Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 022, 37 pages      arXiv:2205.14133      https://doi.org/10.3842/SIGMA.2023.022

The Derived Pure Spinor Formalism as an Equivalence of Categories

Chris Elliott a, Fabian Hahner b and Ingmar Saberi c
a) Department of Mathematics and Statistics, Amherst College, 220 South Pleasant Street, Amherst, MA 01002, USA
b) Mathematisches Institut der Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
c) Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany

Received July 12, 2022, in final form April 04, 2023; Published online April 18, 2023

Abstract
We construct a derived generalization of the pure spinor superfield formalism and prove that it exhibits an equivalence of dg-categories between multiplets for a supertranslation algebra and equivariant modules over its Chevalley-Eilenberg cochains. This equivalence is closely linked to Koszul duality for the supertranslation algebra. After introducing and describing the category of supermultiplets, we define the derived pure spinor construction explicitly as a dg-functor. We then show that the functor that takes the derived supertranslation invariants of any supermultiplet is a quasi-inverse to the pure spinor construction, using an explicit calculation. Finally, we illustrate our findings with examples and use insights from the derived formalism to answer some questions regarding the ordinary (underived) pure spinor superfield formalism.

Key words: pure spinor superfields; equivalence of categories; supersymmetry; field theory; BV formalism.

pdf (623 kb)   tex (49 kb)  

References

  1. Alexandrov V., Krotov D., Losev A., Lysov V., On pure spinor superfield formalism, J. High Energy Phys. 2007 (2007), no. 10, 074, 42 pages, arXiv:0705.2191.
  2. Allocca M.P., $L$-infinity algebra representation theory, Ph.D. Thesis, North Carolina State University, 2010, available at https://www.proquest.com/docview/897930696.
  3. Baulieu L., Bellon M., Ouvry S., Wallet J.C., Batalin-Vilkovisky analysis of supersymmetric systems, Phys. Lett. B 252 (1990), 387-394.
  4. Berkovits N., Super-Poincaré covariant quantization of the superstring, J. High Energy Phys. 2000 (2000), no. 4, 018, 17 pages, arXiv:hep-th/0001035.
  5. Berkovits N., Towards covariant quantization of the supermembrane, J. High Energy Phys. 2002 (2002), no. 9, 051, 44 pages, arXiv:hep-th/0201151.
  6. Berkovits N., Nekrasov N.A., The character of pure spinors, Lett. Math. Phys. 74 (2005), 75-109, arXiv:hep-th/0503075.
  7. Castellani L., D'Auria R., Fré P., Supergravity and superstringsa a geometric perspective, Vols. 1-3, World Sci. Publ. Co., Inc., Teaneck, NJ, 1991.
  8. Cederwall M., $D=11$ supergravity with manifest supersymmetry, Modern Phys. Lett. A 25 (2010), 3201-3212, arXiv:1001.0112.
  9. Cederwall M., Operators on pure spinor spaces, in Lie Theory and its Applications in Physics: VIII International Workshop, AIP Conference Proceedings, Vol. 1243, American Institute of Physics, 2010, 51-59.
  10. Cederwall M., Towards a manifestly supersymmetric action for 11-dimensional supergravity, J. High Energy Phys. 2010 (2010), no. 1, 117, 19 pages, arXiv:0912.1814.
  11. Cederwall M., Pure spinor superfields: an overview, in Breaking of Supersymmetry and Ultraviolet Divergences in Extended Supergravity, Springer Proc. Phys., Vol. 153, Springer, Cham, 2014, 61-93, arXiv:1307.1762.
  12. Cederwall M., Karlsson A., Pure spinor superfields and Born-Infeld theory, J. High Energy Phys. 2011 (2011), no. 11, 134, 21 pages, arXiv:1109.0809.
  13. Cederwall M., Nilsson B.E.W., Tsimpis D., The structure of maximally supersymmetric Yang-Mills theory: constraining higher-order corrections, J. High Energy Phys. 2001 (2001), no. 6, 034, 18 pages, arXiv:hep-th/0102009.
  14. Cederwall M., Nilsson B.E.W., Tsimpis D., Spinorial cohomology and maximally supersymmetric theories, J. High Energy Phys. 2002 (2002), no. 2, 009, 19 pages, arXiv:hep-th/0110069.
  15. Chevalley C.C., The algebraic theory of spinors, Columbia University Press, New York, 1954.
  16. Costello K., Supersymmetric gauge theory and the Yangian, arXiv:1303.2632.
  17. de Azcárraga J.A., Townsend P.K., Superspace geometry and classification of supersymmetric extended objects, Phys. Rev. Lett. 62 (1989), 2579-2582.
  18. Eager R., Hahner F., Maximally twisted eleven-dimensional supergravity, Comm. Math. Phys. 398 (2023), 59-88, arXiv:2106.15640.
  19. Eager R., Hahner F., Saberi I., Williams B.R., Perspectives on the pure spinor superfield formalism, J. Geom. Phys. 180 (2022), 104626, 47 pages, arXiv:2111.01162.
  20. Eager R., Saberi I., Walcher J., Nilpotence varieties, Ann. Henri Poincaré 22 (2021), 1319-1376, arXiv:1807.03766.
  21. Eisenbud D., Commutative algebra: with a view toward algebraic geometry, Grad. Texts in Math., Vol. 150, Springer, New York, 1995.
  22. Elliott C., Safronov P., Topological twists of supersymmetric algebras of observables, Comm. Math. Phys. 371 (2019), 727-786, arXiv:1805.10806.
  23. Elliott C., Safronov P., Williams B.R., A taxonomy of twists of supersymmetric Yang-Mills theory, Selecta Math. (N.S.) 28 (2022), 73, 124 pages, arXiv:2002.10517.
  24. Erman D., Sam S.V., Snowden A., Strength and Hartshorne's conjecture in high degree, Math. Z. 297 (2021), 1467-1471, arXiv:1804.09730.
  25. Faux M., Gates S., Adinkras: A graphical technology for supersymmetric representation theory, Phys. Rev. D 71 (2005), 065002, 21 pages, arXiv:hep-th/0408004.
  26. Ferrara S. (Editor), Supersymmetry: lectures and reprints, Vols. 1-2, World Sci. Publ. Co., Inc., Teaneck, NJ, 1987.
  27. Fiorenza D., Sati H., Schreiber U., Super-Lie $n$-algebra extensions, higher WZW models and super-$p$-branes with tensor multiplet fields, Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550018, 35 pages, arXiv:1308.5264.
  28. Galetto F., Propagating weights of tori along free resolutions, J. Symbolic Comput. 74 (2016), 1-45, arXiv:1406.1900.
  29. Galperin A.S., Ivanov E.A., Ogievetsky V.I., Sokatchev E.S., Harmonic superspace, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2001.
  30. Gálvez I., Gorbounov V., Shaikh Z., Tonks A., The Berkovits complex and semi-free extensions of Koszul algebras, Ann. Fac. Sci. Toulouse Math. 25 (2016), 363-384, arXiv:1504.07489.
  31. Gorbounov V., Schechtman V., Homological algebra and divergent series, SIGMA 5 (2009), 034, 31 pages, arXiv:0712.3670.
  32. Gorodentsev A.L., Khoroshkin A.S., Rudakov A.N., On syzygies of highest weight orbits, in Moscow Seminar on Mathematical Physics. II, Amer. Math. Soc. Transl. Ser. 2, Vol. 221, Amer. Math. Soc., Providence, RI, 2007, 79-120, arXiv:math.AG/0602316.
  33. Haag R., Łopuszański J.T., Sohnius M., All possible generators of supersymmetries of the $S$-matrix, Nuclear Phys. B 88 (1975), 257-274.
  34. Hahner F., Noja S., Saberi I., Walcher J., Six-dimensional supermultiplets from bundles on projective spaces, arXiv:2206.08388.
  35. Howe P.S., Pure spinor lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B 258 (1991), 141-144.
  36. Howe P.S., Pure spinors, function superspaces and supergravity theories in ten and eleven dimensions, Phys. Lett. B 273 (1991), 90-94.
  37. Huerta J.G., Division algebras, supersymmetry and higher gauge theory, Ph.D. Thesis, University of California, Riverside, 2011, arXiv:1106.3385.
  38. Kapranov M., On DG-modules over the de Rham complex and the vanishing cycles functor, in Algebraic Geometry (Chicago, IL, 1989), Lecture Notes in Math., Vol. 1479, Springer, Berlin, 1991, 57-86.
  39. Kapranov M., Supergeometry in mathematics and physics, in New Spaces in Physics - Formal and Conceptual Reflections, Cambridge University Press, Cambridge, 2021, 114-152, arXiv:1512.07042.
  40. Krotov D., Losev A., Quantum field theory as effective BV theory from Chern-Simons, Nuclear Phys. B 806 (2009), 529-566, arXiv:hep-th/0603201.
  41. Kř'ivz I., May J.P., Operads, algebras, modules and motives, Astérisque 233 (1995), iv+145 pages.
  42. Lada T., $L_\infty$ algebra representations, Appl. Categ. Structures 12 (2004), 29-34.
  43. Loday J.-L., Vallette B., Algebraic operads, Grundlehren Math. Wiss., Vol. 346, Springer, Heidelberg, 2012.
  44. Movshev M., Yang-Mills theories in dimensions 3, 4, 6, and 10 and bar duality, arXiv:hep-th/0503165.
  45. Movshev M., On deformations of Yang-Mills algebras, arXiv:hep-th/0509119.
  46. Movshev M., Geometry of pure spinor formalism in superstring theory, Adv. Math. 268 (2015), 201-240.
  47. Movshev M., Schwarz A., On maximally supersymmetric Yang-Mills theories, Nuclear Phys. B 681 (2004), 324-350, arXiv:hep-th/0311132.
  48. Movshev M., Schwarz A., Algebraic structure of Yang-Mills theory, in The Unity of Mathematics, Progr. Math., Vol. 244, Birkhäuser, Boston, MA, 2006, 473-523, arXiv:hep-th/0404183.
  49. Movshev M., Schwarz A., Xu R., Homology of Lie algebra of supersymmetries and of super Poincaré Lie algebra, Nuclear Phys. B 854 (2012), 483-503, arXiv:1106.0335.
  50. Nilsson B.E.W., Pure spinors as auxiliary fields in the ten-dimensional supersymmetric Yang-Mills theory, Classical Quantum Gravity 3 (1986), L41-L45.
  51. Raghavendran S., Saberi I., Williams B.R., Twisted eleven-dimensional supergravity, arXiv:2111.03049.
  52. Saberi I., Williams B.R., Twisting pure spinor superfields, with applications to supergravity, arXiv:2106.15639.
  53. Saberi I., Williams B.R., Twisted characters and holomorphic symmetries, Lett. Math. Phys. 110 (2020), 2779-2853, arXiv:1906.04221.
  54. Sohnius M.F., Introducing supersymmetry, Phys. Rep. 128 (1985), 39-204.
  55. Toën B., Derived algebraic geometry, EMS Surv. Math. Sci. 1 (2014), 153-240, arXiv:1401.1044.
  56. Xu R., Movshev M., Schwarz A., Integral invariants in flat superspace, Nuclear Phys. B 884 (2014), 28-43, arXiv:1403.1997.

Previous article  Next article  Contents of Volume 19 (2023)