Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 024, 24 pages      arXiv:2206.11138      https://doi.org/10.3842/SIGMA.2023.024

Some Useful Operators on Differential Forms on Galilean and Carrollian Spacetimes

Marián Fecko
Department of Theoretical Physics, Comenius University in Bratislava, Slovakia

Received August 30, 2022, in final form April 11, 2023; Published online April 22, 2023

Abstract
Differential forms on Lorentzian spacetimes is a well-established subject. On Galilean and Carrollian spacetimes it does not seem to be quite so. This may be due to the absence of Hodge star operator. There are, however, potentially useful analogs of Hodge star operator also on the last two spacetimes, namely intertwining operators between corresponding representations on forms. Their use could perhaps make differential forms as attractive tool for physics on Galilean and Carrollian spacetimes as forms on Lorentzian spacetimes definitely proved to be.

Key words: Hodge star operator; Galilean spacetime; Carrollian spacetime; intertwining operator.

pdf (495 kb)   tex (29 kb)  

References

  1. Bamberg P., Sternberg S., A course in mathematics for students of physics, Vol. 1, Cambridge University Press, Cambridge, 1988.
  2. Banerjee K., Basu R., Mehra A., Mohan A., Sharma A., Interacting conformal Carrollian theories: cues from electrodynamics, Phys. Rev. D 103 (2021), 105001, 19 pages, arXiv:2008.02829.
  3. Ciambelli L., Leigh R.G., Marteau C., Petropoulos P.M., Carroll structures, null geometry, and conformal isometries, Phys. Rev. D 100 (2019), 046010, 11 pages, arXiv:1905.02221.
  4. Crampin M., Pirani F.A.E., Applicable differential geometry, London Math. Soc. Lecture Note Ser., Vol. 59, Cambridge University Press, Cambridge, 1986.
  5. Duval C., Gibbons G.W., Horvathy P.A., Zhang P.M., Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Classical Quantum Gravity 31 (2014), 085016, 24 pages, arXiv:1402.0657.
  6. Fecko M., Differential geometry and Lie groups for physicists, Cambridge University Press, Cambridge, 2006.
  7. Fecko M., Galilean and Carrollian invariant Hodge star operators, arXiv:2206.09788.
  8. Figueroa-O'Farrill J., On the intrinsic torsion of spacetime structures, arXiv:2009.01948.
  9. Figueroa-O'Farrill J., Grassie R., Prohazka S., Geometry and BMS Lie algebras of spatially isotropic homogeneous spacetimes, J. High Energy Phys. 2019 (2019), no. 8, 119, 92 pages, arXiv:2009.01948.
  10. Frankel T., The geometry of physics. An introduction, 2nd ed., Cambridge University Press, Cambridge, 2003.
  11. Göckeler M., Schücker T., Differential geometry, gauge theories, and gravity, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1987.
  12. Grassie R., Beyond Lorentzian symmetry, Ph.D. Thesis, University of Edinburgh, 2021, available at http://dx.doi.org/10.7488/era/1527, arXiv:2107.09495.
  13. Hansen D., Beyond Lorentzian physics, Ph.D. Thesis, ETH Zürich, 2021, available at https://doi.org/10.3929/ethz-b-000488630.
  14. Henneaux M., Salgado-Rebolledo P., Carroll contractions of Lorentz-invariant theories, J. High Energy Phys. 2021 (2021), no. 11, 180, 28 pages, arXiv:2109.06708.
  15. Künzle H.P., Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics, Ann. Inst. H. Poincaré Sect. A (N.S.) 17 (1972), 337-362.
  16. Lévy-Leblond J.-M., Une nouvelle limite non-relativiste du groupe de Poincaré, Ann. Inst. H. Poincaré Sect. A (N.S.) 3 (1965), 1-12.
  17. Morand K., Embedding Galilean and Carrollian geometries. I. Gravitational waves, J. Math. Phys. 61 (2020), 082502, 43 pages, arXiv:1811.12681.
  18. Schutz B.F., Geometrical methods of mathematical physics, Cambridge University Press, Cambridge, 1980.
  19. Sternberg S., Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
  20. Trautman A., Sur la théorie newtonienne de la gravitation, C. R. Acad. Sci. Paris 257 (1963), 617-620.
  21. Trautman A., Comparison of Newtonian and relativistic theories of space-time, in Perspectives in Geometry (Essays in Honor of V. Hlavat'y), Indiana University Press, Bloomington, Ind., 1966, 413-425.
  22. Trautman A., Differential geometry for physicists. Stony Brook lectures, Monogr. Textb. Phys. Sci., Vol. 2, Bibliopolis, Naples, 1984.
  23. Van den Bleeken D., Yunus cC., Newton-Cartan, Galileo-Maxwell and Kaluza-Klein, Classical Quantum Gravity 33 (2016), 137002, 19 pages, arXiv:1512.03799.

Previous article  Next article  Contents of Volume 19 (2023)