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Abstract. We study symplectic properties of the monodromy map of the Schrödinger
equation on a Riemann surface with a meromorphic potential having second-order poles. At
first, we discuss the conditions for the base projective connection, which induces its own set of
Darboux homological coordinates, to imply the Goldman Poisson structure on the character
variety. Using this result, we extend the paper [Theoret. and Math. Phys. 206 (2021),
258–295, arXiv:1910.07140], by performing generalized WKB expansion of the generating
function of monodromy symplectomorphism (the Yang–Yang function) and computing its
first three terms.
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1 Introduction

The symplectic aspects of the monodromy map of Schrödinger and related Schwarzian equations
is a rich topic that draws attention of contributors from mathematical and physical communities.
This study was initiated by S. Kawai [23] who established a relationship between the canonical
symplectic structure on the cotangent bundle T ∗Mg of the moduli space of curves and Goldman’s
bracket for the traces of monodromy matrices. Kawai’s results have found a physics application
in the geometry of four-dimensional supersymmetric quantum field theories in [31, 32].

Later in [9, 28] authors proposed an alternative approach to the symplectic geometry of
the monodromy map using homological coordinates to code information about a potential and
complex structure of a Riemann surface, in case when potential is holomorphic or with first-order
poles. These works highly relied on the canonical identification between associated moduli spaces
of quadratic differentials and cotangent bundles T ∗Mg,n of moduli spaces of punctured surfaces.
In this paper, we will generalize their results by considering quadratic differentials with second-
order poles. Although in terms of monodromy data this case is well-studied thanks to Fuchsian
nature of the singularities, from the symplectic point of view it brings technical difficulties due
to absence of the aforesaid identification of moduli spaces and requires a different approach
that we develop. Further generalization to include poles of order three and more poses an
issue on account of emergence of generalized monodromy data, including Stokes and connection
matrices [10]. That would require a non-obvious choice of local Darboux coordinates on the
space of parameters of the equation. Recent developments in this direction for genus 0 are
present in [4]. For a higher genus this remains a challenging problem.

Introduce the linear second-order equation on a Riemann surface C of genus g with n punc-
tures in the form

∂2ϕ+ Uϕ = 0, (1.1)
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where U is a meromorphic potential on C with double poles at the punctures (zj)
n
j=1. Invariance

of the equation under a coordinate change implies that U transforms as a projective connection,
while the solution ϕ locally transforms as 1

2 -differential [21]. To parametrize the space of all
meromorphic potentials, we represent the potential U as

U =
1

2
S −Q, (1.2)

where S is a fixed projective connection on C with at most simple poles at zj and holomorphically
depending on moduli of Mg,n, while the quadratic differential Q, having double poles at zj ,
varies. Let the asymptotics of Q near the poles be given by

Q(x) ∼

(
r2j
ξ2j

+O
(
ξ−1
j

))
(dξj)

2.

Denote by Qg,n the moduli space of pairs (C, Q) and by Qg,n[r] its corresponding stratum for
fixed values of rj ’s. The solution to (1.1) is locally a −1

2 differential which could be written as

ϕ = ϕ(ξ)(dξ)−
1
2 .

The ratio f = ϕ1/ϕ2 of two linearly independent solutions of (1.1) solves the Schwarzian equation

{f, ξ} = S(ξ)− 2Q(ξ),

where ξ is an arbitrary local parameter on C and { · , · } denotes the Schwarzian derivative. An-
alytic continuation of f along the cycles of π(C\{zi}nj=1, x0) determines a PSL(2,C) monodromy
representation of the fundamental group with the chosen basepoint x0. The choice of standard
generators

(
{κ}nj=1, {α, β}

g
j=1

)
of the fundamental group with single relation

κ1 · · ·κn
g∏

i=1

αiβiα
−1
i β−1

i = id

yields the same relation on the monodromy matrices

Mκ1 · · ·Mκn

g∏
i=1

MαiMβi
M−1

αi
M−1

βi
= I. (1.3)

The matrix Mκj corresponding to the monodromy around the pole zj has the following diagonal
form:

Dj =

(
mj 0

0 m−1
j

)
,

where

m2
j = e4πiλj . (1.4)

We additionally assume that λj /∈ Z/2 to exclude the resonant case. Local analysis of the
solutions for (1.1) implies the following relation between the biresidues (rj) and eigenvalues (mj)

r2j = λj(λj − 1). (1.5)

We denote by CVg,n the PSL(2) character variety corresponding to the representation (1.3). It
is well known that the stratum CVg,n[m] for fixed values mj is a symplectic leaf with a Poisson
structure given by the Goldman bracket [20].
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The space Qg,n[r] admits a system of local coordinates defined in the following way: for
every pair (C, Q) ∈ Qg,n consider equation v2 = Q in T ∗C. Although

√
Q is not single valued

on C, the equation induces a branched double covering π : Ĉ −→ C, where v is a single-valued
Abelian differential. The map π is branched at (simple) zeroes of Q denoted by (xj)

4g−4+2n
j=1 .

Thus, each double pole zj has two preimages that we call
(
z
(1)
j , z

(2)
j

)
. The enumeration of

these points is chosen such that the residue of v at z
(1)
j equals rj and the residue of v at z

(2)
j

equals −rj . The genus of Ĉ is ĝ = g + g−, with g− = 3g − 3 + n. The surface Ĉ is equipped
with a natural holomorphic involution µ : Ĉ −→ Ĉ which interchanges the sheets of the double

cover. The involution induces the splitting of the homology group H1

(
Ĉ\(z(1)j , z

(2)
j )nj=1,Z

)
into

even H+ and odd H− parts. We choose appropriate subset of cycles (a−i , b
−
i )

g−

i=1 ∈ H− with
intersection index a−i ◦ b−j = 1

2δij so that the integrals

Aj =

∮
a−j

v, Bj =

∮
b−j

v

become local period (or homological) coordinates onQg,n[r] [27]. The intersection pairing defines
the natural symplectic form on Qg,n[r]

Ωhom =

g−∑
j=1

2δBj ∧ δAj .

Remark 1.1. Throughout this article we will use the “δ” symbol as differential with respect to
moduli, while “d” refers to the differential with respect to some local coordinate near a point
on surface.

Here and below we will assume that Q is free from saddle trajectories (i.e., it is a “Gaiotto–
Moore–Neitzke differential” [19]), so that the symplectic form on CVg,n[m] that inverts the
Goldman bracket could be written in terms of homological shear coordinates given by linear
combinations of the logarithms of classical Thurston’s shear coordinates [33] emerging from
the ideal triangulation of the Riemann surface C (they are a simple example of more involved
Fock–Goncharov coordinates [18]):

ΩG =

g−∑
j=1

2δρa−j
∧ δρb−j

. (1.6)

Introduce the Bergman projective connection SB defined in terms of the canonical bidiffer-
ential B(x, y) on C, which is normalized with respect to chosen Torelli marking in H1(C,Z):

SB(x) =

(
B(x, y)− dξ(x)dξ(y)

(ξ(x)− ξ(y))2

) ∣∣∣
y=x

, (1.7)

where ξ is any local coordinate near point x. Since SB depends holomorphically on the conformal
structure of C, the difference S − SB becomes a family of quadratic differentials with at most
simple poles at the punctures (zj), depending holomorphically on moduli of Mg,n. Using the
identification of the moduli space of quadratic differentials with simple poles and the cotangent
bundle T ∗Mg,n, we can associate S − SB with the 1-form Θ(S−SB), locally defined on Mg,n, in
the following way.

At first, introduce the set of holomorphic local coordinates (Ωjk, ql) on Mg,n, g ≥ 2. To
determine locally the conformal structure of C we pick at generic point of Mg,n (outside of
hyperelliptic locus for g ≥ 3) a set D of 3g − 3 entries of the period matrix Ω of C. The
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quadratic differentials corresponding to cotangent vectors δΩjk are products ujuk of normalized
holomorphic differentials. An additional set of n coordinates which determine the positions of
punctures (zl)

n
l=1 on C we choose to be ql = (ui/uj)(zl) where ui and uj form a pair of normalized

holomorphic 1-forms on C, such that uj(zl) ̸= 0. The quadratic differential corresponding to
cotangent vector δql is the meromorphic quadratic differential Qzl (given by the formula (3.26)
below) whose only simple pole is at zl. These coordinates are local: in different coordinate charts
on Mg,n one might need to choose other pairs of normalized holomorphic differentials and/or
different Torelli markings. The momenta pl are then defined to be coefficients of decomposition
of the quadratic differential S − SB in the basis described above. Writing down the quadratic
differential S − SB as

S − SB =
∑

(jk)∈D

pjkujuk +
n∑

l=1

plQ
zl ,

where pjk and pl are holomorphic functions of (Ωjk, ql), the corresponding 1-form Θ(S−SB)

on Mg,n reads as

Θ(S−SB) =
∑

(jk)∈D

pjkδΩjk +
n∑

l=1

plδql. (1.8)

Local coordinates on Mg,n for g = 0, 1 have a special description and were covered in [28].
Our first main result imposes a condition on projective connection S of (1.2) for the mon-

odromy map to become a symplectomorphism.

Theorem 1.2. The monodromy map

F(S) : Qg,n[r] −→ CVg,n[m]

is a symplectomorphism with F∗
(S)ΩG = −Ωhom if and only if the 1-form Θ(S−SB), corresponding

to family of quadratic differentials S − SB (which is locally defined on the moduli space Mg,n),
is closed, δΘ(S−SB) = 0.

Statement of the theorem generalizes the results proven in [9, 28], where the differential Q
is assumed to be holomorphic or with simple poles, respectively. The proofs were based on
the identification of the homological symplectic form with the canonical form on T ∗Mg,n which
does not hold in presence of second-order poles. Our proof involves a perturbation of quadratic
differential Q and expansion of homological coordinates by series. A similar approach was
employed before to study Strebel differentials [15]. The outlined criterion effectively proves
a symplectic nature of the monodromy map for a large class of projective connections which
are known to satisfy the given condition of the closedness of 1-form (for example, Schottky,
Wirtinger and Bers projective connections [9]).

Let us take S = SB. Choosing symplectic potentials on Qg,n[r]:

θhom =

g−∑
j=1

(
BjδAj −AjδBj

)
and on CVg,n[m]:

θG =

g−∑
j=1

(
ρb−j

δρa−j
− ρa−j

δρb−j

)
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we may consider the generating function of this symplectomorphism (which was called the Yang–
Yang function in [8] following the seminal work [31]) given by

δGB = F∗
(SB)θG − θhom.

Our definition of GB involves a different choice of the Darboux coordinates on the character
variety (homological shear coordinates versus complex Fenchel–Nielsen coordinates). Thus, the
actual Yang–Yang function defined in [31] differs from GB by a generating function of the change
of these coordinates.1 While GB is invariant under symplectic transformations of the basis
(a−i , b

−
i ) ∈ H−, its dependance on the Torelli marking of C was unclear in [8]. The following

result addresses this issue.

Proposition 1.3. Let two Torelli markings ασ and α be related by Sp(2g,Z) matrix

σ =

(
C A
D B

)
:

(
b
a

)σ

= σ

(
b
a

)
.

Under this change the monodromy generating function transforms as

Gσ
B = GB +

n∑
i=1

πiri

(
reg

∫ z
(1)
i

z
(2)
i

v1 − reg

∫ z
(1)
i

z
(2)
i

v0

)
+ 6πi log det(CΩ+D),

where

v20 = Q, v21 = Q+ 6πi
∑

1≤j≤k≤g

ujuk
∂

∂Ωjk
log det(CΩ+D)

define two canonical coverings. The regularization of the integrals at the endpoints is given
by (3.8).

Although GB is defined very implicitly, the WKB approximation of the equation (1.1) allows
us to compute its asymptotic expansion. In [8], authors studied the following equation for a small
parameter ℏ ≪ 1

∂2ϕ+

(
1

2
SB − Q

ℏ2

)
ϕ = 0

and, following [1, 2], established a link between the ℏ-expansion of the homological shear coor-
dinates (1.6) and Voros symbols – integrals over the odd homology group H− [34]. That allowed
them to compute the leading asymptotic of the WKB expansion of the generating function GB.
In this paper, we use the result of Theorem 1.2 to generalize the WKB method by considering
Schrödinger equation with the potential perturbed by the 1

ℏ -term: let Q1 be a meromorphic
differential on C with at most simple poles at the punctures (zj)

n
j=1, holomorphically depending

on moduli of Mg,n. Take the base projective connection

S = SB − 2Q1

ℏ

and consider second-order equation (1.1) on a Riemann surface C in the form

∂2ϕ+

(
1

2
SB − Q1

ℏ
− Q

ℏ2

)
ϕ = 0. (1.9)

1Another difference with the (Nekrasov–Rosly–Shatashvili) Yang–Yang function of [31] is that GB is explicitly
dependent on chosen projective structure on the base surface as well as the moduli of the spectral cover, whereas
the NRS Yang–Yang function is a function of the complex structure parameters of the base surface.
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Such equations in genus zero are known to give rise to Riemann–Hilbert problems emerging
naturally in Donaldson–Thomas theory [11, 12] and appear in the quantization of spectral curves
via the topological recursion [22]. Our result involves a computation of three leading terms of the
ℏ-expansion of the generating function GB for this equation on a Riemann surface of arbitrary
genus.

Theorem 1.4. Consider the monodromy map

F(SB−2Q1/ℏ) : Qg,n[r/ℏ] −→ CVg,n[m(ℏ)]

of equation (1.9) between the moduli space Qg,n[r/ℏ] of pairs
(
C, Q/ℏ2

)
and the symplectic leaf

CVg,n[m(ℏ)] of the PSL(2,C) character variety, where each mj(ℏ) is related to rj via (1.4), (1.5)
by

rj
ℏ

= ±
[
logmj

2πi

(
logmj

2πi
− 1

)]1/2
.

Then the map F(SB−2Q1/ℏ) is a symplectomorphism if and only if the 1-form Θ(Q1), which is
locally defined on Mg,n by (1.8), is closed, δΘ(Q1) = 0. The monodromy generating function GB

has the following asymptotics as ℏ −→ 0+:

GB(ℏ) =
G−1

ℏ
+G0 +G1ℏ+O

(
ℏ2
)
.

Here

G−1 = Ĝ(Q1) +
n∑

j=1

πirj
2

∫ z
(1)
j

z
(2)
j

Q1

v
,

where there exists a local holomorphic function Ĝ(Q1) on Mg,n, such that

δĜ(Q1) = Θ(Q1).

Explicit form of Ĝ(Q1) depends on the concrete choice of Q1;

G0 = −12πi log τB|r −
n∑

j=1

πirj
2

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2j
v

)
+

n∑
j=1

πirj

(1
2

2

)∫ z
(1)
j

z
(2)
j

Q2
1

v3
,

here2 log τB|r is the Bergman tau-function defined on stratum of the moduli space of quadratic
differentials with n second-order poles with fixed biresidues (see [5] for the definition and main
properties. In fact, τB could be viewed as a section of the determinant line bundle of the Hodge
vector bundle over the moduli space Qg,n[r]), q(x) is a meromorphic function on C given by

q(x) =
SB − Sv

2v2
, (1.10)

where Sv is the Schwarzian projective connection

Sv(ξ(x)) =

{∫ x

v, ξ(x)

}
(dξ(x))2,

2Here and futher the binomial coefficient is defined by
( 1

2
k

)
:= 1/2(1/2−1)···(1/2−k+1)

k(k−1)···1 .
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({·, ξ} is the Schwarzian derivative, ξ is a local coordinate on C);

G1 = −
4g−4+2n∑

i=1

5πi

72
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πirj
4

∫ z
(1)
j

z
(2)
j

q
Q1

v

+
n∑

j=1

πi

16rj

∫ z
(1)
j

z
(2)
j

Q1

v
+

n∑
j=1

πirj

(1
2

3

)∫ z
(1)
j

z
(2)
j

Q3
1

v5
,

where the first sum runs over the branch points (xi) of the double cover.

This paper is organized as follows: in Section 2, we describe the geometry and main objects
associated with the canonical double cover, Section 3 is devoted to the symplectic properties
of the monodromy map. In Section 4, we perform the generalized WKB expansion of the
monodromy generating function and compute its first few terms.

2 Spaces of quadratic differentials with second-order poles

2.1 Canonical double cover

Denote by Qg,n the moduli space of meromorphic quadratic differentials on Riemann surface C
of genus g with n double poles (z1, . . . , zn) and 4g−4+2n simple zeroes (x1, . . . , x4g−4+2n). We
assume that any quadratic differential Q ∈ Qg,n has the following asymptotics near poles:

Q(x) ∼

(
r2j
ξ2j

+O(ξ−1
j )

)
(dξj)

2,

as x −→ zi, here ξj is any local coordinate near pole zj . For all such Q the equation v2 = Q
in the cotangent bundle T ∗C defines double covering π : Ĉ −→ C, branched at zeroes of Q. The
covering surface Ĉ possesses a natural holomorphic involution µ : Ĉ −→ Ĉ. The differential v is
single-valued and meromorphic on Ĉ, skew-symmetric under the involution: v(xµ) = −v(x).
v has double zeroes at branch points (xj)

4g−4+2n
j=1 and simple poles at 2n preimages of (zj)

n
j=1

denoted by z
(1)
j and z

(2)
j with residues rj and −rj , respectively. The Riemann–Hurwitz formula

implies the genus of the covering surface Ĉ equals

ĝ = 4g − 3 + n.

We decompose the first homology group of H1

(
Ĉ\
{
z
(1)
j , z

(2)
j

}n
j=1

,Z
)
into

H1

(
Ĉ\
{
z
(1)
j , z

(2)
j

}n
j=1

,Z
)
= H+ ⊕H−,

which are the +1 and −1 eigenspaces of the map, induced by the involution µ. dim(H+) =

2g+n−1 and dim(H−) = 6g−6+3n := 2g−+n. The canonical basis of H1

(
Ĉ\
{
z
(1)
j , z

(2)
j

}n
j=1

,Z
)

can be chosen as follows:{
ak, a

µ
k , ãl, bk, b

µ
k , b̃l, tj , t

µ
j

}
, k = 1, . . . , g, l = 1, . . . , 2g − 3 + n, j = 1, . . . , n.

Here
{
ak, bk, a

µ
k , b

µ
k

}
is a lift of the canonical basis of cycles {ak, bk} from C to Ĉ such that

µ∗ak = aµk , µ∗bk = bµk .
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The cycles
{
ãl, b̃l

}
are skew-symmetric double covers of the branch cuts between corresponding

pairs of zeroes of differential Q with the condition

µ∗ãl + ãl = µ∗b̃l + b̃l = 0.

Cycles
{
tj , t

µ
j

}
are two lifts of a small positively oriented loop tj around zj on C. On double

cover Ĉ, tj denotes a positively oriented loop encircling z
(1)
j , while tµj is a small loop around z

(2)
j .

In the group H+ there is a single relation given by

n∑
j=1

(
tj + tµj

)
= 0.

The classes

a+k =
1

2

(
ak + aµk

)
, b+k =

1

2

(
bk + bµk

)
, t+j =

1

2

(
tj + tµj

)
generate the group H+ with the intersection index

a+i ◦ b+k =
1

2
δik,

while t+j ’s have zero intersection with all cycles. The following cycles

a−k =
1

2

(
ak − aµk

)
, b−k =

1

2

(
bk − bµk

)
, (2.1)

a−l =
1√
2
ãl, b−l =

1√
2
b̃l, (2.2)

t−j =
1

2

(
tj − tµj

)
are the generators of the group H−. Similarly, their intersection index is

a−i ◦ b−k =
1

2
δik

and all other intersections are zero.
The differential v is used to introduce a system of local coordinates on both C and Ĉ. If x

is a point of Ĉ which does not coincide with branch points {xi} and poles
{
z
(1)
i , z

(2)
i

}
then the

local coordinate (also called “flat” coordinate) near x is given by

z(x) =

∫ x

x1

v, (2.3)

x1 is a chosen “first” zero of v. z(x) could also be used as a coordinate on C outside branch
points and poles. Notice that in this case v = dz. Near a branch point xi on Ĉ the distinguished
local coordinate is given by

ξ̂i(x) =

(∫ x

xi

v

) 1
3

. (2.4)

On the curve C the local coordinate near xi is

ξi(x) = ξ̂2i (x) =

(∫ x

xi

v

) 2
3

. (2.5)
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Near a double pole zi on C and simple poles
(
z
(1)
i , z

(2)
i

)
on Ĉ the local coordinate is

ζi(x) = exp

(
1

ri

∫ x

x1

v

)
. (2.6)

To define local coordinates near the poles uniquely, we on C connect first zero x1 with a chosen
first double pole z1 by a branch cut, then connect z1 with the remaining poles {zi}ni=2 forming
a tree. Then we lift this tree to Ĉ via π−1.

2.2 Period coordinates. Homological symplectic form

The dimension of H− coincides with the dimension of Qg,n. We introduce the following set of
period (homological) local coordinates on Qg,n:

Aj =

∮
a−j

v, Bj =

∮
b−j

v, 2πrk =

∮
t−k

v.

We fix the values (rk) and denote the corresponding stratum of moduli space by Qg,n[r]. Then

(Aj , Bj)
g−

j=1 become local coordinates on Qg,n[r]. There is a natural Poisson structure on Qg,n

between periods of v induced by the intersection index of the corresponding cycles s1, s2 ∈ H−:{∫
s1

v,

∫
s2

v

}
= s2 ◦ s1. (2.7)

This Poisson structure is degenerate, with Casimir functions r1, . . . , rn. The stratum Qg,n[r]
becomes a symplectic leaf for given bracket. It allows us to introduce the following symplectic
form on Qg,n[r]:

Ωhom =

g−∑
j=1

2δBj ∧ δAj .

2.3 Variational formulas

In this section, we introduce several meromorphic functions associated with surfaces Ĉ and C.
Then we recall their variational formulas with respect to period coordinates on the moduli
space Qg,n. Let us denote by (uj)

g
j=1 ∈ H1,0(C) the basis of holomorphic differentials normalized

over a-cycles of H1(C).

� The matrix Ωij =
∮
bj
ui represents the g × g period matrix of the base surface C.

� Meromorphic functions fj : Ĉ −→ CP 1 given by

fj(x) =
uj(x)

v(x)
, j = 1, . . . , g.

These functions are skew-symmetric under the involution and generically (when zeroes
of uj(x) and v(x) differ) have simple poles at the branch points (xj)

4g−4+2n
j=1 .

� The meromorphic function q : C −→ CP 1

q(x) =
SB − Sv

2v2
, (2.8)

where Sv is the Schwarzian projective connection defined by

Sv(ξ(x)) =

{∫ x

p
v, ξ(x)

}
(dξ(x))2
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in any local coordinate ξ. Here

{f, ξ} =

(
f ′′(ξ)

f ′(ξ)

)′
− 1

2

(
f ′′(ξ)

f ′(ξ)

)2

– Schwarzian derivative. The pullback of q to Ĉ has residueless 6-order poles at (xj).

� The meromorphic function b : Ĉ × Ĉ −→ CP 1

b(x, y) =
B(x, y)

v(x)v(y)
,

skew-symmetric in both arguments, with simple poles at (xj) on Ĉ with respect to each
argument. Outside the branch points on the diagonal, it has a double pole with the
following asymptotics in the coordinate z(x) =

∫ x
x1

v:

b(x, y) =
1

(z(x)− z(y))2
+

1

3
q(x) +

1

6
qz(x)(z(y)− z(x)) + · · · , y −→ x.

� The meromorphic function h : C × C −→ CP 1,

h(x, y) =
B2(x, y)

Q(x)Q(y)
= b2(x, y).

Its pullback to Ĉ × Ĉ −→ CP 1 is symmetric and has residueless double poles at (xj) in both
arguments.

It is convenient to introduce the periods Psi =
∮
si
v for si being an element from the canonical

basis of H−:

{si}dim(H−)
i=1 =

{{
a−j , b

−
j

}g−
j=1

,
{
t−k
}n
k=1

}
.

The dual basis {s∗i } is defined by the condition

s∗i ◦ sj = δij

and is given by

{s∗i }
dim(H−)
i=1 =

{{
−2b−j , 2a

−
j

}g−
j=1

,
{
2κ−k

}n
k=1

}
,

here κ−j is a 1/2 of the contour connecting poles z
(1)
j with z

(2)
j and skew-symmetric under the

involution, not intersecting other contours. The following variational formulas were derived in [9]
for a holomorphic differential v. In our framework, for v being meromorphic the same formulas
apply since the proof does not rely on the presence of poles of v. Note that the variations of
the functions depending on the point x ∈ Ĉ are computed assuming that the coordinate z(x) is
independent of the moduli.

Proposition 2.1. For arbitrary basis {sj}6g−6+2n
j=1 of H− and its dual basis {s∗j}

6g−6+2n
j=1 the

following formulas hold on Qg,n[r]:

δΩij

δPs
=

1

2

∮
s∗
fifjv, (2.9)

δfj(x)

δPs

∣∣∣
z(x)=const

=
1

4πi

∮
s∗
fj(t)b(x, t)v(t), (2.10)

δb(x, y)

δPs

∣∣∣
z(x),z(y)=const

=
1

4πi

∮
s∗
b(x, t)b(t, y)v(t), (2.11)

δq(x)

δPs

∣∣∣
z(x)=const

=
3

4πi

∮
s∗
h(x, t)v(t). (2.12)
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2.4 Bergman tau-function

The Bergman tau-function τB on the moduli space of the curves was originally defined as a higher
genus generalization of the Dedekind eta function on elliptic surface. It appears in various con-
text – from isomonodromy deformations to spectral geometry, Frobenius manifolds and random
matrices, see the review [29]. In the setting of moduli spaces of quadratic differentials the
Bergman tau-function was originally discussed in [30] in holomorphic case, later in [5] for mero-
morphic quadratic differentials with second-order poles.

In our framework, we consider a moduli space Qg,n of quadratic meromorphic differentials
with second-order poles. The explicit formula and main properties of τB were outlined in [8]. In
the present context, we only need its defining differential equations and transformation under
rescaling of the differential Q by a constant.

Theorem 2.2 ([8]). The Bergman tau-function τB satisfies the following system of differential
equations on Qg,n:

δ log τB
δAj

=
1

12πi

∮
b−i

qv,
δ log τB
δBj

= − 1

12πi

∮
a−j

qv, (2.13)

for j=1, . . . , 3g − 3 + n and

δ log τB
δ(2πirk)

= − 1

12πi

∫
κ−
k

(
qv +

1

4r2k
v

)
, (2.14)

for k = 1, . . . , n.

The function τB satisfies the following homogeneity property, which will be important in the
present context:

τB(C, κQ) = κ
5(2g−2+n)

72 τB(C, Q).

Equivalently, defining the Euler vector field via

E =

g−∑
j=1

(
Aj

δ

δAj
+Bj

δ

δBj

)
+

n∑
j=1

rj
δ

δrj
, (2.15)

we have that

E log τB =
5(2g − 2 + n)

72
.

We also notice that on the stratum Qg,n[r] the differential δ log τB|r is given by

δ log τB|r = − 1

12πi

g−∑
j=1

[(∮
a−j

qv

)
δBj −

(∮
b−j

qv

)
δAj

]
. (2.16)

3 Monodromy map

3.1 Monodromy symplectomorphism and Goldman bracket

Consider the monodromy map

F(S) : Qg,n −→ CVg,n (3.1)
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for the equation (1.1) defined by (1.3). The Goldman bracket on CVg,n[m] is defined as fol-
lows [20]. For two arbitrary loops γ and γ̃

{trMγ , trMγ̃}G =
1

2

∑
p∈γ◦γ̃

ν(p)(trMγpγ̃ − trMγpγ̃−1), (3.2)

where the monodromy matrices Mγ ,Mγ̃ ∈ PSL(2,C); γpγ̃ and γpγ̃
−1 are paths obtained by

resolving the intersection point p in two different ways (see [20]); ν(p) = ±1 is the contribution
of the point p to the intersection index of γ and γ̃.

The following theorem was stated in [8] and it is a natural extension of the results proven
in [9] for holomorphic potentials and in [28] for potentials with simple poles.

Theorem 3.1 ([8]). For the Bergman projective connection SB (1.7) chosen to be the base
projective connection S the monodromy map F(SB) (3.1) of equation (1.1) is Poisson. Namely,
it preserves homological bracket (2.7) and minus the Goldman bracket (3.2) between traces of
monodromy matrices.

The homological shear coordinates, which are the Darboux coordinates for Goldman brack-
et (3.2), can be constructed in the following way (see appendix of [8], also [7, 13] for the details):
Assume that quadratic differential Q is generic, i.e., it does not have any saddle connections
(as in the definition of the “Gaiotto–Moore–Neitzke differential” [19]). Then each horizontal
trajectory given by Im

∫ x
x1

v = 0, where x1 is an arbitrary “first” zero, starting at a zero xj of Q
ends at one of the poles zk, defining critical graph ΓQ. Additionally, three horizontal trajectories
meet at each zero, determining three vertices of the triangle at the poles, therefore, defining the
triangulation ΣQ of C. The dual graph with vertices at xj is denoted by Σ∗

Q. Notice that the
number of edges of ΣQ equals to 6g − 6 + 3n = dim(CVg,n). The Thurston shear coordinate is
a value ζe ∈ C attached to each edge e of the graph ΣQ.

Using the graph Σ∗
Q one defines a two-sheeted branch covering ĈΣB

by assuming that all edges

of Σ∗
Q are branch cuts. To each coordinate ζe we assign skew-symmetric cycle le on ĈΣB

, which
is a double cover of the corresponding dual edge e∗ ∈ Σ∗

Q. Lemma A.1 of [8] states that the
Goldman Poisson brackets (3.2) between the coordinates ζe can be expressed via the intersection
indices of the cycles le as

{ζe, ζe′}G =
1

4
le ◦ le′ .

An observation [8, Proposition A.6] that the double cover ĈΣB
is holomorphically equivalent to

the canonical double cover Ĉ, defined analytically by v2 = Q, allows us to view these brackets in
terms of corresponding cycles on Ĉ. Then one can consider linear combinations with half-integer
coefficients of cycles le, generating the elements

{
a−j , b

−
j , t

−
k

}
of the homology group H−. Taking

the same linear combinations of the elements 2ζe one defines the homological shear coordinates{
ρa−j

, ρb−j
, ρt−k

}
with the following Poisson brackets:

{
ρa−j

, ρb−k

}
G
=

δjk
2
,

{
ρa−j

, ρa−k

}
G
=
{
ρb−j

, ρb−k

}
G
= 0, (3.3)

while ρt−k
lie in the center of Poisson algebra. The coordinates ρt−k

are related to the monodromy

eigenvalue as follows:

ρt−k
= logmk.

Thus, on the symplectic leaf CVg,n[m] for fixed values of mk the Goldman symplectic form is
written as

ΩG =

g−∑
j=1

2δρa−j
∧ δρb−j

.
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Corollary 3.2. The homological symplectic form Ωhom on Qg,n[r] is minus pullback of the
Goldman symplectic form ΩG by the map F(SB)

F∗
(SB)ΩG = −Ωhom.

3.2 Admissible meromorphic projective connections

The map between the space of quadratic differentials Qg,n[r] and the character variety CVg,n[m]
essentially depends on the choice of the base projective connection on a Riemann surface C.
To parametrize space of such connections we consider the holomorphic affine bundle Sg,n of
meromorphic projective connections with at most simple poles at the punctures over the moduli
space of closed curves Mg,n. Theorem 3.1 states that for the choice S = SB the monodromy
map is symplectic. The naturally arising question is when the monodromy map with a fixed
projective connection S other than SB is also a symplectomorphism.

Definition 3.3. A holomorphic section S of the affine bundle Sg,n is called admissible if the
homological symplectic structure on Qg,n[r] implies Goldman bracket on the character vari-
ety CVg,n[m].

For any two choices of S0, S1 ∈ Sg,n we write the same equation in two ways

∂2ϕ+

(
1

2
S0 −Q0

)
ϕ = 0 and ∂2ϕ+

(
1

2
S1 −Q1

)
ϕ = 0,

where both Q0 and Q1 belong to Qg,n[r] and are related by

Q1 −Q0 =
1

2
(S0 − S1). (3.4)

We have the following diagram of maps

Qg,n[r] Qg,n[r]

CVg,n[m].

Q0
H−→Q1

F(S0)

F(S1)

Assuming that S0 is admissible, the condition for S1 to be also admissible (or equivalent to S0)
is that the map

H : Q0 −→ Q0 +
1

2
(S0 − S1) (3.5)

is a symplectomorphism implying the coincidence of homological 2-forms calculated via the pe-
riods of v0 and v1, where v20 = Q0, v

2
1 = Q1 define canonical coverings with different conformal

structures. The following proposition gives a condition for the map (3.5) to be a symplecto-
morphism, generalizing the results proven in [9, 28], where Q0, Q1 are both assumed to be
holomorphic or with simple poles, respectively.

Proposition 3.4.

1. Two meromorphic differentials Q0, Q1 ∈ Qn,g[r] induce the same homological 2-form on
Qn,g[r] if and only if the 1-form Θ(S0−S1), corresponding to family of quadratic differentials
S0 − S1 and locally defined on Mg,n, is closed, δΘ(S0−S1) = 0.
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2. The generating function of the symplectomorphism between the periods
(
A

(0)
k , B

(0)
k

)
of v0

and
(
A

(1)
k , B

(1)
k

)
of v1 for the chosen potentials

θ0 =

g−∑
k=1

(
B

(0)
k δA

(0)
k −A

(0)
k δB

(0)
k

)
, θ1 =

g−∑
k=1

(
B

(1)
k δA

(1)
k −A

(1)
k δB

(1)
k

)
, (3.6)

defined by

δGhom = H∗θ1 − θ0,

has the following form:

Ghom =
n∑

i=1

πiri

(
reg

∫ z
(1)
i

z
(2)
i

v1 − reg

∫ z
(1)
i

z
(2)
i

v0

)
+

1

2
Ĝ(S0−S1), (3.7)

where there exists a local holomorphic function Ĝ(S0−S1) on Mg,n, such that

δĜ(S0−S1) = Θ(S0−S1).

Remark 3.5. For any Q ∈ Qg,n[r] the integral
∫ z

(1)
i

z
(2)
i

v is singular at the endpoints. We define its

regularization by removing the divergent part as follows: fix a coordinate ξj near zj such that

Q(x) ∼

(
r2j
ξ2j

+O
(
ξ−1
j

))
(dξj)

2.

ξj can also serve as a local coordinate on Ĉ near the lifts
{
z
(1)
j , z

(2)
j

}
with

v(x) ∼ ±
(
rj
ξj

+O(1)

)
dξj .

Let ztj be an arbitrary sequence of points on C converging to zj , such that in the local coordi-
nate ξj

Re
(
ξj
(
ztj
))

∼ 1

t
, t −→ ∞, Im

(
ξj
(
ztj
))

= 0.

Then the regularization is defined by

reg

∫ z
(1)
j

z
(2)
j

v := lim
t−→∞

(∫ z
t(1)
j

z
t(2)
j

v − 2rj log t

)
. (3.8)

Before proceeding to the proof of Proposition 3.4, we will prove the following technical lemma,
which will also be used in the computation of the WKB expansion of the Yang–Yang function.
Introduce the pairing between any two meromorphic differentials w1, w2 on Ĉ:

〈∮
w1,

∮
w2

〉
:=

g−∑
j=1

[∮
b−j

w1

∮
a−j

w2 −
∮
a−j

w1

∮
b−j

w2

]
. (3.9)
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Lemma 3.6. Let w1 and w2 be two meromorphic differentials on Ĉ, skew-symmetric under in-

volution. Assuming both w1 and w2 holomorphically depend on moduli (Ai, Bi)
g−

i=1, the following
identity of 1-forms on Qg,n[r] holds:〈∮

w1, δ

∮
w2

〉
= −1

2

∫
∂Ĉ0

(
δw2

∫ x

p0

w1

)
+

〈∮
w1w2

v
, δ

∮
v

〉
(3.10)

or 〈∮
w1, δ

∮
w2

〉
=

1

2

∫
∂Ĉ0

(
w1

∫ x

p0

δw2

)
+

〈∮
w1w2

v
, δ

∮
v

〉
. (3.11)

Here Ĉ0 is the fundamental polygon of the covering surface Ĉ, p0 is a generic point.

Remark 3.7. Note that by δ
∮
w appearing in the pairing we mean differential applied to the

periods of w, while δw is given by

δw :=

g−∑
i=1

(
δw

δAi

∣∣∣
z(x)

δAi +
δw

δBi

∣∣∣
z(x)

δBi

)
, (3.12)

where the partial derivatives are defined under the assumption that the local coordinate (2.3) is
independent of the moduli. For example,

δw

δAi

∣∣∣
z(x)

:= v(x)
δ

δAi

∣∣∣
z(x)=const

{
w(x)

v(x)

}
,

where w(x)/v(x) is a meromorphic function on Ĉ.

Proof. Expressing the differential in coordinates (Ai, Bi)
g−

i=1, we write the pairing on the left-
hand side of (3.10) as follows:

g−∑
j=1

(∮
b−j

w1δ

∮
a−j

w2 −
∮
a−j

w1δ

∮
b−j

w2

)

=

g−∑
i=1

[
g−∑
j=1

(∮
b−j

w1
δ

δAi

∮
a−j

w2 −
∮
a−j

w1
δ

δAi

∮
b−j

w2

)
δAi (3.13)

+

g−∑
j=1

(∮
b−j

w1
δ

δBi

∮
a−j

w2 −
∮
a−j

w1
δ

δBi

∮
b−j

w2

)]
δBi. (3.14)

Take a reference point p0 and consider a canonical dissection of the covering surface along
the cycles in H1(Ĉ) to obtain the fundamental polygon Ĉ0. The coordinate z(x) =

∫ x
p0
v serves as

a local coordinate on Ĉ0 outside branch points and poles and is kept fixed while differentiating
with respect to the moduli. Consider the expression (3.13) near δAi. According to the discussion
in [26], when we differentiate the integral over a−i with respect to the variable Ai =

∮
a−i

v an

additional term appears:

δ

δAi

∮
a−i

w2 =
w2

v
(Ri) +

∮
a−i

δw2

δAi
,

whereRi is an intersection point of the cycles a−i and 2b−i (due to intersection index a−i ◦b
−
j =

δij
2 ),

whereas all other integrals commute with the differentiation with respect to coordinate Ai. In
our case Ri = p0. Therefore, we can rewrite the term near δAi as

g−∑
j=1

(∮
b−j

w1

∮
a−j

δw2

δAi
−
∮
a−j

w1

∮
b−j

δw2

δAi

)
+

w2

v
(p0)

∮
b−j

w1. (3.15)
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Let us write w2(x) = f(z)dz, for x ∈ Ĉ0. Since w2 is globally defined on Ĉ, it is invariant under
analytic continuation along the cycles in H−(Ĉ). Writing w2(x+ a−i ) = w2(x), we have that

f(z +Ai) = f(z). (3.16)

Differentiating this equality with respect to z, we get

∂f(z +Ai)

∂(z +Ai)
=

∂f(z)

∂z
.

Differentiating (3.16) again with respect to Ai, while z is kept constant, we also mind that f
implicitly depends on Ai:

∂f(z +Ai)

∂(z +Ai)
+

δf(z +Ai)

δAi
=

δf(z)

δAi
.

Combining these formulas, we write

δf(z +Ai)

δAi
dz − δf(z)

δAi
dz = −∂f(z)

∂z
dz,

or in invariant form (using that away from branch points and poles v = dz)

δw2

δAi
(x+ a−i )−

δw2

δAi
(x) = −d

(w2

v

)
.

Hence, the differential δ
δAi

w2 could be seen as meromorphic on Ĉ with a jump discontinuity

−d
(
w2
v

)
on the cycle 2b−i . Denote by F :=

∫ x
p0
w1. We apply a modification of the Riemann

bilinear identity for differentials having discontinuities along the homology cycles. Splitting the
integral over the boundary of Ĉ0 into even and odd parts of H1

(
Ĉ,Z

)
and recalling that the

intersection index is a+i ◦ b+j = a−i ◦ b−j =
δij
2 , one has

∫
∂Ĉ0

F
δw2

δAi
=

g−∑
j=1

[(∮
2b−j

F
δw2

δAi
+

∮
(2b−j )−1

F
δw2

δAi

)
+

(∮
a−j

F
δw2

δAi
+

∮
(a−j )−1

F
δw2

δAi

)

+

(∮
2b+j

F
δw2

δAi
+

∮
(2b+j )−1

F
δw2

δAi

)
+

(∮
a+j

F
δw2

δAi
+

∮
(a+j )−1

F
δw2

δAi

)]
. (3.17)

Consider the following term of the above sum:∮
2b−i

F
δw2

δAi
+

∮
(2b−i )−1

F
δw2

δAi
.

It could be rewritten as∮
2b−i

δw2

δAi
(P )

∫ P

p0

w1 −
∮
2b−i

δw2

δAi
(P ′)

∫ P ′

p0

w1, (3.18)

where P , P ′ are identified points on 2b−i and (2b−i )
−1 cycles, respectively. P ′ = P − a−i . That

means that P , P ′ lie on the different sides of a cycle 2b−i , where
δw2
δAi

gains a jump. Then

δw2

δAi
(P ′) =

δw2

δAi
(P )− “jump” =

δw2

δAi
(P ) + d

(w2

v

)
(P ).
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Plugging it into (3.18), we rewrite this expression as∮
2b−i

δw2

δAi

∮
a−i

w1 −
∮
2b−i

d
(w2

v

)
(P )

∫ P

p0

w1.

Integrating the second term by parts, we get∮
2b−i

F
δw2

δAi
+

∮
(2b−i )−1

F
δw2

δAi
=

∮
2b−i

δw2

δAi

∮
a−i

w1 −
w2

v
(p0)

∮
2b−i

w1 +

∮
2b−i

w1w2

v
.

In all the the remaining terms of (3.17) the differential δw2
δAi

does not gain jump discontinuities
and they could be commonly expressed as∮

2b−j

F
δw2

δAi
+

∮
(2b−j )−1

F
δw2

δAi
=

∮
2b−j

δw2

δAi

∮
a−j

w1, j ̸= i,∮
a−j

F
δw2

δAi
+

∮
(a−j )−1

F
δw2

δAi
= −

∮
a−j

δw2

δAi

∮
2b−j

w1, ∀j,∮
2b+j

F
δw2

δAi
+

∮
(2b+j )−1

F
δw2

δAi
=

∮
2b+j

δw2

δAi

∮
a+j

w1, ∀j, (3.19)∮
a+j

F
δw2

δAi
+

∮
(a+j )−1

F
δw2

δAi
= −

∮
a+j

δw2

δAi

∮
2b+j

w1, ∀j. (3.20)

The integrals in (3.19), (3.20) over a+, b+ cycles vanish due to skew symmetry of w1. Thus,
(3.17) could be rewritten as

1

2

∫
∂Ĉ0

F
δw2

δAi
= −

g−∑
j=1

(∮
b−j

w1

∮
a−j

δw2

δAi
−
∮
a−j

w1

∮
b−j

δw2

δAi

)

− w2

v
(p0)

∮
b−i

w1 +

∮
b−i

w1w2

v
. (3.21)

Comparing the expressions (3.15) and (3.21), we see that g−∑
j=1

(∮
b−j

w1
δ

δAi

∮
a−j

w2 −
∮
a−j

w1
δ

δAi

∮
b−j

w2

) δAi

=

[
−1

2

∫
∂Ĉ0

F
δw2

δAi
+

∮
b−i

w1w2

v

]
δAi

Similarly, one can show that g−∑
j=1

(∮
b−j

w1
δ

δBi

∮
a−j

w2 −
∮
a−j

w1
δ

δBi

∮
b−j

w2

) δBi

=

[
−1

2

∫
∂Ĉ0

F
δw2

δBi
−
∮
a−i

w1w2

v

]
δBi.

Plugging these expressions into (3.13), (3.14), one obtains the formula (3.10). (3.11) follows
from (3.10) by applying the Stokes’ theorem and the fact that in the interior of Ĉ0 away from
poles, when differentiating with respect to any local coordinate ξ, one has

dξ

(
δw2

δP

∫ x

p0

w1

)
=

δw2

δP
∧ w1 = −w1 ∧

δw2

δP
= −dξ

(
w1

∫ x

p0

δw2

δP

)
= 0,

where P ∈ (Ai, Bi)
g−

i=1 ■
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Proof of Proposition 3.4. Case of two nearby differentials Q0, Q1 ∈ Qg,n[r]: let U be a sim-
ply-connected neighborhood of Q0 and take Q1 ∈ U. For sufficiently small ℏ this differential may
be expressed as Q1 = Q0 + ℏQ̃, where Q̃ is a quadratic differential with at most simple poles
at (zj)

n
j=1. The canonical cover Ĉℏ, defined by

(
vℏ1
)2

= Q1, becomes ℏ-dependent. Consider Pℏ

to be one of the periods
(
A

(1)
i , B

(1)
i

)
of vℏ1 . Then its k-th derivative with respect to ℏ is given by3

∂k

∂ℏk
Pℏ

∣∣∣
ℏ=0

= (−1)k+1 (2k − 3)!!

2k

∮
s

Q̃k

v2k−1
0

, (3.22)

where s is an element of H−(Ĉ0,Z).
To justify these formulas consider Pℏ =

∮
s(ℏ) v

ℏ
1 as the integral on the base curve C via the

projection π : Ĉℏ −→ C. If cycle s(ℏ) belongs to the subset (2.1), using skew-symmetry of vℏ1
it projects onto one of homology cycles of C, which is independent of ℏ. If s(ℏ) is an element
of (2.2), it projects onto the contour encircling or passing through branch cuts arranged between
pairs of zeroes of Qℏ

1. Despite the positions of the branch points vary along with ℏ, we may
assume that the projections π(s(ℏ)) are kept fixed on C. Then one has

∂

∂ℏ

∮
s(ℏ)

vℏ1 =
∂

∂ℏ

∮
π(s(ℏ))

√
Q0 + ℏQ̃ =

∮
π(s(ℏ))

∂

∂ℏ

√
Q0 + ℏQ̃,

and the differentiation is followed by pullback to Ĉ. Higher derivatives are obtained the same
way.

Applying this argument, we can expand period coordinates by powers of ℏ. Write

Pℏ = Pℏ

∣∣∣
ℏ=0

+
∂

∂ℏ
Pℏ

∣∣∣
ℏ=0

ℏ+ · · ·+ ∂k

∂ℏk
Pℏ

∣∣∣
ℏ=0

ℏk

k!
+ · · ·

=

∮
s
v0 +

ℏ
2

∮
s

Q̃

v0
+ · · ·+ ℏk

(1
2

k

)∮
s

Q̃k

v2k−1
0

+ · · · .

Plugging ℏ-expansions of the periods
(
A

(1)
i , B

(1)
i

)
into the potential θ1 (3.6) and arranging terms

by powers of ℏ, we write with the help of the pairing notation (3.9):

θ1 =

〈∮
v1, δ

∮
v1

〉
=

〈∮
v0, δ

∮
v0

〉
+ ℏ

[
1

2

〈∮
v0, δ

∮
Q̃

v0

〉
+

1

2

〈∮
Q̃

v0
, δ

∮
v0

〉]
(3.23)

+
∞∑
k=2

ℏk
[(1

2

k

)(〈∮
v0, δ

∮
Q̃k

v2k−1
0

〉
+

〈∮
Q̃k

v2k−1
0

, δ

∮
v0

〉)

+

k−1∑
l=1

(1
2

l

)( 1
2

k − l

)〈∮
Q̃l

v2l−1
0

, δ

∮
Q̃k−l

v
2(k−l)−1
0

〉]
. (3.24)

We will treat separately the expressions near ℏ1 and ℏk, k ≥ 2.
Coefficient near ℏ1: noticing that

δ

〈∮
v0,

∮
Q̃

v0

〉
=

〈
δ

∮
v0,

∮
Q̃

v0

〉
+

〈∮
v0, δ

∮
Q̃

v0

〉
,

the expression near ℏ1 could be rewritten as

1

2
δ

〈∮
v0,

∮
Q̃

v0

〉
+

〈∮
Q̃

v0
, δ

∮
v0

〉
.

3Double factorial is defined by n!! := n(n− 2)(n− 4) · · · .
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Applying the Riemann bilinear identity, the pairing
〈 ∮

v0,
∮ Q̃

v0

〉
could be written as the sum

over residues inside the fundamental domain. Differential Q̃, being lifted to Ĉ, gains double
zeroes at branch points xi, which are the zeroes of Q0, and simple poles at preimages of zj .

That makes Q̃
v0

holomorphic, while v0 has poles at
{
z
(1)
j , z

(2)
j

}n
j=1

. Therefore, using that near

z
(1)
j

(
z
(2)
j

)
in the local coordinate (2.6) v0 = ± rj

ζi
dζi, we write

δ

 n∑
j=1

πi res
{z(1)j ,z

(2)
j }

(
v0

∫ x

p0

Q̃

v0

) = δ

 n∑
j=1

πirj

∫ z
(1)
j

z
(2)
j

Q̃

v0

 . (3.25)

We will also express the pairing
〈 ∮ Q̃

v0
, δ
∮
v0
〉
in a different form, introducing the system of

local coordinates on Mg,n. For simplicity here we restrict us to the case g ≥ 2 (low genus cases
g = 0, 1 could be covered by analogy following [28]). At generic point of the moduli space Mg,n

the quadratic differential Q̃ could be represented as a linear combination of 3g − 3 products
of normalized holomorphic differentials ujuk, where (jk) ∈ D for some subset D of entries of
matrix Ω, and additional n quadratic differentials encoding the meromorphic part could be
represented by the following generically meromorphic differentials Qk whose only pole of order
one located at zk:

Qzk(t) =
1

4πi

ui(t)uj(zk)− ui(zk)uj(t)

u2j (zk)
B(t, zk), (3.26)

here ui and uj are two arbitrary normalized holomorphic differentials such that uj(zk) ̸= 0.
Using the variational formulas (2.10) after lifting the function ui

uj
(x) to Ĉ, we get

δ

δPs

[
ui
uj

(zk)

]
=

δ

δPs

[
ui
uj

(
z
(1)
k

)]
=

∮
s∗

Qz
(1)
k

v0
, (3.27)

where Qz
(1)
k is a lift of Qzk to Ĉ. The entries Ωjk, (jk) ∈ D of the period matrix can serve as

the moduli of the base curve C, while ui
uj
(zk) := qk code the positions of poles, providing in total

3g − 3 + n local coordinates on Mg,n.
At generic point of Mg,n quadratic differential Q̃ can be expressed as

Q̃ =
∑

(jk)∈D

pjkujuk +

n∑
l=1

plQ
zl , pjk, pl ∈ C.

Then applying variational formulas (2.9) and (3.27), one has〈∮
Q̃

v0
, δ

∮
v0

〉
=

g−∑
j=1

[(∮
b−j

Q̃

v0

)
δA

(0)
j −

(∮
a−j

Q̃

v0

)
δB

(0)
j

]

=
∑

(jk)∈D

pjk

g−∑
j=1

[(∮
b−j

ujuk
v0

)
δA

(0)
j −

(∮
a−j

ujuk
v0

)
δB

(0)
j

]

+
n∑

l=1

pl

g−∑
j=1

[(∮
b−j

Qz
(1)
l

v0

)
δA

(0)
j −

(∮
a−j

Qz
(1)
l

v0

)
δB

(0)
j

]

=
∑

(jk)∈D

pjk

g−∑
j=1

[
∂Ωij

∂A
(0)
j

δA
(0)
j +

∂Ωij

∂B
(0)
j

δB
(0)
j

]
+

n∑
l=1

pl

g−∑
j=1

[
∂ql

∂A
(0)
j

δA
(0)
j +

∂ql

∂B
(0)
j

δB
(0)
j

]
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=
∑

(jk)∈D

pjkδΩjk +
n∑

l=1

plδql. (3.28)

Therefore, the term near ℏ1 becomes

δ

 n∑
j=1

πirj
2

∫ z
(1)
j

z
(2)
j

Q̃

v0

+
∑

(jk)∈D

pjkδΩjk +
n∑

l=1

plδql. (3.29)

Coefficients near ℏk, k ≥ 2: by Lemma 3.6, we can rewrite the pairings appearing in (3.24)
as 〈∮

Q̃l

v2l−1
0

, δ

∮
Q̃k−l

v
2(k−l)−1
0

〉
=

1

2

∫
∂Ĉ0

(
Q̃l

v2l−1
0

∫ x

p0

δ
Q̃k−l

v
2(k−l)−1
0

)
+

〈∮
Q̃k

v2k−1
0

, δ

∮
v0

〉
.

Also 〈∮
v0, δ

∮
Q̃k

v2k−1
0

〉
=

1

2

∫
∂Ĉ0

(
v0

∫ x

p0

δ
Q̃k

v2k−1
0

)
+

〈∮
Q̃k

v2k−1
0

, δ

∮
v0

〉
.

Thus, the expression (3.24) near ℏk, k ≥ 2 becomes(1
2

k

)
1

2

∫
∂Ĉ0

(
v0

∫ x

p0

δ
Q̃k

v2k−1
0

)
−

k−1∑
l=1

(1
2

l

)( 1
2

k − l

)
1

2

∫
∂Ĉ0

(
δ

Q̃k−l

v
2(k−l)−1
0

∫ x

p0

Q̃l

v2l−1
0

)
(3.30)

+

[
k∑

l=0

(1
2

l

)( 1
2

k − l

)]〈∮
Q̃k

v2k−1
0

, δ

∮
v0

〉
. (3.31)

Using the identity

1 + t =
(√

1 + t
)2

=

( ∞∑
k=0

(1
2

k

)
tk

)2

=

∞∑
k=0

tk

[
k∑

l=0

(1
2

l

)( 1
2

k − l

)]
, |t| ≤ 1,

and comparing the expressions near same powers of t we conclude that the piece (3.31) is
zero. Further, we can represent the expression in (3.30) as the sum over residues at the branch

points xi. Notice that the first term also has additional residues near
{
z
(1)
j , z

(2)
j

}n
j=1

due to
simple poles of v0:

n∑
j=1

(1
2

k

)
πi res

{z(1)j ,z
(2)
j }

(
v0

∫ x

p0

δ
Q̃k

v2k−1
0

)
(3.32)

+

4g−4+2n∑
i=1

πi res
xi

[(1
2

k

)
v0

∫ x

p0

δ
Q̃k

v2k−1
0

+

k−1∑
l=1

(1
2

l

)( 1
2

k − l

)(
Q̃l

v2l−1
0

∫ x

p0

δ
Q̃k−l

v
2(k−l)−1
0

)]
. (3.33)

Similarly to (3.25), the sum (3.32) could be rewritten as

δ

 n∑
j=1

(1
2

k

)
πirj

∫ z
(1)
j

z
(2)
j

Q̃k

v2k−1
0

 , (3.34)

here we used that the derivatives with respect to the coordinates
(
A

(0)
i , B

(0)
i

)g−
i=1

commute with
the integral.
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Consider the expression defined on the double cover π : Ĉ0 −→ C, given by v20 = Q0 in T ∗C:

res
xi

(√
Q0 + ℏQ̃

∫ x

p0

δ

√
Q0 + ℏQ̃

)
,

where xi is a zero of Q0 on C.
Formally, the Abelian differential v̂ℏ =

√
Q0 + ℏQ̃ is globally defined on the h-dependent

double cover π̂ : ˆ̂Cℏ −→ Ĉ0, given by (v̂ℏ)
2 = Q0+ℏQ̃ in T ∗Ĉ0 (note that Ĉ0 itself is a double cover

of C). Lifted from C to Ĉ0, Q0 has a 4th-order zeros at xi and double poles at
(
z
(1)
j , z

(2)
j

)n
j=1

,

while Q̃ gains a 2nd-order zero at xi and simple poles at (z
(1)
j , z

(2)
j ). Thus, the map π̂ is brached

at 8g − 8 + 4n simple zeroes x̃ℏj of Q0 + ℏQ̃. The double cover ˆ̂Cℏ is smooth everywhere except

for preimages of double zeroes (xi)
4g−4+2n
i=1 of Q0 + ℏQ̃, where ˆ̂Cℏ gains nodes. The genus ˆ̂g

of ˆ̂Cℏ equals 12g− 11 + 4n. Letting ℏ −→ 0, the nodes smoothen out and the covering surface ˆ̂Cℏ
degenerates to the pair of smooth surfaces Ĉ(1,2)

0 . On the base curve Ĉ0 that corresponds to the
merging of triplets of points: two simple zeroes x̃ℏi1 , x

ℏ
i2

of Q0 + ℏQ̃ converge to a double zero
at xi, increasing its multiplicity to 4.

In the local coordinate z(x) on Ĉ0: Q0 = v20 = dz2, Q̃ = Q̃(z)dz2. Differentiating with respect

to the coordinates
(
A

(0)
i , B

(0)
i

)g−
i=1

according to the rule (3.12), when the coordinate z(x) is kept
fixed, one has that the residue could be written as

res
xi

√Q0 + ℏQ̃
∫ x

p0

ℏδQ̃

2

√
Q0 + ℏQ̃

 = 0.

The residue vanishes since the expression inside is holomorphic at xi. Then we can expand the
left-hand side by powers of ℏ and observe that the coefficients near the powers of ℏ in the series
are exactly the terms appearing in the sum (3.33). It follows that these coefficients must vanish
too. Thus, the coefficient near ℏn, n ≥ 2 reduces to the expression (3.34).

Full expansion: combining (3.29) and (3.34), we have that

θ1 − θ0 = δ

 n∑
j=1

πirj

[ ∞∑
k=1

ℏk
(1

2

k

)∫ z
(1)
j

z
(2)
j

Q̃k

v2k−1
0

]+ ℏ

 ∑
(jk)∈D

pjkδΩjk +
n∑

l=1

plδql

 . (3.35)

We further notice, similarly to the argument in (3.22), that the infinite series is formally the
Taylor expansion by powers of ℏ of the expression∫ z

(1)
j (ℏ)

z
(2)
j (ℏ)

vℏ1 −
∫ z

(1)
j

z
(2)
j

v0.

The issue is that the integrands are singular at the end points of the integration path, and one
requires a regularization of the integral to have a proper identity. Considering the regularization
proposed in (3.8), one can see that

reg

∫ z
(1)
j (ℏ)

z
(2)
j (ℏ)

vℏ1 = reg

∫ z
(1)
j

z
(2)
j

v0 +

∞∑
k=1

ℏk
(1

2

k

)∫ z
(1)
j

z
(2)
j

Q̃k

v2k−1
0

,

where the integrals near hn are already regular. Using that, we rewrite the difference of poten-
tials as

θ1 − θ0 = δ

 n∑
j=1

πirj

(
reg

∫ z
(1)
j (ℏ)

z
(2)
j (ℏ)

vℏ1 − reg

∫ z
(1)
j

z
(2)
j

v0

)



22 R. Klimov

+ ℏ

 ∑
(jk)∈D

pjkδΩjk +
n∑

l=1

plδql

 . (3.36)

Case of two arbitrary differentials Q0, Q1 ∈ Qg,n[r]. Theorem 1.3 of [14] asserts that gener-
ically (outside of hyperelliptic locus for g ≥ 3) space Qg,n, and, thus Qg,n[r], is connected. Let
γt = Qt : [0, 1] −→ Qg,n[r] be a path such that γ(0) = Q0, γ(1) = Q1. For each t, the function

∮
si
vt

is holomorphic on Qg,n[r] and could be expanded by the Taylor series in some simply-connected
open neighborhood Ut of Qt. Then

⋃
t Ut provides and open cover for γt. Due to compactness

of γt, we can choose some finite subcover
⋃

ti
Uti , i ∈ [[0, N ]]. We can assume Q0 = Qt̂0

∈ Ut0 ,
Q1 = Qt̂N+1

∈ UtN and take Qt̂i
∈ γ ∩ Uti ∩ Uti−1 , i ∈ [[1, N ]]. Due to (3.36),

θt̂i+1
− θt̂i = δ

 n∑
j=1

πirj

(
reg

∫ z
(1)
j

z
(2)
j

vt̂i+1
− reg

∫ z
(1)
j

z
(2)
j

vt̂i

)
+

 ∑
(jk)∈D

p
(t̂i+1,t̂i)
jk δΩjk +

n∑
j=1

p
(t̂i+1,t̂i)
l δql

 ,

where
(
p
(t̂i+1,t̂i)
jk , p

(t̂i+1,t̂i)
l

)
are coefficients of the linear representation of

(
Qt̂i+1

−Qt̂i

)
in the basis(

ujuk, Q
zl
)
.

Then applying the telescoping series, one has

θ1 − θ0 =

N∑
i=0

(θt̂i+1
− θt̂i) = δ

 n∑
j=1

πirj

(
reg

∫ z
(1)
j

z
(2)
j

v1 − reg

∫ z
(1)
j

z
(2)
j

v0

)
+

 ∑
(jk)∈D

p
(1,0)
jk δΩjk +

n∑
l=1

p
(1,0)
l δql

 , (3.37)

where the latter expression, using (3.4), is exactly the 1-form 1
2Θ(S0−S1). By the assumption,

coefficients p
(1,0)
jk and p

(1,0)
l are holomorphic functions of (Ωjk, ql). Applying differential to both

sides of (3.37) one obtains the first statement of the proposition. If Θ(S0−S1) is assumed closed,
then by the Poincaré lemma it could be locally integrated, leading to the second statement. ■

Combining the result of the Theorem 3.1 and Proposition 3.4, we can formulate a condition
for S to become admissible.

Theorem 3.8. The monodromy map

F(S) : Qg,n[r] −→ CVg,n[m]

is a symplectomorphism with F∗
(S)ΩG = −Ωhom if and only if the 1-form Θ(S−SB), corresponding

to family of quadratic differentials S−SB and locally defined on Mg,n, is closed, δΘ(S−SB) = 0.

Equivalently, if and only if there exists a local holomorphic function Ĝ(S−SB) on Mg,n, such that

δĜ(S−SB) = Θ(S−SB). (3.38)

The computation similar to (3.28) (performed backwards) allows us to characterize the ad-
missible projective connection in terms of the 1-form defined on Qg,n[r] in period coordinates.
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Corollary 3.9. The projective connection S ∈ Sg,n is admissible if and only if the following
locally defined 1-form on Qg,n[r]

Θ(S−SB) =

g−∑
j=1

[(∮
b−j

S − SB

v

)
δAj −

(∮
a−j

S − SB

v

)
δBj

]

is closed, δΘ(S−SB) = 0.

The following corollary gives an alternative characterization of admissible projective connec-
tions which does not refer to the Bergman projective connection:

Corollary 3.10. The projective connection S ∈ Sg,n is admissible if and only if the following
locally defined 1-form on Qg,n[r]

Θ(S−Sv) =

g−∑
j=1

[(∮
b−j

S − Sv

v

)
δAj −

(∮
a−j

S − Sv

v

)
δBj

]

is closed, δΘ(S−Sv) = 0.

Proof. Notice, that from (2.16) it follows that 1-forms Θ(S−Sv) and Θ(S−SB) differ by the closed
form (24πi)δ log τB|r so, their conditions of closedness are equivalent. ■

In [9], authors discussed alternative ways of fixing the reference projective connection. It
was showed that if S is chosen to be either Schottky, Wirtinger or Bers projective connection,
it is equivalent to the Bergman projective connection SB in the sense (3.38). While explicit
formulas Ĝ(S−SB) for Schottky and Wirtinger connections were derived in [9], for Bers connection
it was only conjectured, and recently proven in [16]. Moreover, the definition of Bergman
projective connection itself depends on the choice of Torelli marking on C. Let two Torelli
markings ασ and α be related by Sp(2g,Z) matrix

σ =

(
C A
D B

)
:

(
b
a

)σ

= σ

(
b
a

)
. (3.39)

Then two corresponding Bergman projective connections Sσ
B and SB are related by

Sσ
B = SB − 12πi

∑
1≤j≤k≤g

ujuk
δ

δΩjk
log det(CΩ+D). (3.40)

and also equivalent due (3.38) with the generating function Ĝ(Sσ
B−SB) given by

Ĝ(Sσ
B−SB) = −12πi log det(CΩ+D). (3.41)

That allows us to formulate the following corollary of Theorem 3.8.

Corollary 3.11. If S ∈ Sg,n is chosen to be either Bergman (corresponding to any Torelli
marking), Schottky, Wirtinger or Bers (defined with respect their own data) then the monodromy
map

F(S) : Qg,n[r] −→ CVg,n[m]

is a symplectomorphism with F∗
(S)ΩG = −Ωhom.
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3.3 Definition of the monodromy generating function

Fixing the Bergman projective connection as the base connection S = SB, we may choose
a symplectic potential on the moduli space Qg,n[r] in period coordinates

θhom =

g−∑
j=1

(
BjδAj −AjδBj

)
(3.42)

with another symplectic potential on the character variety CVg,n[m] in homological shear coor-
dinates

θG =

g−∑
j=1

(
ρb−j

δρa−j
− ρa−j

δρb−j

)
(3.43)

and consider the generating function of symplectomorphism F(SB) (the Yang–Yang function
introduced in [31] ) given by

δGB = F∗
(SB)θG − θhom. (3.44)

Assuming that the triangulation of the surface C used to define homological shear coordinates is
specified by the horizontal trajectories of the GMN-differential Q, the remaining parameters that
define the function GB include the choice of the Torelli marking on C and the choice of generators(
a−j , b

−
j

)
in H−. It is easy to see, that the symplectic potentials are invariant under symplectic

transformations of the generators in H−. Namely, under the transformation σ ∈ Sp(2g,Z)

σ =

(
C− A−
D− B−

)
:

(
b−
a−

)σ

= σ

(
b−
a−

)
the potentials θhom and θG remain the same, leaving the function GB also invariant. The question
how the change of Torelli marking affects the monodromy generating function was posed in [8]
and Proposition 3.4 allows us to provide the answer. Under the change (3.39) of the canonical ba-
sis of C the Goldman potential θG remains invariant, while the homological potentials θσhom, θhom
for new and old Torelli markings are related by the term (3.7)

θσhom = θhom + δGhom.

In our setting, with the help of (3.40) and (3.41) one has

Q0 = Q, Q1 = Q+ 6πi
∑

1≤j≤k≤g

ujuk
∂

∂Ωjk
log det(CΩ+D)

and

δGhom = δ

[
n∑

i=1

πiri

(
reg

∫ z
(1)
i

z
(2)
i

v1 − reg

∫ z
(1)
i

z
(2)
i

v0

)]
+ 6πiδ log det(CΩ+D),

where v20 = Q0, v
2
1 = Q1 define two different canonical coverings. Combining that with the

definition of the generating function (3.44), we have

Proposition 3.12. Under the change (3.39) of the Torelli marking, the monodromy generating
function transforms as

Gσ
B = GB +

n∑
i=1

πiri

(
reg

∫ z
(1)
i

z
(2)
i

v1 − reg

∫ z
(1)
i

z
(2)
i

v0

)
+ 6πi log det(CΩ+D),

where v20 = Q and v21 = Q+ 6πi
∑

1≤j≤k≤g ujuk
∂

∂Ωjk
log det(CΩ+D).
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4 Generalized WKB expansion
of the monodromy generating function

4.1 WKB approximation of the Schrödinger equation

To study the asymptotic expansion of the monodromy generating function GB, we consider the
second-order equation in the form

∂2ϕ+

(
1

2
SB − Q1

ℏ
− Q

ℏ2

)
ϕ = 0, (4.1)

where Q ∈ Qg,n[r], while Q1 is a fixed meromorphic quadratic differential assumed to depend
holomorphically on moduli of Mg,n, with at most simple poles at the punctures (zj)

n
j=1.

The WKB approximation for this equation is performed in the following way: consider the
canonical double cover Ĉℏ given by the equation

v2ℏ =
Q

ℏ2
.

Rescaling the differential v = ℏvℏ pass to the cover v2 = Q which is now independent of ℏ. Choose
some base point x0. In terms of local coordinate z(x) =

∫ x
x0

v and the function φ(x) = ϕ
√

v(x)
equation (4.1) takes the form

φzz +
(
q(z)− p(z)ℏ−1 − ℏ−2

)
φ = 0, (4.2)

where

q =
SB − Sv

2v2
, p =

Q1

v2
,

(notice that in local coordinate z(x) the Schwarzian projective connection (1.10) vanishes).
Introducing the asymptotic series s =

∑∞
k=−1 ℏksk, we write the solution for (4.2) in the form

fx0 = v−
1
2 exp

(∫ x

x0

(
ℏ−1s−1 + s0 + ℏs1 + · · ·

)
v

)
,

where sk are meromorphic functions on Ĉ. The asymptotic series s satisfies the Ricatti equation:

ds+ s2v = −qv + ℏ−1pv + ℏ−2v. (4.3)

Then plugging its expansion into (4.3) and comparing terms near the same powers of ℏ one gets
the following first terms sk:

s−1 = ±1, s0 =
p

2s−1
, s1 = −dp

4v
− 1

2s−1

(
p2

4
+ q

)
, (4.4)

while the consecutive terms satisfy the recurrence relation

sk+1 = − 1

2s−1

(
dsk
v

+
∑

j+l=k
j,l≥0

sjsl

)
, k ≥ 1. (4.5)

In particular, when k = 2, we get

s2 =
1

8v
d

(
dp

s−1v
+

p2

2
+ 2q

)
− pdp

8v
+

1

4s−1

(
qp− p3

4

)
.
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There is an ambiguity in choosing the value of s−1, which corresponds to the choice of the
sign for the square root

√
Q. Further below, we shall assume that s−1 = +1. To obtain

another asymptotic series corresponding to s−1 = −1 it is sufficient to apply involution µ to get
µ∗v = −v. We define even and odd part of the asymptotic series s by

sodd =
1

2
(s+ µ∗s), seven =

1

2
(s− µ∗s).

Notice that µ∗sodd = sodd and µ∗seven = −seven, while

µ∗(soddv) = −soddv, µ∗(sevenv) = sevenv.

Lemma 4.1. The following equation holds:

dsodd = −2sevensoddv.

Proof. Expressing s = sodd + seven and plugging it into (4.3) we have

d(sodd + seven) +
(
s2odd + s2even + 2soddseven

)
v = −qv − ℏ−1pv − ℏ−2v.

This equality contains terms both symmetric and skew-symmetric under involution. Comparing
only symmetric terms, one gets

dsodd + 2sevensoddv = 0. ■

Using this relation, it is easy to obtain two WKB-solutions for the equation (4.1):

f±
x0

=
1

(soddv)
1
2

exp

[
±
∫ x

x0

soddv

]
, (4.6)

where x0 is often chosen to be one of the branch points xi, called turning point (see, e.g., [24]).
The differential soddv is multi-valued on the base curve C and generically singular at xi. To define
the integral correctly we pass to the double cover Ĉ where soddv is well-defined. Skew-symmetry
of soddv implies it has a vanishing residue at xi. Therefore, we can define the integral by∫ x

xi

soddv =
1

2

∫ x(1)

x(2)

soddv,

where we join preimages x(1) and x(2) of x by an arc passing through the branch cut, which
connects xi with some another branch point.

Introduce the meromorphic differentials

vk = (sodd)kv.

Analytic continuation of the WKB-solutions (4.6) along the edges of graph ΣQ gives rise to the
relation between the homological shear coordinates and the Voros symbols – integrals of soddv
over the elements of H−. The following proposition generalizes the one stated in [8] to the case
when Q1 ̸= 0 and is proven in complete analogy.

Proposition 4.2. For each l ∈ H− the homological shear coordinate ρl admits the following
asymptotic expansion

ρl(ℏ) ∼
∫
l
soddv =

1

ℏ

∫
l
v−1 +

∫
l
v0 + ℏ

∫
l
v1 + · · · , ℏ −→ 0+, (4.7)

where the relation is understood modulo an addition of πik, k ∈ Z.

Remark 4.3. The similar result was present in [1] where the meromorphic potential in (1.1)
was arranged in a different way, such that the double poles with fixed biresidues were attached
to the reference meromorphic projective connection, while in our case these double poles belong
to the quadratic differential Q.
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4.2 WKB expansion of the Yang–Yang function

The requirement for the monodromy map of the equation (4.1) to be a symplectomorphism
imposes a restriction on the differential Q1. We can regard

S = SB − 2Q1

ℏ

as a chosen base projective connection, then the condition for it to be admissible is ruled by
Theorem 3.8. Namely, the form Θ(Q1), defined locally on Mg,n, must be closed, δΘ(Q1) = 0.
The generating function GB(ℏ) of this symplectomorphism is defined by

δGB(ℏ) = F∗
(SB−2Q1/ℏ)θG(ℏ)− θhom(ℏ), (4.8)

where the symplectic potentials θG and θhom are defined by (3.42) and (3.43):

θG(ℏ) =
g−∑
j=1

(
ρbjδρaj − ρajδρbj

)
(ℏ), (4.9)

here ρl(ℏ) is the homological shear coordinate corresponding to a loop l ∈ H− and

θhom(ℏ) =
1

ℏ2

g−∑
j=1

(
BjδAj −AjδBj

)
, (4.10)

here
(
Aj =

∮
a−j

v,Bj =
∮
b−j

v
)
are period coordinates on Qg,n[r]. Using the pairing notation (3.9)

the symplectic potential θhom in period coordinates reads as

θhom(ℏ) =
1

ℏ2

〈∮
v, δ

∮
v

〉
.

The potential θG in homological shear coordinates ρl(ℏ) by means of the expansion (4.7) has the
following expression:

θG(ℏ) =
∞∑

i=−2

ℏi
∑
l+k=i
l,k≥−1

〈∮
vl, δ

∮
vk

〉
. (4.11)

Meromorphic differentials vk could be obtained by antisymmetrizing the differentials skv, where
functions sk are given by (4.4), (4.5). First four differentials vk take the following form:

v−1 = v, v0 =
Q1

2v
, (4.12)

v1 = −Q2
1

8v3
− qv

2
, v2 =

1

4

(
q
Q1

v
− Q3

1

v5

)
. (4.13)

By plugging (4.11) in (4.8), we see that the coefficient in front of ℏ−2 in the expansion of (4.8)
vanishes and

δGB(ℏ) =
∞∑

i=−1

ℏi
∑
l+k=i
l,k≥−1

〈∮
vl, δ

∮
vk

〉
:=

∞∑
i=−1

ℏiδGi, ℏ −→ 0+.
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4.2.1 Term G−1

Equation for δG−1:

δG−1 =

〈∮
v, δ

∮
v0

〉
+

〈∮
v0, δ

∮
v

〉
using the expressions (4.12), (4.13) for vk could be written as follows:

δG−1 =
1

2

〈∮
v, δ

∮
Q1

v

〉
+

1

2

〈∮
Q1

v
, δ

∮
v

〉
.

Notice that (after relabeling Q̃ −→ Q1, v0 −→ v) this is exactly the term (3.23) near ℏ1 appearing
in the expansion of the potential θ1 in the proof of Proposition 3.4. Thus, we immediately get

δG−1 = Θ(Q1) + δ

 n∑
j=1

πirj
2

∫ z
(1)
j

z
(2)
j

Q1

v

 ,

where before we assumed that the form Θ(Q1) is closed on Mg,n. Then the integration leads to

G−1 = Ĝ(Q1) +
n∑

j=1

πirj
2

∫ z
(1)
j

z
(2)
j

Q1

v
,

where there exists local holomorphic function Ĝ(Q1) on the moduli space Mg,n, such that

δĜ(Q1) = Θ(Q1). (4.14)

The geometrical meaning of the term G−1 is that the condition of closedness of δG−1 (or equiv-
alently the existence of Ĝ(Q1)) is an obstruction for the monodromy map F(SB−Q1/ℏ) to be
a symplectomorphism.

4.2.2 Term G0

Equation for δG0:

δG0 =

〈∮
v0, δ

∮
v0

〉
+

〈∮
v, δ

∮
v1

〉
+

〈∮
v1, δ

∮
v

〉
using the expressions (4.12), (4.13) for vk could be written as follows:

δG0 =

[
1

4

〈∮
Q1

v
, δ

∮
Q1

v

〉
− 1

8

〈∮
v, δ

∮
Q2

1

v3

〉
− 1

8

〈∮
Q2

1

v3
, δ

∮
v

〉]
−
[
1

2

〈∮
v, δ

∮
qv

〉
+

1

2

〈∮
qv, δ

∮
v

〉]
. (4.15)

The term in the first bracket is the coefficient (3.24) near ℏ2 in the expansion of the potential θ1
in the proof in Proposition 3.4 and it equals

δ

 n∑
j=1

πirj

(1
2

2

)∫ z
(1)
j

z
(2)
j

Q2
1

v3

 .

To compute the term in the second bracket, we notice that

1

2

〈∮
v, δ

∮
qv

〉
+

1

2

〈∮
qv, δ

∮
v

〉
=

1

2
δ

〈∮
v,

∮
qv

〉
+

〈∮
qv, δ

∮
v

〉
.
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It follows from (2.16) that
〈 ∫

qv, δ
∫
v
〉
is a differential of the Bergman tau-function, namely〈∮

qv, δ

∮
v

〉
= 12πiδ log τB|r.

Applying the variational formulas (2.13), (2.14) and the homogeneity property (2.15) of the
function τB on the full space Qg,n, the term

〈 ∮
v,
∮
qv
〉
could be written as〈∮

v,

∮
qv

〉
= −12πi

g−∑
j=1

(
Aj

δ

δAj
+Bj

δ

δBj

)
log τB

= −12πi

[
5(2g − 2 + n)

72
−

n∑
j=1

rj
δ

δrj
log τB

]

= −12πi

5(2g − 2 + n)

72
−

n∑
j=1

rj
12

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2k
v

) .

Restricting this formula to Qg,n[r], we get

δ

〈∮
v,

∮
qv

〉
= δ

 n∑
j=1

πirj

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2k
v

) ,

(alternatively, this term could be computed via the resides after applying the Riemann bilinear
identity to differentials v and qv). Putting all terms together in (4.15) and integrating we obtain

G0 = −12πi log τB|r −
n∑

j=1

πirj
2

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2k
v

)
+

n∑
j=1

πirj

(1
2

2

)∫ z
(1)
j

z
(2)
j

Q2
1

v3
. (4.16)

4.2.3 Term G1

Equation for δG1:

δG1 =

〈∮
v, δ

∮
v2

〉
+

〈∮
v0, δ

∮
v1

〉
+

〈∮
v1, δ

∮
v0

〉
+

〈∮
v2, δ

∮
v

〉
using the expressions (4.12), (4.13) for vk could be written as follows:

δG1 =

[
− 1

16

〈∮
Q2

1

v3
, δ

∮
Q1

v

〉
− 1

16

〈∮
Q1

v
, δ

∮
Q2

1

v3

〉

+
1

16

〈∮
v, δ

∮
Q3

1

v5

〉
+

1

16

〈∮
Q3

1

v5
, δ

∮
v

〉]

+

[
−1

4

〈∮
Q1

v
, δ

∮
qv

〉
− 1

4

〈∮
qv, δ

∮
Q1

v

〉

+
1

4

〈∮
v, δ

∮
q
Q1

v

〉
+

1

4

〈∮
q
Q1

v
, δ

∮
v

〉]
.

The term in the first brackets is the coefficient (3.24) near ℏ3 in the expansion of the potential θ1
in the proof in Proposition 3.4 and it equals

δ

 n∑
j=1

πirj

(1
2

3

)∫ z
(1)
j

z
(2)
j

Q3
1

v5

 .
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To treat the term in the second bracket first notice that it could be rewritten as

−1

4
δ

〈∮
Q1

v
,

∮
qv

〉
− 1

2

〈∮
qv, δ

∮
Q1

v

〉
+

1

4
δ

〈∮
v,

∮
q
Q1

v

〉
+

1

2

〈∮
q
Q1

v
, δ

∮
v

〉
. (4.17)

Lemma 3.6 in the form (3.11) implies that〈∮
qv, δ

∮
Q1

v

〉
=

1

2

∫
∂Ĉ0

(
qv

∫ x

p0

δ
Q1

v

)
+

〈∮
q
Q1

v
, δ

∮
v

〉
,

so (4.17) becomes

−1

4
δ

〈∮
Q1

v
,

∮
qv

〉
+

1

4
δ

〈∮
v,

∮
q
Q1

v

〉
− 1

4

∫
∂Ĉ0

(
qv

∫ x

p0

δ
Q1

v

)
. (4.18)

Let us consider the last integral. While Abelian differential δQ1

v is holomorphic, qv has residueless

4-order poles at the branch points (xi) and simple poles at the punctures {z(1)j , z
(2)
j }nj=1. So, the

integral over the boundary reduces to the computation of residues:

∫
∂Ĉ0

(
qv

∫ x

p0

δ
Q1

v

)
=

4g−4+2n∑
i=1

2πi res
xi

[
qv

∫ x

p0

δ
Q1

v

]
+

n∑
j=1

2πi res
{z(1)j ,z

(2)
j }

[
qv

∫ x

p0

δ
Q1

v

]
. (4.19)

To compute residues near simple poles, we recall the formulas (2.8) for q(x) and Sv and use the

local coordinate ζ (2.6) to write near z
(1)
j :

qv =
SB − Sv

2v
=

SB(ζ)− 1
2ζ2

2
rj
ζ

dζ =

(
− 1

4rjζ
+O(1)

)
dζ.

Due to skew-symmetry of qv the expansion near z
(2)
j is the negation of the above formula. Thus,

(
res
z
(1)
j

+ res
z
(2)
j

)(
qv

∫ x

p0

δ
Q1

v

)
= δ

[
− 1

4rj

∫ z
(1)
j

z
(2)
j

Q1

v

]
,

since the differential δ commutes with the line integral. To simplify the residue near a branch
point xi at first notice that the variational formula (2.12) implies that the differential δ(qv) is
holomorphic at xi, so

res
xi

[
qv

∫ x

p0

δ
Q1

v

]
= δ

(
res
xi

[
qv

∫ x

p0

Q1

v

])
.

Let’s assume that the Bergman projective connection admits the following expansion near xi on
the base curve C in local coordinate (2.5):

SB(ξ) = SB(xi) + SB
′(xi)ξ + · · · .

Being lifted to Ĉ, it transforms like

SB(ξ̂)
(
dξ̂
)2

= SB(ξ)(dξ)
2 + S

(
ξ, ξ̂
)
,
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where ξ̂ is local coordinate (2.4) near xi on Ĉ, S
(
ξ, ξ̂
)
is the Schwarzian derivative

S
(
ξ, ξ̂
)
=

(
ξ′′

ξ′

)′
− 1

2

(
ξ′′

ξ′

)2

,

where derivatives are taken with respect to ξ̂. Having that ξ = ξ̂2, we write

SB

(
ξ̂
)(
dξ̂
)2

= 4(SB(xi) + SB
′(xi)ξ̂

2)ξ̂2
(
dξ̂
)2 − 3

2ξ̂2

(
dξ̂
)2
.

Also

Sv = − 4

ξ̂2

(
dξ̂
)2
, v = 3ξ̂2dξ̂,

leading to

qv =

[
5

12ξ̂4
+O(1)

]
dξ̂.

Then the residue near xi could be expressed as

res
xi

[
qv

∫ x

p0

Q1

v

]
= res

xi

(
5dξ̂

12ξ̂4

∫ x

p0

Q1

v

)
=

5

12

1

3!

(
(Q1/v)

dξ̂

)′′
(xi) =

5

36
res
xi

(
Q1/v∫ x
xi
v

)
.

The integral (4.19) takes the following form:

∫
∂Ĉ0

(
qv

∫ x

p0

δ
Q1

v

)
= δ

4g−4+2n∑
i=1

5πi

18
res
xi

(
Q1/v∫ x
xi
v

)
−

n∑
j=1

πi

2rj

∫ z
(1)
j

z
(2)
j

Q1

v

 . (4.20)

The differential of the first pairing δ
〈 ∮ Q1

v ,
∮
qv
〉
in (4.18) is computed by analogy. Applying

the Riemann bilinear identity, one has〈∮
Q1

v
,

∮
qv

〉
= −1

2

∫
∂Ĉ0

(
qv

∫ x

p0

Q1

v

)
,

resulting in

δ

〈∮
Q1

v
,

∮
qv

〉
= δ

− 4g−4+2n∑
i=1

5πi

36
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πi

4rj

∫ z
(1)
j

z
(2)
j

Q1

v

 . (4.21)

Finally, applying the Riemann bilinear identity to the pairing
〈 ∮

v,
∮
qQ1

v

〉
, we have

〈∮
v,

∮
q
Q1

v

〉
= −

4g−4+2n∑
i=1

πi res
xi

[
q
Q1

v

∫ x

p0

v

]
+

n∑
j=1

πi res
{z(1)j ,z

(2)
j }

[
v

∫ x

p0

q
Q1

v

]
.

While

res
{z(1)j ,z

(2)
j }

[
v

∫ x

p0

q
Q1

v

]
= rj

∫ z
(1)
j

z
(2)
j

q
Q1

v
,
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the residue near xi is computed noticing that

q
Q1

v
=

(
5

36ξ̂6
+O

(
1

ξ̂2

))
Q1

v
,

∫ x

p0

v = C(p0) + ξ̂3.

Differential Q!
v is antisymmetric, and, thus, expands by even powers of ξ̂ near a branch point.

That leads to

res
xi

[
q
Q1

v

∫ x

p0

v

]
=

5

36
res
xi

[
Q1/v

ξ̂3

]
=

5

36
res
xi

(
Q1/v∫ x
xi
v

)
.

Overall,

δ

〈∮
v,

∮
q
Q1

v

〉
= δ

− 4g−4+2n∑
i=1

5πi

36
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πirj

∫ z
(1)
j

z
(2)
j

q
Q1

v

 . (4.22)

Plugging derived expressions (4.20), (4.21) and (4.22) into (4.18) and integrating, we obtain

G1 = −
4g−4+2n∑

i=1

5πi

72
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πirj
4

∫ z
(1)
j

z
(2)
j

q
Q1

v

+
n∑

j=1

πi

16rj

∫ z
(1)
j

z
(2)
j

Q1

v
+

n∑
j=1

πirj

(1
2

3

)∫ z
(1)
j

z
(2)
j

Q3
1

v5
. (4.23)

To sum up, we can formulate the following theorem

Theorem 4.4. Consider the differential equation

∂2ϕ+

(
1

2
SB − Q1

ℏ
− Q

ℏ2

)
ϕ = 0

on a Riemann surface C. Let Q be a GMN quadratic differential on C with simple zeroes and n
second-order poles at z1, . . . , zn and biresidues r21, . . . , r

2
n. Q1 is a meromorphic quadratic dif-

ferential which depends holomorphically on moduli of Mg,n, with at most simple poles at zj.
SB is the Bergman projective connection (1.7) defined with respect to some Torelli marking
on C. Differential Q defines a canonical double cover Ĉ via v2 = Q and gives rise to an ideal
triangulation of C used in the definition of the homological shear coordinates (3.3). For the cho-
sen base projective connection SB − 2Q1

ℏ denote by F(SB−2Q1/ℏ) the monodromy map between the
moduli space Qg,n[r/ℏ] of pairs

(
C, Q/ℏ2

)
and the symplectic leaf CVg,n[m(ℏ)] of the PSL(2,C)

character variety, where each mj(ℏ) is related to rj via (1.4), (1.5) as

rj
ℏ

= ±
[
logmj

2πi

(
logmj

2πi
− 1

)]1/2
.

The map F(SB−2Q1/ℏ) is a symplectomorphism, provided that the 1-form Θ(Q1), locally defined
on Mg,n, is closed, δΘ(Q1) = 0.

Introduce the symplectic potential θhom (4.10) of the homological symplectic form on Qg,n[r/ℏ]
and symplectic potential θG (4.9) for the Goldman form on CVg,n[m(ℏ)] The generating func-
tion GB of the monodromy symplectomorphism between Qg,n[r/ℏ] and CVg,n[m(ℏ)] is defined by

δGB(ℏ) = F∗
(SB−2Q1/ℏ)θG(ℏ)− θhom(ℏ) (4.24)
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and has the following asymptotics as ℏ −→ 0+:

GB(ℏ) =
G−1

ℏ
+G0 +G1ℏ+O

(
ℏ2
)
.

Here

G−1 = Ĝ(Q1) +
n∑

j=1

πirj
2

∫ z
(1)
j

z
(2)
j

Q1

v
,

where the function Ĝ(Q1) is defined by (4.14). Its explicit form depends on the concrete choice
of Q1;

G0 = −12πi log τB|r −
n∑

j=1

πirj
2

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2j
v

)
+

n∑
j=1

πirj

(1
2

2

)∫ z
(1)
j

z
(2)
j

Q2
1

v3
,

here log τB|r is the Bergman tau-function defined by (2.16) on stratum of the moduli space of
quadratic differentials with second-order poles, q(x) is a meromorphic function on C given by

q(x) =
SB − Sv

2v2
,

here Sv is the Schwarzian projective connection (2.8);

G1 = −
4g−4+2n∑

i=1

5πi

72
res
xi

(
Q1/v∫ x
xi
v

)
+

n∑
j=1

πirj
4

∫ z
(1)
j

z
(2)
j

q
Q1

v

+
n∑

j=1

πi

16rj

∫ z
(1)
j

z
(2)
j

Q1

v
+

n∑
j=1

πirj

(1
2

3

)∫ z
(1)
j

z
(2)
j

Q3
1

v5
,

where the first sum runs over the branch points of the double cover.

We can propose an alternative way of computing the expansion of Yang–Yang function GB(ℏ),
assuming we obtained the expansion of the related generating function G0

B(ℏ) for Q1 ≡ 0. Rewrite
the equation (4.1) in the form

∂2ϕ+

(
1

2
SB − Q+ ℏQ1

ℏ2

)
ϕ = 0,

corresponding to detachment of differential Q1

ℏ from projective connection SB and joining it

with Q!

ℏ2 , so that Q+ℏQ1

ℏ2 ∈ Qg,n[r/ℏ]. This operation induces the following diagram of maps,
where symplectomorphism F(SB−2Q1/ℏ) factors through the composition F(SB) ◦ H of symplec-
tomorphisms:

Qg,n[r/ℏ] Qg,n[r/ℏ]

CVg,n[m(ℏ)].

Q
H−→Q+ℏQ1

F(SB−2Q1/ℏ)
F(SB)

Denote by θ1hom(ℏ) the symplectic potential computed via the periods of the Abelian differen-

tial vℏ1 , which defines canonical double cover Ĉℏ by
(
vℏ1
)2

= Q + ℏQ1. Then the Monodromy
generating function (4.24) admits the following representation:

δGB(ℏ) = H∗(F∗
(SB)θG(ℏ)− θ1hom(ℏ)

)
+
(
H∗θ1hom(ℏ)− θhom(ℏ)

)
.
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The ℏ-expansion of the generating function for map H was computed in (3.35) along with the
proof of Proposition 3.4:

H∗θ1hom(ℏ)− θhom(ℏ) = δ

 n∑
j=1

πirj

[ ∞∑
k=1

ℏk−2

(1
2

k

)∫ z
(1)
j

z
(2)
j

Qk
1

v2k−1

]+ ℏ−1δĜ(Q1).

Homological coordinates on Qg,n[r/ℏ], defined by the periods of vℏ1 , holomorphically depend
on ℏ. That allows us to perform the ℏ-expansion of the

H∗(F∗
(SB)θG(ℏ)− θ1hom(ℏ)

)
(4.25)

in two steps. At first, obtain the WKB-expansion of the generating function

F∗
(SB)θG(ℏ)− θ1hom(ℏ),

assuming that ℏ of vℏ1 is fixed. This is equivalent to setting Q1 = 0 and performing the compu-
tations as in Section 4.1. This expansion was considered in [8] and includes only even powers
of ℏ. We denote it by

G0
B(ℏ) =

∞∑
i=0

ℏ2iG0
2i.

Now vary Q by the differential ℏQ1 and expand the terms G0
2i by Taylor series to obtain the full

ℏ-expansion for (4.25). The following proposition holds

Proposition 4.5. Let

G0
B(ℏ) =

∞∑
i=0

ℏ2iG0
2i, ℏ −→ 0+ (4.26)

be a WKB expansion of the Monodromy generating function δG0
B(ℏ) = F∗

(SB)θG(ℏ)− θhom(ℏ) of
the equation

∂2ϕ+

(
1

2
SB − Q

ℏ2

)
ϕ = 0.

Then the generalized WKB expansion

GB(ℏ) =
∞∑

i=−1

ℏiGi, ℏ −→ 0+

of the monodromy generating function δGB(ℏ) = F∗
(SB−2Q1/ℏ)θG(ℏ)− θhom(ℏ) of the equation

∂2ϕ+

(
1

2
SB − Q1

ℏ
− Q

ℏ2

)
ϕ = 0

is related to (4.26) by

G−1 = Ĝ(Q1) +

n∑
j=1

πirj
2

∫ z
(1)
j

z
(2)
j

Q1

v
,

G2k =

k∑
i=0

δ
(2i)
Q1

G0
2k−2i

(2i)!
+

n∑
j=1

( 1
2

2k + 2

)
πirj

∫ z
(1)
j

z
(2)
j

Q2k+2
1

v4k+3
, k = 0, . . . ,∞, (4.27)

G2k+1 =
k∑

i=0

δ
(2i+1)
Q1

G0
2k−2i

(2i+ 1)!
+

n∑
j=1

( 1
2

2k + 3

)
πirj

∫ z
(1)
j

z
(2)
j

Q2k+3
1

v4k+5
, k = 0, . . . ,∞, (4.28)

where δ
(k)
Q1

f denotes ∂k

∂ℏk f [Q+ ℏQ1]
∣∣
ℏ=0

.
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Remark 4.6. Comparing the derived expression (4.16) for G0 with the formula (4.27), we
obtain

G0
0 = −12πi log τB|r −

n∑
j=1

πirj
2

∫ z
(1)
j

z
(2)
j

(
qv +

1

4r2k
v

)
,

which is exactly the leading term of the WKB expansion, previously computed in [8].

We expect that the above result may be useful for relating the WKB expansion with the
framework of topological recursion [17]. Indeed, the formulas (4.27), (4.28) involve variations
of the spectral cover for a fixed base curve which appear in the recursive definition of Eynard–
Orantin invariants. For a higher genus such variations were studied in detail in [3, 6, 25]. In
particular, due to the relation (4.28) one may alternatively derive the term G1 (4.23) by varying
the Bergman tau-function appearing in G0

0 using variational techniques of [25].
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