + x̂15 ∧ x̂16,
c1−6 = x̂4 ∧ x̂17 + x̂8 ∧ x̂14 + x̂11 ∧ x̂12 + x̂20 ∧ ŷ5,
c1−4 = x̂3 ∧ x̂10 + x̂6 ∧ x̂7 + x̂17 ∧ ŷ4 + x̂19 ∧ ŷ9,
c1−2 = x̂1 ∧ x̂2 + x̂10 ∧ ŷ3 + x̂14 ∧ ŷ8 + x̂18 ∧ ŷ13,
c10 = x̂1 ∧ ŷ2 + x̂6 ∧ ŷ7 + x̂11 ∧ ŷ12 + x̂15 ∧ ŷ16,
c20 = x̂2 ∧ ŷ1 + x̂7 ∧ ŷ6 + x̂12 ∧ ŷ11 + x̂16 ∧ ŷ15,
c30 = x̂2 ∧ ŷ2 + x̂5 ∧ ŷ5 + x̂7 ∧ ŷ7 + x̂9 ∧ ŷ9 + x̂10 ∧ ŷ10 + x̂12 ∧ ŷ12 + x̂13 ∧ ŷ13

+ x̂14 ∧ ŷ14 + x̂15 ∧ ŷ15 + x̂17 ∧ ŷ17.

3.6 Any rank

For the following orthogonal Lie algebras and ortho-orthogonal Lie superalgebras, the pattern
is clear for any rank, and the answer is given in the following lemmas.

Lemma 3.10.

(a1) For g = oΠ(2), for a basis of H1(g; g) we can take the following derivations:

12 ⊗ 1̂2 + E1,2 ⊗ Ê1,2, E1,2 ⊗ Ê1,2 + E2,1 ⊗ Ê2,1.

(a2) For g = oΠ(2n) and n > 2, for a basis of H1(g; g) we can take the following derivations:

12n ⊗ Êi,n+i for i = 1, . . . , n,

12n ⊗ Ên+i,i for i = 1, . . . , n;
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1≤i≤n

(Ei,n + E2n,n+i)⊗
( ̂Ei,n + E2n,n+i

)
+
∑

1≤i≤n

(En,i + En+i,2n)⊗
( ̂En,i + En+i,2n

)
+
∑

1≤i≤n

Ei,n+i ⊗ Êi,n+i +
∑

1≤i≤n

En+i,i ⊗ Ên+i,i.

(b1) For g = oΠ(2), for a basis of H2(g) we can take the following cocycles:

12 ∧ Ê1,2, 12 ∧ Ê2,1.

(b2) For g = oΠ(2n), where n > 1, for a basis of H2(g) we can take the following cocycles:

Êi,i+n ∧ Êj,j+n, 1 ≤ i < j ≤ n,(
Êi,i + Êi+n,i+n

)
∧ Êi,i+n

+
∑

1≤j≤n,i ̸=j

(
Êi,j + Êj+n,i+n

)
∧
(
Êj,i+n + Êi,j+n

)
, i = 1, . . . , n,

Êi,i+n ∧ Êj+n,j , 1 ≤ i, j ≤ n, except for (i, j) = (n, n),(
Êi,i + Êi+n,i+n

)
∧ Êi+n,i

+
∑

1≤j≤n,i ̸=j

(
Êj,i + Êi+n,j+n

)
∧
(
Êi+n,j + Êj+n,i

)
, i = 1, . . . , n,

Êi+n,i ∧ Êj+n,j , 1 ≤ i < j ≤ n.

4 Orthogonal series oI(2n) and its super versions
in characteristic 2

In this section, we consider Lie superalgebras none of whose relatives has Cartan matrix. Let
Xi,j := Ei,j + Ej,i.

Lemma 4.1.

(a) Observe that the Lie algebra o
(1)
I (4) is not simple; we consider it for completeness of the

picture. For g = o
(1)
I (4), for a basis of H1(g; g) we can take the following derivations of

degree 0:

� regular cases as for any n

X1,2 ⊗ X̂1,2 +X1,3 ⊗ X̂1,3 +X1,4 ⊗ X̂1,4,

X1,2 ⊗ X̂1,2 +X2,3 ⊗ X̂2,3 +X2,4 ⊗ X̂2,4,

X1,3 ⊗ X̂1,3 +X2,3 ⊗ X̂2,3 +X3,4 ⊗ X̂3,4;

� exceptional cases

X1,2 ⊗ X̂3,4 +X1,3 ⊗ X̂2,4 +X2,3 ⊗ X̂1,4,

X1,2 ⊗ X̂3,4 +X1,4 ⊗ X̂2,3 +X2,4 ⊗ X̂1,3,

X1,3 ⊗ X̂2,4 +X1,4 ⊗ X̂2,3 +X3,4 ⊗ X̂1,2.

The space H2(g) is spanned by two cocycles:

X̂1,2 ∧ X̂3,4 + X̂1,3 ∧ X̂2,4, X̂1,2 ∧ X̂3,4 + X̂1,4 ∧ X̂2,3.
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(b) For g = o
(1)
I (n), where n > 4 or n = 3, for a basis of H1(g; g) we can take the following

n− 1 derivations of degree 0 and the following form:

X1,2 ⊗ X̂1,2 +X1,3 ⊗ X̂1,3 + · · ·+X1,n ⊗ X̂1,n,

X1,2 ⊗ X̂1,2 +X2,3 ⊗ X̂2,3 + · · ·+X2,n ⊗ X̂2,n,

X1,3 ⊗ X̂1,3 +X2,3 ⊗ X̂2,3 + · · ·+X3,n ⊗ X̂3,n,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

X1,n−1 ⊗ X̂1,n−1 +X2,n−1 ⊗ X̂2,n−1 + · · ·+Xn−1,n ⊗ X̂n−1,n.

We have H2(g) = 0.

Statement 4.2 ([42]). For n = 3 or n ≥ 5, the algebra der o
(1)
I (n) can be identified with oI(n)/c

in the sense that for any D ∈ der o
(1)
I (n), there is AD ∈ oI(n) such that D coincides with the

restriction of adAD
to o

(1)
I (n); for a given D, the element AD is uniquely defined up to adding

a multiple of 1n.

Proof. In this proof, i, j, k, l, m are always indices from 1 through n.

The algebra o
(1)
I (n) consists of zero-diagonal symmetric n×n matrices, which means that the

elements o{i,j} := Ei,j +Ej,i, where {i, j} are all two-element subsets of {1, . . . , n}, form a basis

of o
(1)
I (n). Their commutation relations are (we assume that i ̸= j and k ̸= l):

[
o{i,j}, o{k,l}

]
=

{
0 if {k, l} = {i, j} or {k, l} ∩ {i, j} = ∅,

o{j,k} for k ̸= i, j.

Alternatively, we can say that for an arbitrary matrix M ∈ o
(1)
I (n) and i ̸= j, we have[

M, o{i,j}
]
kl
= 0 if {k, l} = {i, j} or {k, l} ∩ {i, j} = ∅,[

M, o{i,j}
]
ik

=
[
M, o{i,j}

]
ki

=Mjk for k ̸= i, j,[
M, o{i,j}

]
kk

= 0 for an arbitrary k.

Let D be a derivation of o
(1)
I (n). Let us prove that for arbitrary three pairwise distinct in-

dices i, j, k,(
Do{i,j}

)
ij
+
(
Do{i,k}

)
ik
+
(
Do{j,k}

)
jk

= 0, (4.1)

and for arbitrary four pairwise distinct indices i, j, k, l,(
Do{i,j}

)
kl
= 0, (4.2)(

Do{i,k}
)
il
=
(
Do{j,k}

)
jl
=
(
Do{i,l}

)
ik
. (4.3)

Since o{i,k} =
[
o{i,j}, o{j,k}

]
, we have(

Do{i,k}
)
ik

=
(
D[o{i,j}, o{j,k}]

)
ik

=
[
Do{i,j}, o{j,k}

]
ik
+
[
o{i,j}, Do{j,k}

]
ik

=
(
Do{i,j}

)
ij
+
(
Do{k,j}

)
jk
,

which proves (4.1).
Note that (4.2) and (4.3) are vacuously true for n = 3, since in this case, there exist no four

pairwise distinct indices. In case of n ≥ 5, let m be an index different from all of i, j, k, l. Then,[
o{i,j}, o{l,m}] = 0, which means that

0 =
(
D[o{i,j}, o{l,m}]

)
km

=
[
Do{i,j}, o{l,m}]

km
+
[
o{i,j}, Do{l,m}]

km
=
(
Do{i,j}

)
kl
+ 0,
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which proves (4.1). Since o{i,k} =
[
o{i,j}, o{j,k}

]
, we have(

Do{i,k}
)
il
=
(
D[o{i,j}, o{j,k}]

)
il
=
[
Do{i,j}, o{j,k}

]
il
+
[
o{i,j}, Do{j,k}

]
il
= 0 +

(
Do{j,k}

)
jl
,

which proves the first part of (4.3). And since o{i,k} = [o{i,l}, o{k,l}], we have(
Do{i,k}

)
il
=
(
D[o{i,l}, o{k,l}]

)
il
=
[
Do{i,l}, o{k,l}

]
il
+
[
o{i,l}, Do{k,l}

]
il
=
(
Do{i,l}

)
ik
+ 0,

which proves the second part of (4.3).
Now consider matrix AD whose entries are as follows:

(AD)11 = 0,

(AD)ii =
(
Do{1,i}

)
1i

for i ̸= 1,

(AD)ij =
(
Do{k,i}

)
kj

for i ̸= j, where k ̸= i, j.

Note that (4.3) shows that (AD)ij does not depend on the choice of k and that the matrix is
symmetric, i.e., (AD)ij = (AD)ji.

It follows from (4.1), (4.2) and (4.3) that Do{i,j} =
[
AD, o

{i,j}] for an arbitrary o{i,j}. (More

specifically, using (4.1), (4.2) and (4.3), one can show that
(
Do{i,j}

)
kl

=
(
[AD, o

{i,j}]
)
kl

for any
indices k and l.)

To have a clear conscience, one has to consider also several cases depending on whether some
of the indices i, j, k, l coincide. We did consider these cases, but skip here these boring details
of the proof.

Since the o{i,j} form a basis of o
(1)
I (n), it means that D coincides with the restriction of adAD

to o
(1)
I (n). On the other hand, it is easy to check that for any matrix A ∈ oI(n), the restriction

of adA to o
(1)
I (n) is a derivation of o

(1)
I (n), and two matrices A,A′ ∈ oI(n) determine the same

derivation of o
(1)
I (n) if and only if A−A′ = c1n for some c ∈ K. This proves our claim. ■

Lemma 4.3.

(a) For g = o
(1)
Π (2n+1), for a basis of H1(g; g) we can take 2n derivations of weight ±2,±4, . . . ,

±2n, and hence der g = oΠ(2n+ 1). We have H2(g) = 0 (checked for n ≤ 6).

(b) For g = oI(2n), for a basis of H1(g; g) we can take n derivations ci = 1n ⊗ Êi,i, where

i = 1, . . . , n. The space H2(g) is spanned by ci,j = Êi,i ∧ Êj,j, where i, j = 1, . . . , n and
i < j (checked for n ≤ 6).

(c) For g = oo
(1)
IΠ(1|2k), for a basis of H1(g; g) we can take 2k derivations whose weights are

±2,± . . . ,±2k, and hence der g = ooIΠ(1|2k). We have H2(g) = 0 (checked for n ≤ 6).

(d) For g = oo
(1)
IΠ(2n+ 1|2k) and n ̸= 0, for a basis of H1(g; g) we can take 2n derivations of

weight ±2,±4, . . . ,±2n, and hence der g = ooIΠ(2n+ 1|2k). The space H2(g) is spanned
by x̂i ∧ x̂i such that xi is odd and x2i = 0, as well as ŷi ∧ ŷi (checked for (n, k) such that
n ≤ 3 and k ≤ 4).

5 Simple symmetric Lie (super)algebras without Cartan matrix
for p = 2

5.1 Shen’s analog gs(2) of g(2) and the Melikyan algebra for p = 2

For a description of the Lie algebra, which we call gs(2), in terms of a multiplication table,
see [54]; as a CTS-prolong it is described in [10].
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In [22], Brown described analogs of the Melikyan algebras in characteristic 2 as follows. Recall
that for any vect(n;N)-O(n;N)-bimodule M with the vect(n;N)-action ρ, we denote by Madiv

a copy of M with the affine vect(nN)-action given by

ρa div(D)(µ) = ρ(D)(µ) + a div(D)(µ),

for any D ∈ vect(n;N), µ ∈M and a ∈ K. As spaces, and Z/3-graded Lie algebras, let

L(N) := g0̄ ⊕ g1̄ ⊕ g2̄ ≃ vect(2;N)⊕O(2;N)div ⊕O(2;N) , (5.1)

where O(2;N) = K[u1, u2;N ] is the space of functions; O(2;N)div is the space of volume forms
with volume element v := vol(u) as the generator of rank 1 module over the algebra O(2;N)
of functions. The g0̄-action on the gī is natural (adjoint, on the space of volume forms and
functions, respectively).

The multiplication in L(N) is given, for any f, g ∈ O(2;N), by the following formulas:

[fv, gv] = 0, [fv, g] = fHg, [f, g] := Hf (g)v,

where

Hf =
∂f

∂u1
∂u2 +

∂f

∂u2
∂u1 .

Define a Z-grading of L(N) by setting

deg ur∂i = 3|r| − 3, deg urv = 3|r| − 2, deg ur = 3|r| − 4.

Now, set me(5;N) := L(N)/L(N)−4. This algebra is not simple, because O(2;N)div has a sub-
module of codimension 1; but me(1)(5;N) is simple. This is an analog of the Melikyan algebra,
hence the name.

In [29], the Lie algebrame(1)(5;1), where 1 = (1, . . . , 1), is denoted by Bro2(1, 1). This algebra
was discovered by Shen Guangyu, see [54], and should be denoted somehow to commemorate
this, so notation gs(2) := me(1)(5;1) for this analog of g(2) (and Guangyu Shen in Western
order: first name, last name) seems most appropriate.

The nonpositive components of me(1)(5;N) and gs(2) are the same; they are expressed in
terms of vector fields, where ∂i := ∂xi to distinguish from ∂ui ; we use both representations in
terms of x and u, whichever is more convenient:

gi the generators

g−3 ∂u1 ←→ ∂1, ∂u2 ←→ ∂2

g−2 v ←→ ∂3

g−1 u1 ←→ (x3 + x4x5)∂2 + ∂4, u2 ←→ x3∂1 + x4∂3 + ∂5

g0 u1∂1 ←→ x1∂1 + x3∂3 + x4∂4,

X+
1 := u1∂u2 := x

(3)
5 ∂1 +

(
x1 + x4x

(2)
5

)
∂2 + x

(2)
5 ∂3 + x5∂4

X−
1 := u2∂u1 :=

(
x2 + x

(2)
4 x5

)
∂1 + x

(3)
4 ∂2 ++x

(2)
4 ∂3 + x4∂5

u2∂u2 ←→ x2∂2 + x3∂3 + x5∂5

The highest weight vector in g−1 is X−
2 := u1. Consider the positive part of g = gs(2). The

lowest weight vector in g1 is given by the vector field

X+
2 := x

(3)
4 x5∂2 +

(
x2 + x

(2)
4 x5

)
∂3 + x4x5∂5 (= u2v).
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So far, the generators and the dimensions of the components look as their namesakes of g(2) for
p > 3; however, the relations are different: To facilitate comparison with presentations in terms
of Chevalley generators, set Hi := [X+

i , X
−
i ], i.e.,

H1 = x1∂1 + x2∂2 + x4∂4 + x5∂5 (= u1∂1 + u2∂2),

H2 = x2∂2 + x3∂3 + x5∂5 (= u2∂2).

Clearly, H1 is the central element of g0. It takes less space to designate certain invariants of the
algebra gs(2) in terms of the indeterminates u, as in (5.1); e.g., the cocycles in Lemma 5.1; for
the grading element of g0 we can take u2∂u2 , see [12].

Lemma 5.1. For g = gs(2):

1) The multiplication table is as follows:

[H1, X
+
1 ] = 0, [H2, X

+
1 ] = X+

1 , [H1, H2] = 0,

[H1, X
+
2 ] = X+

2 , [H2, X
+
2 ] = 0, [X−

1 , X
−
2 ] = u2,

[H1, X
−
1 ] = 0, [H2, X

−
1 ] = X−

1 , [X+
1 , X

+
2 ] = u1v,

[H1, X
−
2 ] = X−

2 , [H2, X
−
2 ] = 0, [X±

1 , X
∓
2 ] = 0.

The defining relations between the positive and negative root vectors corresponding to simple
roots are as follows:

ad2
X+

1
(X+

2 ) = 0, ad2
X+

2
(X+

1 ) = 0,

ad4
X−

2
(X−

1 ) = 0, ad2
X−

1

(
ad3

X−
2
(X−

1 )
)
= 0,

adX−
2
adX−

1

(
ad3

X−
2
(X−

1 )
)
= 0, ad2

X−
1
(X−

2 ) = 0.

2) Outer derivations. For a basis of the space H1(g; g) we take the following derivations:

c−4 = ∂u1 ⊗ û2v + ∂u2 ⊗ û1v + v ⊗ û1u2 + u1 ⊗ ̂u1u2∂u2 + u2 ⊗ ̂u1u2∂u1 ,

c1−2 = ∂u2 ⊗ û2 + v ⊗ û2∂u1 + u1v ⊗ ̂u1u2∂u1 + u1∂u2 ⊗ û1u2,

c2−2 = ∂u1 ⊗ û1 + v ⊗ û1∂u2 + u2v ⊗ ̂u1u2∂u2 + u2∂u1 ⊗ û1u2,

c12 = u2 ⊗
(
∂̂u2

)
+ u2v ⊗ (û1) + u2∂u1 ⊗ (v̂) + u1u2 ⊗

(
û1∂u2

)
+ u1u2∂u1 ⊗ (û1v),

c22 = u1 ⊗
(
∂̂u1

)
+ u1v ⊗ (û2) + u1∂u2 ⊗ (v̂) + u1u2 ⊗

(
û2∂u1

)
+ u1u2∂u2 ⊗ (û2v),

c4 = u2v ⊗
(
∂̂u1

)
+ u1v ⊗

(
∂̂u2

)
+ u1u2∂u2 ⊗ (û1) + u1u2∂u1 ⊗ (û2).

3) Central extensions. For a basis of the space H2(g) we take (the classes of) the following
cocycles:

c1−2 = (û2) ∧
( ̂u1u2∂u1

)
+
(
û2∂u1

)
∧ (û1u2),

c2−2 = (û1) ∧
( ̂u1u2∂u2

)
+
(
û1∂u2

)
∧ (û1u2),

c4 =
(
∂̂u1

)
∧
(
û1
)
+
(
∂̂u2

)
∧ (û2).

6 Queerifications

Let us recall necessary definitions from [17].
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6.1 Queerification for p ̸= 2

Let A be an associative algebra; let AL be the Lie algebra with the same space as A and the
multiplication being defined by the commutator instead of the dot product (usually denoted by
juxtaposition). The space of the Lie superalgebra q(A), which we call the queerification of A,
is AL ⊕Π(A), where Π is the change of parity functor, so q(A)0̄ = AL and q(A)1̄ = Π(A), with
the multiplication given by the following expressions for any x, y ∈ A:

[x, y] = xy − yx ∈ q(A)0̄, [x,Π(y)] = Π(xy − yx) ∈ q(A)1̄,
[Π(x),Π(y)] = xy + yx ∈ q(A)0̄.

The term “queer”, now universally accepted, comes from the name of the Lie superalgebra
q(n) := q(Mat(n)), a “queer” analog (for reasons given in [6]) of gl(n), where Mat(n) is the
associative algebra of n× n matrices. We express the elements of the Lie superalgebra g = q(n)
by means of a pair of matrices

(A,B)←→

(
A B

B A

)
∈ q(n),

where A,B ∈ gl(n).
We will similarly denote the elements of q(A) by pairs (A,B), where A,B ∈ A. The brackets

between these basis elements are as follows:

[(A1, 0), (A2, 0)] = ([A1, A2], 0), [(A, 0), (0, B)] = (0, [A,B]),

[(0, B1), (0, B2)] = (B1B2 +B2B1, 0). (6.1)

6.1.1 The simple part of q(n) for p ̸= 2

Let qtr : (A,B) 7→ trB be called the queer trace; let sq(n) := q(n)(1) denote the subsuperalgebra
of queer-traceless matrices. The Lie superalgebras q(n) and sq(n) are specifically “super” analogs
of the general Lie algebra gl(n) and its special (traceless) subalgebra sl(n); we define their
projectivisations to be pq(n) := q(n)/K12n and psq(n) := sq(n)/K12n.

One might think that if n = pk, then psq(n) is not simple: its even part is pgl(n), its odd
part is Π(sl(n)). However, the two highest weight vectors, one in each homogeneous component,
together with the two lowest weight vectors, one in each homogeneous component, generate
a simple Lie superalgebra.

6.2 Queerification for p = 2

For g = q(A), where A is an associative algebra, the multiplication is defined by the expres-
sions (6.1), the bracket of odd elements is the polarization of squaring of the odd elements:

(0, B)2 =
(
B2, 0

)
.

If p = 2, it is possible to queerify, not only associative algebras, but also any restricted Lie
algebra g. Namely, set q(g)0̄ = g and q(g)1̄ = Π(g); define the multiplication involving the odd
elements as follows, where x 7−→ x[2] is the 2-structure:

[x,Π(y)] = Π([x, y]), (Π(x))2 = x[2] for any x, y ∈ g.

Clearly, if g is restricted and i ⊂ q(g) is an ideal, then i0̄ and Π(i1̄) are ideals in g. So, if g is
restricted and simple, then q(g) is a simple Lie superalgebra. (Note that g has to be simple as
a Lie algebra, not just as a restricted Lie algebra, i.e., g is not allowed to have any ideals, not
only restricted ones.) A generalization of the queerification is the following procedure producing
a simple Lie superalgebras for any simple Lie algebras.
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6.2.1 Generalized queerification

Let the 1-step restricted closure g⟨1⟩ of the simple Lie algebra g be the minimal subalgebra of
the (classically) restricted closure g containing g and all the elements x[2], where x ∈ g, see [17].
To any simple Lie algebra g the generalized queerification assigns the simple Lie superalgebra

q̃(g) := g⟨1⟩ ⊕Π(g)

with squaring given by (Π(x))2 = x[2] for any x ∈ g. Obviously, for g restricted, the generalized
queerification coincides with the queerification: q̃(g) = q(g).

Lemma 6.1. Let g = q̃(wk(1)(3; a)/c) for a ̸= 0, 1 (for the excluded values of a, the algebra
wk(1)(3; a)/c is not simple).

(a) For a basis of H1(g; g) we can take the following derivations (if a = 1 the cohomology is
the same, but if a = 0 the cohomology is 6-dimensional; since the algebra is not simple,
we skip the answer) for the Chevalley basis of wk(3; a) considered in formula (2.4)

c10 = h1 ⊗Π(ĥ1) + h2 ⊗Π(ĥ2) + x1 ⊗Π(x̂1) + x5 ⊗Π(x̂5) + x6 ⊗Π(x̂6)

+ y1 ⊗Π(ŷ1) + y5 ⊗Π(ŷ5) + y6 ⊗Π(ŷ6) + Π(x2)⊗ x̂2 +Π(x3)⊗ x̂3
+Π(x4)⊗ x̂4 +Π(x7)⊗ x̂7 +Π(y2)⊗ ŷ2 +Π(y3)⊗ ŷ3 +Π(y4)⊗ ŷ4
+Π(y7)⊗ ŷ7,

c20 = x3 ⊗ x̂3 + x5 ⊗ x̂5 + x6 ⊗ x̂6 + x7 ⊗ x̂7 + y3 ⊗ ŷ3 + y5 ⊗ ŷ5 + y6 ⊗ ŷ6 + y7 ⊗ ŷ7
+Π(h1)⊗Π(ĥ1) + Π(h2)⊗Π(ĥ2) + Π(x1)⊗Π(x̂1) + Π(x2)⊗Π(x̂2)

+ Π(x4)⊗Π(x̂4) + Π(y1)⊗Π(ŷ1) + Π(y2)⊗Π(ŷ2) + Π(y4)⊗Π(ŷ4),

c30 = h1 ⊗Π(ĥ1) + h2 ⊗Π(ĥ2) + x1 ⊗Π(x̂1) + x2 ⊗Π(x̂2) + x3 ⊗Π(x̂3)

+ x4 ⊗Π(x̂4) + x5 ⊗Π(x̂5) + x6 ⊗Π(x̂6) + x7 ⊗Π(x̂7) + y1 ⊗Π(ŷ1)

+ y2 ⊗Π(ŷ2) + y3 ⊗Π(ŷ3) + y4 ⊗Π(ŷ4) + y5 ⊗Π(ŷ5) + y6 ⊗Π(ŷ6)

+ y7 ⊗Π(ŷ7).

(b) The space H2(g) is spanned by the following cocycles:

c−8 = Π(x̂7) ∧Π(x̂7),

c−6 = Π(x̂6) ∧Π(x̂6),

c1−4 = Π(x̂4) ∧Π(x̂4), c2−4 = Π(x̂5) ∧Π(x̂5),

c1−2 = Π(x̂1) ∧Π(x̂1), c2−2 = Π(x̂2) ∧Π(x̂2), c3−2 = Π(x̂3) ∧Π(x̂3),

c10 =
(
α2 + α

)
x̂7 ∧Π(ŷ7) +

(
α2 + α

)
ŷ7 ∧Π(x̂7) + αx̂5 ∧Π(ŷ5) + αŷ5 ∧Π(x̂5)

+ x̂1 ∧Π(ŷ1) + x̂2 ∧Π(ŷ2) + ŷ1 ∧Π(x̂1) + ŷ2 ∧Π(x̂2),

c20 = α2Π(ĥ2) ∧Π(ĥ1) +
(
α2 + α

)
Π(x̂7) ∧Π(ŷ7) + αΠ(x̂6) ∧Π(ŷ6) + αx̂5 ∧ ŷ5

+Π(x̂2) ∧Π(ŷ2) + x̂1 ∧ ŷ1 + x̂3 ∧ ŷ3 + x̂4 ∧ ŷ4,

c30 = α2Π(ĥ2) ∧Π(ĥ1) +
(
α2 + α

)
x̂7 ∧ ŷ7 + αΠ(x̂5) ∧Π(ŷ5) + αΠ(x̂6) ∧Π(ŷ6)

+ Π(x̂1) ∧Π(ŷ1) + x̂2 ∧ ŷ2 + x̂3 ∧ ŷ3 + x̂4 ∧ ŷ4,

c40 = Π(ĥ1) ∧Π(ĥ1).
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Lemma 6.2. Let g = q(wk(4; a)) for the following Cartan matrix
0 a 1 0

a 0 0 0

1 0 0 1

0 0 1 0


and basis of wk(4; a)

x1, x2, x3, x4, x5 = [x1, x2], x6 = [x1, x3], x7 = [x3, x4], x8 = [x3, [x1, x2]],

x9 = [x4, [x1, x3]], x10 = [[x1, x2], [x1, x3]], x11 = [[x1, x2], [x3, x4]],

x12 = [[x1, x2], [x4, [x1, x3]]], x13 = [[x3, [x1, x2]], [x4, [x1, x3]]],

x14 = [[x4, [x1, x3]], [[x1, x2], [x1, x3]]], x15 = [[[x1, x2], [x1, x3]], [[x1, x2], [x3, x4]]].

(a) The space H1(g; g) is spanned by (the classes of) the following derivations:

c10 = h1 ⊗Π(ŷ1) + h2 ⊗Π(ĥ2) + h3 ⊗Π(ĥ3) + h4 ⊗Π(ĥ4) + x1 ⊗Π(x̂1)

+ x2 ⊗Π(x̂2) + x3 ⊗Π(x̂3) + x4 ⊗Π(x̂4) + x5 ⊗Π(x̂5) + x6 ⊗Π(x̂6)

+ x7 ⊗Π(x̂7) + x8 ⊗Π(x̂8) + x9 ⊗Π(x̂9) + x10 ⊗Π(x̂10) + x11 ⊗Π(x̂11)

+ x12 ⊗Π(x̂12) + x13 ⊗Π(x̂13) + x14 ⊗Π(x̂14) + x15 ⊗Π(x̂15) + y1 ⊗Π(ŷ1)

+ y2 ⊗Π(ŷ2) + y3 ⊗Π(ŷ3) + y4 ⊗Π(ŷ4) + y5 ⊗Π(ŷ5) + y6 ⊗Π(ŷ6)

+ y7 ⊗Π(ŷ7) + y8 ⊗Π(ŷ8) + y9 ⊗Π(ŷ9) + y10 ⊗Π(ŷ10) + y11 ⊗Π(ŷ11)

+ y12 ⊗Π(ŷ12) + y13 ⊗Π(ŷ13) + y14 ⊗Π(ŷ14) + y15 ⊗Π(ŷ15),

c20 = x4 ⊗ x̂4 + x7 ⊗ x̂7 + x9 ⊗ x̂9 + x11 ⊗ x̂11 + x12 ⊗ x̂12 + x13 ⊗ x̂13 + x14 ⊗ x̂14
+ x15 ⊗ x̂15 + y4 ⊗ ŷ4 + y7 ⊗ ŷ7 + y9 ⊗ ŷ9 + y11 ⊗ ŷ11 + y12 ⊗ ŷ12 + y13 ⊗ ŷ13
+ y14 ⊗ ŷ14 + y15 ⊗ ŷ15 +Π(h1)⊗Π(ĥ1) + Π(h2)⊗Π(ĥ2) + Π(h3)⊗Π(ĥ3)

+ Π(h4)⊗Π(ĥ4) + Π(x1)⊗Π(x̂1) + Π(x2)⊗Π(x̂2) + Π(x3)⊗Π(x̂3)

+ Π(x5)⊗Π(x̂5) + Π(x6)⊗Π(x̂6) + Π(x8)⊗Π(x̂8) + Π(x10)⊗Π(x̂10)

+ Π(y1)⊗Π(ŷ1) + Π(y2)⊗Π(ŷ2) + Π(y3)⊗Π(ŷ3) + Π(y5)⊗Π(ŷ5)

+ Π(y6)⊗Π(ŷ6) + Π(y8)⊗Π(ŷ8) + Π(y10)⊗Π(ŷ10).

(b) The space H2(g) is spanned by the following cocycles:

c−16 = Π(x̂15) ∧Π(x̂15),

c−14 = Π(x̂14) ∧Π(x̂14),

c−12 = Π(x̂13) ∧Π(x̂13),

c−10 = Π(x̂12) ∧Π(x̂12),

c1−8 = Π(x̂10) ∧Π(x̂10), c2−8 = Π(x̂11) ∧Π(x̂11),

c1−6 = Π(x̂8) ∧Π(x̂8), c2−6 = Π(x̂9) ∧Π(x̂9),

c1−4 = Π(x̂5) ∧Π(x̂5), c2−4 = Π(x̂6) ∧Π(x̂6), c3−4 = Π(x̂7) ∧Π(x̂7),

c2−4 = Π(x̂2) ∧Π(x̂2), c3−4 = Π(x̂3) ∧Π(x̂3), c4−4 = Π(x̂4) ∧Π(x̂4),

c1−2 = Π(x̂1) ∧Π(x̂1),

c10 = x̂2 ∧ ŷ2 + x̂3 ∧ ŷ3 + αx̂5 ∧ ŷ5 + x̂6 ∧ ŷ6 + x̂7 ∧ ŷ7 + x̂9 ∧ ŷ9
+
(
α2 + α

)
x̂13 ∧ ŷ13 +

(
α3 + α2

)
x̂14 ∧ ŷ14 + αΠ(ĥ1) ∧Π(ĥ2) + Π(ĥ1) ∧Π(ĥ3)
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+ Π(ĥ3) ∧Π(ĥ4) + Π(x̂1) ∧Π(ŷ1) + Π(x̂4) ∧Π(ŷ4) + αΠ(x̂8) ∧Π(ŷ8)

+
(
α2 + α

)
Π(x̂10) ∧Π(ŷ10) + αΠ(x̂11) ∧Π(ŷ11) +

(
α2 + α

)
Π(x̂12) ∧Π(ŷ12)

+
(
α4 + α3

)
Π(x̂15) ∧Π(ŷ15),

c20 = x̂2 ∧ ŷ2 + x̂4 ∧ ŷ4 + αx̂5 ∧ ŷ5 + x̂7 ∧ ŷ7 + αx̂8 ∧ ŷ8 + x̂9 ∧ ŷ9 + α2 + αx̂10 ∧ ŷ10
+
(
α4 + α3

)
x̂15 ∧ ŷ15 + αΠ(ĥ1) ∧Π(ĥ2) + Π(ĥ1) ∧Π(ĥ3) + Π(ĥ3) ∧Π(ĥ4)

+ Π(x̂1) ∧Π(ŷ1) + Π(x̂3) ∧Π(ŷ3) + Π(x̂6) ∧Π(ŷ6) + αΠ(x̂11) ∧Π(ŷ11)

+
(
α2 + α

)
Π(x̂12) ∧Π(ŷ12) +

(
α2 + α

)
Π(x̂13) ∧Π(ŷ13)

+
(
α3 + α2

)
Π(x̂14) ∧Π(ŷ14),

c30 = x̂1 ∧ ŷ1 + x̂3 ∧ ŷ3 + αx̂5 ∧ ŷ5 + x̂7 ∧ ŷ7 +
(
α2 + α

)
x̂10 ∧ ŷ10

+
(
α2 + α

)
x̂12 ∧ ŷ12 +

(
α3 + α2

)
x̂14 ∧ ŷ14 +

(
α4 + α3

)
x̂15 ∧ ŷ15

+Π(x̂1) ∧Π(ŷ1) + Π(x̂3) ∧Π(ŷ3) + αΠ(x̂5) ∧Π(ŷ5) + Π(x̂7) ∧Π(ŷ7)

+
(
α2 + α

)
Π(x̂10) ∧Π(ŷ10) +

(
α2 + α

)
Π(x̂12) ∧Π(ŷ12)

+
(
α3 + α2

)
Π(x̂14) ∧Π(ŷ14) +

(
α4 + α3

)
Π(x̂15) ∧Π(ŷ15),

c40 = Π(ĥ1) ∧Π(ĥ1).

7 Periplectic Lie superalgebras and their desuperizations
for p = 2

For completeness, we have to consider periplectic Lie superalgebras for p ̸= 2 although they are
“symmetric” only for p = 2.

In this section, we set

diag(A,B) :=

(
A 0

0 B

)
, antidiag(A,B) :=

(
0 A

B 0

)
,

E
(n)
i,j or just Ei,j designates the n× n matrix unit with a 1 in the (i, j)th slot,

di = antidiag(E
(n)
i,i , 0n), d

(n)
1,1 = diag(E

(n)
1,1 , E

(n)
1,1 ), Dn = diag(0n, 1n). (7.1)

7.1 The Lie superalgebras preserving odd symmetric non-degenerate
bilinear forms for p > 2

The normal shape of the periplectic (odd symmetric non-degenerate) bilinear form has the Gram
matrix J2n = antidiag(1n,−1n), that of antisymmetric form is Πn|n = antidiag(1n, 1n) (sic: signs
are correct, see [6]).

With the following types of Lie superalgebras several series of “odd” analogs of Lie alge-
bras of Hamiltonian and contact vector fields and an exceptional vectorial Lie superalgebra are
associated for p ̸= 2.

The case 3) in the following list becomes much more involved for p = 2, see [10]:

1) pe(n) := aut(J2n) ≃ aut(Πn|n): if the matrix of the bilinear form B is Π2n (resp. Πn|n), then
the Lie (super)algebra aut(B) preserving the bilinear form B consists of the (super)matrices
of the form

aut(J2n) =

{
X =

(
A B

C −At

)∣∣∣∣B = Bt, C = −Ct

}
,
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aut(Πn|n) =

{
X =

(
A B

C −At

)∣∣∣∣B = −Bt, C = Ct

}
. (7.2)

2) spe(n) := pe(n) ∩ sle(n|n), so pe(n) = spe(n)⋉KD, where D = diag(1n,−1n).

3) spea,b(n) := spe(n)⋉K(aD + b12n), where a, b ∈ K.

4) p(spe)(pn) := spe(pn)/c.

Over C, only for n = 4 does spe(n) have a nontrivial central extension (7.3), discovered by
A. Sergeev; with its spinor representation a simple exceptional infinite-dimensional vectorial Lie
superalgebra is associated, see [49].

For p = 2, there are 8 analogs of pe(n) and 8 analogs of spe(n), see Table (7.4), and lots of
nontrivial central extensions of these analogs are found in this section.

Lemma 7.1.

(a) For any p > 2 and n > 2, we have H2(pe(n)) = 0. For any p > 3, we have H2(spe(n)) = 0
for n > 4 and n = 3 whereas for a basis of H2(spe(3)) only if p = 3 we can take the
following three cocycles

c10 =
( ̂E2,3 − E6,5

)
∧
( ̂E1,3 − E6,4

)
+
( ̂E1,5 − E2,4

)
∧
(
Ê6,3

)
,

c20 =
( ̂E2,3 − E5,6

)
∧
( ̂E1,2 − E5,4

)
+
( ̂E1,6 − E3,4

)
∧
(
Ê5,2

)
,

c30 = 2
( ̂E2,1 − E4,5

)
∧
( ̂E3,1 − E4,6

)
+
( ̂E2,6 − E3,5

)
∧
(
Ê4,1

)
.

For every p ̸= 2, for a basis of H2(spe(4)) we can take the cocycle

c−2 =
( ̂E1,6 − E2,5

)
∧
( ̂E3,8 − E4,7

)
−
( ̂E1,7 − E3,5

)
∧
( ̂E2,8 − E4,6

)
+
( ̂E1,8 − E4,5

)
∧
( ̂E2,7 − E3,8

)
. (7.3)

(b) For any p > 2, we have H1(pe(n); pe(n)) = 0. For a basis of H1(spe(n); spe(n)) we can
take the outer derivation D = diag(1n,−1n) for any n > 2.

7.2 The Lie superalgebras preserving odd symmetric non-degenerate bilinear
forms for p = 2 and their desuperizations: pegen(n) and ogen(n)

For p = 2, the general periplectic Lie superalgebra accrues additional elements as compared with
the cases p ̸= 2, see (7.2):

pegen(n) := aut(Πn|n) =

{
X =

(
A B

C At

)∣∣∣∣B = Bt, C = Ct

}
.

Its desuperization will be called the general orthogonal Lie algebra:

ogen(2n) := aut(Π2n) =

{
X =

(
A B

C At

)∣∣∣∣B = Bt, C = Ct

}
.

Let

ZD := the space of symmetric matrices with zeros on their main diagonals.
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The derived Lie (super)algebra aut(1)(B) consists of the (super)matrices of the form (7.2), where
B,C ∈ ZD. In other words, these Lie (super)algebras resemble the orthogonal Lie algebras.
On these Lie (super)algebras aut(1)(B) the following (super)trace—we call it the half-trace—is
defined:

htr :

(
A B

C At

)
−→ trA.

The Lie sub(super)algebra of aut(1)(B) consisting of half-traceless supermatrices is isomorphic
to aut(2)(B).

Define the Lie superalgebra

ãut(B) := {(super)matrices of the form (7.2), where C ∈ ZD},
≃ {(super)matrices of the form (7.2), where B ∈ ZD}.

Clearly, aut(1)(B) ⊂ ãut(B) ⊂ aut(B). Introduce a new notation op:

ãut(B) :=

{
op(2n) if B is even,

pe(n) if B is odd.

Set degAi,i+1 = −degAi+1,i = 1, and setting the degree of the lowest (resp. highest) weight
vector in the gl(n)-module of matrices B (resp. C) in (7.2) be equal to 1 (resp. −1). We have
the following cases to consider:

1 ogen(2n) and pegen(n) (in (7.2) both B and C symmetric);

1a p(o)gen(2n) := ogen(2n)/K 12n and p(pe)gen(n) := pegen(n)/K 12n

2 op(2n) and pe(n) (in (7.2) both B and C are symmetric, C ∈ ZD);

2a p(op)(2n) := ogen(2n)/K 12n and p(pe)(n) := pegen(n)/K 12n;

2b o(1)(2n) (in (7.2) both B ∈ ZD and C ∈ ZD);

2c p(o(1))(2n) := o(1)(2n)/K 12n

3 sop(2n) and spe(n) (in (7.2) both B and C are symmetric,

C ∈ ZD, and trA = 0);

3a p(sop)(2n) := sop(2n)/K 12n and p(spe)(n) := spe(n)/K 12n

4 o(2)(2n) (in (7.2) both B ∈ ZD and C ∈ ZD, and trA = 0);

4a p(o(2))(2n) := o(2)(2n)/K 12n

(7.4)

Lemma 7.2.

(a) Let g = ogen(2n). For a basis of H2(g) we can take the following cocycles (recall conven-
tion (1.1))

ci,j−2 =
(
Ên+i,i

)
∧
(
Ên+j,j

)
for 1 ≤ i < j ≤ n,

cj−1 =
( ̂Ej,j + En+j,n+j

)
∧
(
Ên+j,j

)
+
∑
i ̸=j

( ̂Ei,j + Ej+n,i+n

)
∧
( ̂Ej+n,i + Ei+n,j

)
for 1 ≤ j ≤ n,

ci,j0 =
(
Êi,i+n

)
∧
(
Ên+j,j

)
for 1 ≤ i, j ≤ n except i = j = n. (7.5)
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(b) For a basis of H1(g; g) we can take the derivation Dn, see formula (7.1), for any n > 2
and also the derivations (recall convention (1.1))

cj−1 =
∑

1≤i≤n

Ei,i ⊗
(
Ên+j,j

)
for 1 ≤ j ≤ n.

Lemma 7.3.

(a) Let g = pegen(2n). For a basis of H2(g) we can take the cocycles (7.5) (except for the

cocycles cj−1 and symmetric to them cj1 that become trivial), and also the following cocycles
(recall convention (1.1))

ci−2 =
(
Ên+i,i

)∧2

for 1 ≤ i ≤ n,

c̃i,j−2 =
( ̂En+i,j + En+j,i

)∧2

for 1 ≤ i < j ≤ n. (7.6)

(b) For a basis of H1(g; g) we can take the derivation Dn for any n > 2 and also the derivations
(recall convention (1.1))

cj−1 =
∑

1≤i≤n

Ei,i ⊗
(
Ên+j,j

)
for 1 ≤ j ≤ n.

Lemma 7.4.

(a) Let g = ogen(2n)/K12n. For a basis of H2(g) we can take the following cocycles (recall
convention (1.1))

deg = −2: cocycles as in (7.5),

deg = −1: none,

deg = 0: cocycles as in (7.5) and the cocycle
(
Ên,2n

)
∧
(
Ê2n,n

)
.

(b) For a basis of H1(g; g) we can take the derivation Dn for any n > 2.

Lemma 7.5.

(a) Let g = pegen(2n)/K12n. For a basis of H2(g) we can take the following cocycles (recall
convention (1.1))

deg = −2: cocycles as in (7.6) and (7.5),

deg = −1: none,

deg = 0: cocycles as in (7.5) and the cocycle,

for n ̸= 4:
(
Ên,2n

)
∧
(
Ê2n,n

)
,

for n = 4:
∑

i=2,3,4

( ̂E1,i + Ei+4,5

)
∧
( ̂Ei,1 + E5,i+4

)
+
∑

i=6,7,8

( ̂E1,i + Ei−4,5

)
∧
( ̂Ei,1 + E5,i−4

)
.

(b) For a basis of H1(g; g) we can take the derivation Dn for any n > 2.
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Lemma 7.6.

(a) Let g = o(2)(2n). For a basis of H1(g; g) we can take the following derivations (recall
convention (1.1))

deg = −1: multiplication by the matrix di, see Section 7.1,

for i = 1, . . . , n and any n > 2,

deg = 0: multiplication by the matrix d = diag(0n, 1n) for any n > 2;

if n is even, there is one more derivation:

multiplication by the matrix d1,1.

(b) For a basis of H2(g) we can take the following cocycles (recall convention (1.1))

deg = −2: none for n ̸= 4.

For n = 4, we have (the class of) the cocycle

c−2 =
( ̂E7,4 + E8,3

)
∧
( ̂E5,2 + E6,1

)
+
( ̂E6,3 + E7,2

)
∧
( ̂E5,4 + E8,1

)
+
( ̂E6,4 + E8,2

)
∧
( ̂E5,3 + E7,1

)
,

deg = −1: cj−1 =
∑
i ̸=j

( ̂Ei,j + Ej+n,i+n

)
∧
( ̂Ej+n,i + Ei+n,j

)
for 1 ≤ j ≤ n.

For n = 4, there are also the following 4 cocycles:

c1−1 =
( ̂E1,2 + E6,5

)
∧
( ̂E7,4 + E8,3

)
+
( ̂E1,3 + E7,5

)
∧
( ̂E6,4 + E8,2

)
+
( ̂E1,4 + E8,5

)
∧
( ̂E6,3 + E7,2

)
,

c2−1 =
( ̂E2,3 + E7,6

)
∧
( ̂E5,4 + E8,1

)
+
( ̂E2,4 + E8,6

)
∧
( ̂E5,3 + E7,1

)
+
( ̂E2,1 + E5,6

)
∧
( ̂E7,4 + E8,3

)
,

c3−1 =
( ̂E3,4 + E8,7

)
∧
( ̂E5,2 + E6,1

)
+
( ̂E3,2 + E6,7

)
∧
( ̂E5,4 + E8,1

)
+
( ̂E3,1 + E5,7

)
∧
( ̂E6,4 + E8,2

)
,

c4−1 =
( ̂E4,3 + E7,8

)
∧
( ̂E5,2 + E6,1

)
+
( ̂E4,2 + E6,8

)
∧
( ̂E5,3 + E7,1

)
+
( ̂E4,1 + E5,8

)
∧
( ̂E6,3 + E7,2

)
,

deg = 0:

c0 =
∑

1≤i≤n

( ̂E1,i + En+i,n+1

)
∧
( ̂Ei,1 + En+1,n+i

)
+

∑
2≤i<j≤n

( ̂Ei,n+j + Ej,n+i

)
∧
( ̂En+j,i + En+i,j

)
.

For n = 4, there are also the following 6 cocycles:

c10 =
( ̂E3,2 − E6,7

)
∧
( ̂E4,1 − E5,8

)
+
( ̂E4,2 − E6,8

)
∧
( ̂E3,1 − E5,7

)
+
( ̂E3,8 − E4,7

)
∧
( ̂E5,2 + E6,1

)
,

c20 =
( ̂E3,4 − E8,7

)
∧
( ̂E2,1 − E5,6

)
+
( ̂E2,4 − E8,6

)
∧
( ̂E3,1 − E5,7

)
+
( ̂E2,7 − E3,6

)
∧
( ̂E5,4 + E8,1

)
,

c30 =
( ̂E4,3 − E7,8

)
∧
( ̂E2,1 − E5,6

)
+
( ̂E2,3 − E7,6

)
∧
( ̂E4,1 − E5,8

)
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+
( ̂E2,8 − E4,6

)
∧
( ̂E5,3 + E7,1

)
,

c40 =
( ̂E2,3 − E7,6

)
∧
( ̂E1,4 − E8,5

)
+
( ̂E2,4 − E8,6

)
∧
( ̂E1,3 − E7,5

)
+
( ̂E1,6 − E2,5

)
∧
( ̂E7,4 + E8,3

)
,

c50 =
( ̂E3,4 − E8,7

)
∧
( ̂E1,2 − E6,5

)
+
( ̂E3,2 − E6,7

)
∧
( ̂E1,4 − E8,5

)
+
( ̂E1,7 − E3,5

)
∧
( ̂E6,4 + E8,2

)
,

c60 =
( ̂E4,3 − E7,8

)
∧
( ̂E1,2 − E6,5

)
+
( ̂E4,2 − E6,8

)
∧
( ̂E1,3 − E7,5

)
+
( ̂E1,8 − E4,5

)
∧
( ̂E6,3 + E7,2

)
.

Lemma 7.7.

(a) Let g = o(2)(4n)/K14n. For a basis of H2(g) we can take the following cocycles (recall
convention (1.1))

deg = −2: as in the case of o(2)(4n),

deg = −1: as in the case of o(2)(4n),

deg = 0: as in the case of o(2)(4n) and one more cocycle,

c̃0 =
∑

1≤i≤n

( ̂E1,i + Ei+n,n+1

)
∧
( ̂Ei,1 + En+1,n+i

)
.

(b) For a basis of H1(g; g) we can take the following derivations (recall convention (1.1))

deg = −2: E3,8 ⊗
( ̂E5,2 + E6,1

)
− E4,7 ⊗

( ̂E5,2 + E6,1

)
+ E2,7 ⊗

( ̂E5,4 + E8,1

)
− E3,6 ⊗

( ̂E5,4 + E8,1

)
+ E2,8 ⊗

( ̂E5,3 + E7,1

)
− E4,6 ⊗

( ̂E5,3 + E7,1

)
+ E1,6 ⊗

( ̂E7,4 + E8,3

)
− E2,5 ⊗

( ̂E7,4 + E8,3

)
+ E1,7 ⊗

( ̂E6,4 + E8,2

)
− E3,5 ⊗

( ̂E6,4 + E8,2

)
+ E1,8 ⊗

( ̂E6,3 + E7,2

)
− E4,5 ⊗

( ̂E6,3 + E7,2

)
,

deg = −1: multiplication by the matrix di, see Section 7.1,

for i = 1, . . . , n for any n > 2.

For n = 2 , there are also four derivations given by

c1−1 = E2,1 ⊗
( ̂E7,4 + E8,3

)
+ E5,6 ⊗

( ̂E7,4 + E8,3

)
+ E3,1 ⊗

( ̂E6,4 + E8,2

)
+ E5,7 ⊗

( ̂E6,4 + E8,2

)
+ E4,1 ⊗

( ̂E6,3 + E7,2

)
+ E5,8 ⊗

( ̂E6,3 + E7,2

)
+ E3,8 ⊗

( ̂E1,2 − E6,5

)
+ E4,7 ⊗

( ̂E1,2 − E6,5

)
+ E2,7 ⊗

( ̂E1,4 − E8,5

)
+ E3,6 ⊗

( ̂E1,4 − E8,5

)
+ E2,8 ⊗

( ̂E1,3 − E7,5

)
+ E4,6 ⊗

( ̂E1,3 − E7,5

)
,

c2−1 = E1,4 ⊗
( ̂E6,3 + E7,2

)
+ E8,5 ⊗

( ̂E6,3 + E7,2

)
+ E2,4 ⊗

( ̂E5,3 + E7,1

)
+ E8,6 ⊗

( ̂E5,3 + E7,1

)
+ E3,4 ⊗

( ̂E5,2 + E6,1

)
+ E8,7 ⊗

( ̂E5,2 + E6,1

)
+ E2,7 ⊗

( ̂E4,1 − E5,8

)
+ E3,6 ⊗

( ̂E4,1 − E5,8

)
+ E1,6 ⊗

( ̂E4,3 − E7,8

)
+ E2,5 ⊗

( ̂E4,3 − E7,8

)
+ E1,7 ⊗

( ̂E4,2 − E6,8

)
+ E3,5 ⊗

( ̂E4,2 − E6,8

)
,

c3−1 = E1,2 ⊗
( ̂E7,4 + E8,3

)
+ E6,5 ⊗

( ̂E7,4 + E8,3

)
+ E3,2 ⊗

( ̂E5,4 + E8,1

)
+ E6,7 ⊗

( ̂E5,4 + E8,1

)
+ E4,2 ⊗

( ̂E5,3 + E7,1

)
+ E6,8 ⊗

( ̂E5,3 + E7,1

)
+ E3,8 ⊗

( ̂E2,1 − E5,6

)
+ E4,7 ⊗

( ̂E2,1 − E5,6

)
+ E1,7 ⊗

( ̂E2,4 − E8,6

)
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+ E3,5 ⊗
( ̂E2,4 − E8,6

)
+ E1,8 ⊗

( ̂E2,3 − E7,6

)
+ E4,5 ⊗

( ̂E2,3 − E7,6

)
,

c4−1 = E1,3 ⊗
( ̂E6,4 + E8,2

)
+ E7,5 ⊗

( ̂E6,4 + E8,2

)
+ E2,3 ⊗

( ̂E5,4 + E8,1

)
+ E7,6 ⊗

( ̂E5,4 + E8,1

)
+ E4,3 ⊗

( ̂E5,2 + E6,1

)
+ E7,8 ⊗

( ̂E5,2 + E6,1

)
+ E2,8 ⊗

( ̂E3,1 − E5,7

)
+ E4,6 ⊗

( ̂E3,1 − E5,7

)
+ E1,6 ⊗

( ̂E3,4 − E8,7

)
+ E2,5 ⊗

( ̂E3,4 − E8,7

)
+ E1,8 ⊗

( ̂E3,2 − E6,7

)
+ E4,5 ⊗

( ̂E3,2 − E6,7

)
.

For deg = 0, there is multiplication by the matrix D2n for any n > 1, and the multiplication

by the matrix d
(2n)
1,1 , see Section 7.1. Besides, if n = 2, there are six derivations given by

the following cocycles:

c10 = E3,1 ⊗
( ̂E2,4 − E8,6

)
+ E5,7 ⊗

( ̂E2,4 − E8,6

)
+ E4,1 ⊗

( ̂E2,3 − E7,6

)
+ E5,8 ⊗

( ̂E2,3 − E7,6

)
+ E3,2 ⊗

( ̂E1,4 − E8,5

)
+ E6,7 ⊗

( ̂E1,4 − E8,5

)
+ E4,2 ⊗

( ̂E1,3 − E7,5

)
+ E6,8 ⊗

( ̂E1,3 − E7,5

)
+ E3,8 ⊗

( ̂E1,6 − E2,5

)
+ E4,7 ⊗

( ̂E1,6 − E2,5

)
++E5,2 ⊗

( ̂E7,4 + E8,3

)
+ E6,1 ⊗

( ̂E7,4 + E8,3

)
,

c20 = E2,4 ⊗
( ̂E1,3 − E7,5

)
+ E8,6 ⊗

( ̂E1,3 − E7,5

)
+ E3,4 ⊗

( ̂E1,2 − E6,5

)
+ E8,7 ⊗

( ̂E1,2 − E6,5

)
+ E2,1 ⊗

( ̂E4,3 − E7,8

)
+ E5,6 ⊗

( ̂E4,3 − E7,8

)
+ E3,1 ⊗

( ̂E4,2 − E6,8

)
+ E5,7 ⊗

( ̂E4,2 − E6,8

)
+ E2,7 ⊗

( ̂E1,8 − E4,5

)
+ E3,6 ⊗

( ̂E1,8 − E4,5

)
+ E5,4 ⊗

( ̂E6,3 + E7,2

)
+ E8,1 ⊗

( ̂E6,3 + E7,2

)
,

c30 = E2,3 ⊗
( ̂E1,4 − E8,5

)
+ E7,6 ⊗

( ̂E1,4 − E8,5

)
+ E2,1 ⊗

( ̂E3,4 − E8,7

)
+ E5,6 ⊗

( ̂E3,4 − E8,7

)
+ E4,1 ⊗

( ̂E3,2 − E6,7

)
+ E5,8 ⊗

( ̂E3,2 − E6,7

)
+ E4,3 ⊗

( ̂E1,2 − E6,5

)
+ E7,8 ⊗

( ̂E1,2 − E6,5

)
+ E2,8 ⊗

( ̂E1,7 − E3,5

)
+ E4,6 ⊗

( ̂E1,7 − E3,5

)
+ E5,3 ⊗

( ̂E6,4 + E8,2

)
+ E7,1 ⊗

( ̂E6,4 + E8,2

)
,

c40 = (E1,3 ⊗
( ̂E4,2 − E6,8

)
+ E7,5 ⊗

( ̂E4,2 − E6,8

)
+ E1,4 ⊗

( ̂E3,2 − E6,7

)
+ E8,5 ⊗

( ̂E3,2 − E6,7

)
+ E2,3 ⊗

( ̂E4,1 − E5,8

)
+ E7,6 ⊗

( ̂E4,1 − E5,8

)
+ E2,4 ⊗

( ̂E3,1 − E5,7

)
+ E8,6 ⊗

( ̂E3,1 − E5,7

)
+ E1,6 ⊗

( ̂E3,8 − E4,7

)
+ E2,5 ⊗

( ̂E3,8 − E4,7

)
+ E7,4 ⊗

( ̂E5,2 + E6,1

)
+ E8,3 ⊗

( ̂E5,2 + E6,1

)
,

c50 = E1,2 ⊗
( ̂E4,3 − E7,8

)
+ E6,5 ⊗

( ̂E4,3 − E7,8

)
+ E1,4 ⊗

( ̂E2,3 − E7,6

)
+ E8,5 ⊗

( ̂E2,3 − E7,6

)
+ E3,4 ⊗

( ̂E2,1 − E5,6

)
+ E8,7 ⊗

( ̂E2,1 − E5,6

)
+ E3,2 ⊗

( ̂E4,1 − E5,8

)
+ E6,7 ⊗

( ̂E4,1 − E5,8

)
+ E1,7 ⊗

( ̂E2,8 − E4,6

)
+ E3,5 ⊗

( ̂E2,8 − E4,6

)
+ E6,4 ⊗

( ̂E5,3 + E7,1

)
+ E8,2 ⊗

( ̂E5,3 + E7,1

)
,

c60 = E1,2 ⊗
( ̂E3,4 − E8,7

)
+ E6,5 ⊗

( ̂E3,4 − E8,7

)
+ E1,3 ⊗

( ̂E2,4 − E8,6

)
+ E7,5 ⊗

( ̂E2,4 − E8,6

)
+ E4,2 ⊗

( ̂E3,1 − E5,7

)
+ E6,8 ⊗

( ̂E3,1 − E5,7

)
+ E4,3 ⊗

( ̂E2,1 − E5,6

)
+ E7,8 ⊗

( ̂E2,1 − E5,6

)
+ E1,8 ⊗

( ̂E2,7 − E3,6

)
+ E4,5 ⊗

( ̂E2,7 − E3,6

)
+ E6,3 ⊗

( ̂E5,4 + E8,1

)
+ E7,2 ⊗

( ̂E5,4 + E8,1

)
.

Lemma 7.8.

(a) Let g = op(2n). For a basis of H2(g) we can take the cocycles

deg = −2, 0: none,
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deg = 1: cj−1 =
∑
i ̸=j

( ̂Ei,j + Ej+n,i+n

)
∧
( ̂Ej+n,i + Ei+n,j

)
for 1 ≤ j ≤ n,

cj1 =
∑

1≤i≤n

( ̂Ei,i + Ei+n,i+n

)
∧
(
Êj,n+j

)
for 1 ≤ j ≤ n,

c̃j1 =
∑
i ̸=j

( ̂Ej,i + Ei+n,j+n

)
∧
( ̂Ei,n+j + Ej,n+i

)
+
( ̂Ej,j + En+j,n+j

)
∧
(
Êj,n+j

)
for 1 ≤ j ≤ n,

deg = 2: cocycles as in (7.5)

(b) For a basis of H1(g; g) we can take the following derivations

deg = −1: none,

deg = 0: multiplication by the matrix Dn, see Section 7.1,

for any n > 2 and also the cocycle,

c20 =
∑

1≤i≤2n

Ei,i ⊗
(( ̂E1,1 + En+1,n+1

)
+ · · ·+

( ̂En,n + E2n,2n

))
,

deg = 1: cj1 =
∑

1≤i≤2n

Ei,i

(
Êj,j+n

)
, for 1 ≤ j ≤ n and derivations,

c̃j1 : multiplication by the matrix dtj, see Section 7.1,

for any j = 1, . . . , n and n > 2.

Lemma 7.9.

(a) Let g = pe(2n). For a basis of H2(g) we can take (the classes of) the cocycles

deg = −2: c̃i,j−2 =
(( ̂En+i,j + En+j,i

))∧2

for 1 ≤ i < j ≤ n,
deg = −1, 0: none,

deg = 1: cj1 =
∑

1≤i≤n

( ̂Ei,i + Ei+n,i+n

)
∧
(
Êj,n+j

)
for 1 ≤ j ≤ n,

c̃j1 =

n∑
i ̸=j

( ̂Ej,i + Ei+n,j+n

)
∧
( ̂Ei,n+j + Ej,n+i

)
+
( ̂Ej,j + En+j,n+j

)
∧
(
Êj,n+j

)
for 1 ≤ j ≤ n,

deg = 2: c2 = cocycles as in (7.5) and (7.6).

(b) For a basis of H1(g; g) we can take the following derivations

deg = −1: none,

deg = 0: multiplication by the matrix Dn, see Section 7.1,

for any n > 2 and also the cocycle,

c20 =
∑

1≤i≤2n

Ei,i ⊗
(( ̂E1,1 + En+1,n+1

)
+ · · ·+

( ̂En,n + E2n,2n

))
,

deg = 1: c̃j1 : multiplication by the matrix dtj, see Section 7.1,

for any j = 1, . . . , n and n > 2.
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Lemma 7.10.

(a) Let g = p(op)(2n). For a basis of H2(g) we can take (the classes of) the following cocycles

deg = −2,−1: none,

deg = 0: none for n ̸= 4. For n = 4, the cocycle is

c0 =
( ̂E1,2 + E6,5

)
∧
( ̂E2,1 − E5,6

)
+
( ̂E2,3 + E7,6

)
∧
( ̂E3,2 − E6,7

)
+
( ̂E2,4 + E8,6

)
∧
( ̂E4,2 − E6,8

)
+
( ̂E2,7 + E3,6

)
∧
( ̂E7,2 − E6,3

)
+
( ̂E2,8 + E4,6

)
∧
( ̂E6,4 − E8,2

)
+
( ̂E1,6 + E2,5

)
∧
( ̂E5,2 − E6,1

)
,

cj1 =
∑

2≤i≤n

( ̂Ei,i + Ei+n,i+n

)
∧
(
Êj,j+n

)
,where 1 ≤ j ≤ n,

deg = 2: cocycles as in (7.5).

(b) For a basis of H1(g; g) we can take the following derivations

deg = −1: none,

deg = 0: multiplication by the matrix Dn, see Section 7.1, for any n > 2,

deg = 1: c̃j1 : multiplication by the matrix dtj for any j = 1, . . ., n and n > 2.

Lemma 7.11.

(a) Let g = p(pe)(2n). For a basis of H2(g) we can take (the classes of) the following cocycles:

deg = −2: ci,j−2 =
( ̂En+i,j + En+j,i

)∧2

, where 1 ≤ i < j ≤ n,
deg = −1: none,

deg = 0: none for n ̸= 4. For n = 4, the cocycle is

c0 =
( ̂E1,2 + E6,5

)
∧
( ̂E2,1 + E5,6

)
+
( ̂E2,3 + E7,6

)
∧
( ̂E3,2 + E6,7

)
+
( ̂E2,4 + E8,6

)
∧
( ̂E4,2 + E6,8

)
+
( ̂E2,7 + E3,6

)
∧
( ̂E7,2 + E6,3

)
+
( ̂E2,8 + E4,6

)
∧
( ̂E6,4 + E8,2

)
+
( ̂E1,6 + E2,5

)
∧
( ̂E5,2 + E6,1

)
,

deg = 1:
∑

2≤i≤n

( ̂Ei,i + Ei+n,i+n

)
∧
(
Êj,j+n

)
, where 1 ≤ j ≤ n,

deg = 2: cocycles as in (7.5) and (7.6).

(b) For a basis of H1(g; g) we can take the following derivations

deg = −1: none,

deg = 0: multiplication by the matrix Dn, see Section 7.1, for any n > 2,

deg = 1: c̃j1 : multiplication by the matrix dtj, see Section 7.1,

for any j = 1, . . . , n and n > 2.

Lemma 7.12.

(a) Let g = o(1)(2n). For a basis of H2(g) we can take (the classes of) the following cocycles:

deg = −2: none
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cj−1 =
∑
i ̸=j

( ̂Ei,j + Ej+n,i+n

)
∧
( ̂Ej+n,i + Ei+n,j

)
for 1 ≤ j ≤ n,

c0 =
∑

2≤i≤n

( ̂E1,i + Ei+n,n+1

)
∧
( ̂Ei,1 + En+1,i+n

)
+

∑
2≤i<j≤n

( ̂Ei,n+j + Ej,n+i

)
∧
( ̂En+j,i + En+i,j

)
.

(b) For a basis of H1
(
o(1)(2n); o(1)(2n)

)
we can take the following derivations

deg = −1: c̃j−1 : multiplication by the matrix dj, see Section 7.1,

for any j = 1, . . . , n and n > 2,

deg = 0: multiplication by the matrix Dn, see Section 7.1,

for any n > 2 and also the derivation,

c20 =
∑

1≤i≤2n

Ei,i ⊗
(( ̂E1,1 + En+1,n+1

)
+ · · ·+

( ̂En,n + E2n,2n

))
.

Lemma 7.13.

(a) Let g = p(o(1)(2n)). For a basis of H2(g) we can take (the classes of) the following cocycles:

deg = −2: none,

cj−1 =
∑
i ̸=j

( ̂Ei,j + Ej+n,i+n

)
∧
( ̂Ej+n,i + Ei+n,j

)
for 1 ≤ j ≤ n,

c0 =
∑

2≤i≤n

( ̂E1,i + Ei+n,n+1

)
∧
( ̂Ei,1 + En+1,i+n

)
+

∑
2≤i<j≤n

( ̂Ei,n+j + Ej,n+i

)
∧
( ̂En+j,i + En+i,j

)
,

for n = 4, we have one more cocycle

c̃0 =
( ̂E1,3 + E7,5

)
∧
( ̂E3,1 + E5,7

)
+
( ̂E1,4 + E8,5

)
∧
( ̂E4,1 + E5,8

)
+
( ̂E2,3 + E7,6

)
∧
( ̂E3,2 + E6,7

)
+
( ̂E2,4 + E8,6

)
∧
( ̂E4,2 + E6,8

)
+
( ̂E3,8 + E4,7

)
∧
( ̂E7,4 + E8,3

)
+
( ̂E1,6 + E2,5

)
∧
( ̂E5,2 + E6,1

)
.

(b) For a basis of H1(g; g) we can take the following derivations

deg = −1: c̃j−1 : multiplication by the matrix dj, see Section 7.1,

for any j = 1, . . . , n and n > 2,

deg = 0: multiplication by the matrix Dn, see Section 7.1, for any n > 2.

Lemma 7.14.

(a) Let g = sop(2n). For a basis of H2(g) we can take (the classes of) the following cocycles:

deg = −2: none for n ̸= 4,

for n = 4, we have the cocycle

c−2 =
( ̂E7,4 + E8,3

)
∧
( ̂E5,2 + E6,1

)
+
( ̂E6,3 + E7,2

)
∧
( ̂E5,4 + E8,1

)
+
( ̂E6,4 + E8,2

)
∧
( ̂E5,3 + E7,1

)
,
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cj−1 =
∑
i ̸=j

( ̂Ei,j + Ej+n,i+n

)
∧
( ̂Ej+n,i + Ei+n,j

)
for 1 ≤ j ≤ n,

deg = 0: none,

cj1 =
∑
i ̸=j

( ̂Ej,i + Ei+n,j+n

)
∧
( ̂Ei,n+j + Ej,n+i

)

+



( ̂E1,1 + E2,2 + E1+n,1+n + E2+n,2+n

)
∧
(
Ê1,n

)
for i = 1,( ̂En−1,n−1 + En,n + E2n−1,2n−1 + E2n,2n

)
∧
(
Ên,2n

)
for i = n,( ̂Ej−1,j−1 + Ej+1,j+1 + Ej−1+n,j−1+n + Ej+1+n,j+1+n

)
∧
(
Êj,j+n

)
for j ̸= 1, n,

deg = 2: cocycles as in (7.5).

(b) For a basis of H1(g; g) we can take the following derivations

deg = −1: none,

deg = 0: multiplication by the matrix Dn, see Section 7.1, for any n > 2,

if n is even, we have the additional derivation:

multiplication by d
(n)
1,1 , see Section 7.1,

deg = 1: cj1 : multiplication by the matrix dtj, see Section 7.1,

for any j = 1, . . . , n and n > 2.

Lemma 7.15.

(a) Let g = sop(4n)/K14n. For a basis of H2(g) we can take (the classes of) the following
cocycles:

deg = −2: none for n ̸= 2. For n = 2, we have the cocycle,

c−2 =
( ̂E7,4 + E8,3

)
∧
( ̂E5,2 + E6,1

)
+
( ̂E6,3 + E7,2

)
∧
( ̂E5,4 + E8,1

)
+
( ̂E6,4 + E8,2

)
∧
( ̂E5,3 + E7,1

)
,

cj−1 =
∑
i ̸=j

( ̂Ei,j + Ej+2n,i+2n

)
∧
( ̂Ej+2n,i + Ei+2n,j

)
for 1 ≤ j ≤ 2n,

c0 =
∑

1≤i≤2n

( ̂E1,i + E2n+i,2n+1

)
∧
( ̂Ei,1 + E2n+1,2n+i

)
,

deg = 1: none,

deg = 2: cocycles as in (7.5).

(b) For a basis of H1(g; g) we can take the following derivations

deg = −2: none for n ̸= 2,

for n = 2, we have the cocycle

c−2 = (E3,8 + E4,7)⊗
( ̂E5,2 + E6,1

)
+ (E2,7 + E3,6)⊗

( ̂E5,4 + E8,1

)
+ (E2,8 + E4,6)⊗

( ̂E5,3 + E7,1

)
+ (E1,6 + E2,5)⊗

( ̂E7,4 + E8,3

)
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+ (E1,7 + E3,5)⊗
( ̂E6,4 + E8,2

)
+ (E1,8 + E4,5)⊗

( ̂E6,3 + E7,2

)
,

deg = ±1: none,

deg = 0: multiplication by the matrix D2n, see Section 7.1, for any n > 1,

and another derivation: multiplication by the matrix d
(n)
1,1 ,

see Section 7.1.

Lemma 7.16.

(a) For a basis of H2(spe(2n)) we can take (the classes of) the following cocycles:

deg = −2: c̃i,j−2 =
( ̂En+i,j + En+j,i

)∧2

for 1 ≤ i < j ≤ n,
for n = 4, we have one more cocycle

c−2 =
( ̂E7,4 + E8,3

)
∧
( ̂E5,2 + E6,1

)
+
( ̂E6,3 + E7,2

)
∧
( ̂E5,4 + E8,1

)
+
( ̂E6,4 + E8,2

)
∧
( ̂E5,3 + E7,1

)
,

deg = −1, 0: none,

deg = 1: cj1 =
∑
i ̸=j

( ̂Ej,i + Ei+n,j+n

)
∧
( ̂Ei,n+j + Ej,n+i

)

+



( ̂E1,1 + E2,2 + E1+n,1+n + E2+n,2+n

)
∧
(
Ê1,n

)
for i = 1,( ̂En−1,n−1 + En,n + E2n−1,2n−1 + E2n,2n

)
∧
(
Ên,2n

)
for i = n,( ̂Ej−1,j−1 + Ej+1,j+1 + Ej−1+n,j−1+n + Ej+1+n,j+1+n

)
∧
(
Êj,j+n

)
for j ̸= 1, n,

deg = 2: cocycles as in (7.5) and (7.6).

(b) Let g = spe(2n). For a basis of H1(g; g) we can take the following derivations

deg = −1: none

deg = 0: multiplication by the matrix Dn, see Section 7.1, for any n > 2,

if n is even, we have one more derivation: multiplication

by the matrix d1,1, see Section 7.1,

deg = 1: cj1 : multiplication by the matrix dtj, see Section 7.1,

for any j = 1, . . . , n and n > 2,

Lemma 7.17.

(a) For a basis of H2(spe(4n)/K14n) we can take (the classes of) the following cocycles:

deg = −2: c̃i,j−2 =
( ̂E2n+i,j + E2n+j,i

)∧2

for 1 ≤ i < j ≤ 2n,

for n = 2, we have one more cocycle

c−2 =
( ̂E7,4 + E8,3

)
∧
( ̂E5,2 + E6,1

)
+
( ̂E6,3 + E7,2

)
∧ ( ̂E5,4 + E8,1

)
+
( ̂E6,4 + E8,2

)
∧
( ̂E5,3 + E7,1

)
,

deg = ±1: none,
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c0 =
∑

1≤i≤2n

( ̂E1,i + E2n+i,2n+1

)
∧
( ̂Ei,1 + E2n+1,2n+i

)
,

deg = 2: cocycles as in (7.5) and (7.6).

(b) Let g = spe(4n)/K14n. For a basis of H1(g; g) we can take the following derivations

deg = −2: none for n ̸= 2,

for n = 2, we have the cocycle

c−2 = (E3,8 + E4,7)⊗
( ̂E5,2 + E6,1

)
+ (E2,7 + E3,6)⊗

( ̂E5,4 + E8,1

)
+ (E2,8 + E4,6)⊗

( ̂E5,3 + E7,1

)
+ (E1,6 + E2,5)⊗

( ̂E7,4 + E8,3

)
+ (E1,7 + E3,5)⊗

( ̂E6,4 + E8,2

)
+ (E1,8 + E4,5)⊗

( ̂E6,3 + E7,2

)
,

deg = ±1: none,

deg = 0: multiplication by the matrix D2n, see Section 7.1, for any n > 1

and one more derivation: multiplication by the matrix d
(2n)
1,1 ,

see Section 7.1.

A Derivations and central extensions of the true deforms
of symmetric simple Lie algebras and superalgebras.
Appendix by Andrey Krutov

In this appendix, I consider derivations and central extensions of the following Lie algebras
and superalgebras: true deforms with even parameter ε (classified in [13]) of symmetric Lie
algebras and superalgebras with indecomposable Cartan matrix (classified in [12]), and their
simple relatives.

I do not consider deforms with odd parameter, although this might be the most interesting
task from the “super” point of view.

In this appendix, gci designates the deform with parameter ε of Lie (super)algebras g deter-
mined by the cocycle ci explicitly given in [13]. The results below are obtained with the help of
SuperLie package [32].

Lemma A.1. Let p = 2 and g = wk(4;α) for α ̸= 0, 1. Then H1(gci ; gci) = 0 and H2(gci) = 0
for all i ̸= 0. For gc0, we have

1) if ε ̸= α, then H1(gci ; gci) = 0 and H2(gci) = 0;

2) if ε = α, then H2(g) = 0 and H1(gc0 ; gc0) is spanned by the cocycle

x1 ⊗ x̂1 + x2 ⊗ x̂2 + x4 ⊗ x̂4 + x6 ⊗ x̂6 + x7 ⊗ x̂7 + x10 ⊗ x̂10 + x11 ⊗ x̂11
+ x14 ⊗ x̂14 + y1 ⊗ ŷ1 + y2 ⊗ ŷ2 + y4 ⊗ ŷ4 + y6 ⊗ ŷ6 + y7 ⊗ ŷ7 + y10 ⊗ ŷ10
+ y11 ⊗ ŷ11 + y14 ⊗ ŷ14.

Lemma A.2. Let p = 2 and g = wk(3;α) for α ̸= 0, 1. Then, the space H1(gci ; gci) for i ̸= 0 is
spanned by

(h1 + αh3)⊗ ĥ4.

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague, Czech Republic
E-mail: krutov@math.cas.cz

mailto:krutov@math.cas.cz
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The space H1(gc0 ; gc0) is spanned by

(h1 + αh3)⊗ ĥ4 + ε(h1 + αh3)⊗ ĥ2.

We have H2(gci) = 0 for all cocycles ci.

Lemma A.3. Let p = 2 and g = wk(1)(3;α) for α ̸= 0, 1. Then, the space H1(gci ; gci) is spanned
by one and the same derivation for any cocycle ci for i ̸= 0:

x1 ⊗ x̂1 + x3 ⊗ x̂3 + x4 ⊗ x̂4 + x5 ⊗ x̂5 + y1 ⊗ ŷ1 + y3 ⊗ ŷ3 + y4 ⊗ ŷ4 + y5 ⊗ ŷ5.

We have H2(gci) = 0 for all cocycles ci.
For cocycle c0, we have

1) if ε /∈ {1, α}, then the space H1(gc0 ; gc0) is spanned by

x2 ⊗ x̂2 + x3 ⊗ x̂3 + x4 ⊗ x̂4 + x7 ⊗ x̂7 + y2 ⊗ ŷ2 + y3 ⊗ ŷ3 + y4 ⊗ ŷ4 + y7 ⊗ ŷ7;

2) if ε = 1, then the space H1(gc0 ; gc0) is spanned by

d−2 = y3 ⊗ x̂3 (but there is no d2!),

d0,1 = αh3 ⊗ ĥ2 + h1 ⊗ ĥ2,

d0,2 = αh3 ⊗ ĥ3 + h1 ⊗ ĥ3 + αx2 ⊗ x̂2 + αx4 ⊗ x̂4 + αx5 ⊗ x̂5
+ αx6 ⊗ x̂6 + αy3 ⊗ ŷ3,

d0,3 = x1 ⊗ x̂1 + x3 ⊗ x̂3 + x4 ⊗ x̂4 + x5 ⊗ x̂5 + y1 ⊗ ŷ1 + y3 ⊗ ŷ3
+ y4 ⊗ ŷ4 + y5 ⊗ ŷ5.

3) if ε = α, then the space H1(gc0 ; gc0) is spanned by

x1 ⊗ x̂1 + x3 ⊗ x̂3 + x4 ⊗ x̂4 + x5 ⊗ x̂5 + y1 ⊗ ŷ1 + y3 ⊗ ŷ3 + y4 ⊗ ŷ4 + y5 ⊗ ŷ5.

Remark A.4. The weights of basis elements in the deform of wk(3;α) that correspond to the
cocycle c0 remain unchanged, whereas it is not so in the case of the deform of wk(1)(3;α). In this
case, the weights depend on the deformation parameter ε, which causes a “spontaneous breach
of symmetry”, as a physicist might say, see Lemma A.3 for ε = 1: no cocycles of weight 2.

Lemma A.5. Let p = 2 and g = wk(1)(3;α)/c for α ̸= 0, 1, where c is a 1-dimensional center
spanned by h1 + αh3. Then, the space H1(gci ; gci) for all i ̸= 0 is spanned by

x1 ⊗ x̂1 + x3 ⊗ x̂3 + x4 ⊗ x̂4 + x5 ⊗ x̂5 + y1 ⊗ ŷ1 + y3 ⊗ ŷ3 + y4 ⊗ ŷ4 + y5 ⊗ ŷ5,

the space H2(gci) for all i ̸= 0 is spanned by(
α2 + α

)
x̂7 ∧ ŷ7 + αx̂4 ∧ ŷ4 + αx̂6 ∧ ŷ6 + x̂1 ∧ ŷ1.

For the cocycle c0, we have:

1) if ε /∈ {1, α}, then the space H1(gc0 ; gc0) is spanned by

x2 ⊗ x̂2 + x3 ⊗ x̂3 + x4 ⊗ x̂4 + x7 ⊗ x̂7 + y2 ⊗ ŷ2 + y3 ⊗ ŷ3 + y4 ⊗ ŷ4 + y7 ⊗ ŷ7,

and the space H2(gc0) is spanned by(
α2ε2 + α2 + αε3 + αε2 + αε+ α+ ε3 + ε

)
x̂7 ∧ ŷ7

+
(
αε+ α+ ε2 + ε

)
x̂4 ∧ ŷ4 +

(
αε+ α+ ε2 + ε

)
x̂6 ∧ ŷ6 + x̂1 ∧ ŷ1,
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2) if ε = 1, then the space H1(gc0 ; gc0) is spanned by

d0,1 = x1 ⊗ x̂1 + x3 ⊗ x̂3 + x4 ⊗ x̂4 + x5 ⊗ x̂5 + y1 ⊗ ŷ1 + y3 ⊗ ŷ3
+ y4 ⊗ ŷ4 + y5 ⊗ ŷ5,

d0,2 = x2 ⊗ x̂2 + x4 ⊗ x̂4 + x5 ⊗ x̂5 + x6 ⊗ x̂6,

and the space H2(gc0) is spanned by

z0,1 = x̂1 ∧ ŷ1,
z0,2 = αx̂4 ∧ ŷ4 + αx̂6 ∧ ŷ6 + x̂2 ∧ ŷ2 + x̂5 ∧ ŷ5,

3) if ε = α, then the space H1(gc0 ; gc0) is spanned by

x1 ⊗ x̂1 + x3 ⊗ x̂3 + x4 ⊗ x̂4 + x5 ⊗ x̂5 + y1 ⊗ ŷ1 + y3 ⊗ ŷ3 + y4 ⊗ ŷ4 + y5 ⊗ ŷ5,

and H2(gc0) = Span(x̂1 ∧ ŷ1).

Lemma A.6. Let p = 3 and g = br(3). Then, H1(gci ; gci) = 0 and H2(gci) = 0 for any ci.

Lemma A.7. Let p = 3 and g = L(2, 2), the explicitly described in [18] exceptional de-
form of o(5). Then, H1(g; g) = 0 and H2(g) = 0.

Lemma A.8. Let p = 3 and g = brj(2; 3). Then, the space H1(gc; gc) is spanned by the following
cocycles=derivations, where ε is the parameter of deformation that defines gc for c = c12,i and
c = c6,i, where i = 1, 2:

c12,1 = 2εx5 ⊗ ŷ8 + εx8 ⊗ ŷ5 + 2y2 ⊗ x̂4 + y4 ⊗ x̂2 + x1 ⊗ x̂6 + x3 ⊗ x̂7
+ 2y6 ⊗ ŷ1 + y7 ⊗ ŷ3,

c12,2 = x2 ⊗ ŷ4 + x4 ⊗ ŷ2 + x6 ⊗ x̂1 + 2x7 ⊗ x̂3 + y1 ⊗ ŷ6 + y3 ⊗ ŷ7,
c6,1 = 2y2 ⊗ x̂4 + y4 ⊗ x̂2 + x1 ⊗ x̂6 + x3 ⊗ x̂7 + 2y6 ⊗ ŷ1 + y7 ⊗ ŷ3,
c6,2 = 2εx5 ⊗ ŷ8 + εx8 ⊗ ŷ5 + x2 ⊗ ŷ4 + x4 ⊗ ŷ2 + x6 ⊗ x̂1 + 2x7 ⊗ x̂3 + y1 ⊗ ŷ6 + y3 ⊗ ŷ7.

We have H2(gci) = 0 for any cocycle ci.

A direct corollary of the above lemma is that the deforms of wk(1)(3;α)/c and wk(4;α) cor-
responding to the cocyles c0 when the deformation parameter ε is equal to α are not isomorphic
to the original algebras. This fact agrees with results of [15], where it was shown that these
deforms are not simple Lie algebras.
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