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Abstract. We establish a bialgebra theory for differential algebras, called differential anti-
symmetric infinitesimal (ASI) bialgebras by generalizing the study of ASI bialgebras to the
context of differential algebras, in which the derivations play an important role. They are
characterized by double constructions of differential Frobenius algebras as well as matched
pairs of differential algebras. Antisymmetric solutions of an analogue of associative Yang–
Baxter equation in differential algebras provide differential ASI bialgebras, whereas in turn
the notions of O-operators of differential algebras and differential dendriform algebras are
also introduced to produce the former. On the other hand, the notion of a coherent derivation
on an ASI bialgebra is introduced as an equivalent structure of a differential ASI bialgebra.
They include derivations on ASI bialgebras and the set of coherent derivations on an ASI
bialgebra composes a Lie algebra which is the Lie algebra of the Lie group consisting of co-
herent automorphisms on this ASI bialgebra. Finally, we apply the study of differential ASI
bialgebras to Poisson bialgebras, extending the construction of Poisson algebras from com-
mutative differential algebras with two commuting derivations to the context of bialgebras,
which is consistent with the well constructed theory of Poisson bialgebras. In particular, we
construct Poisson bialgebras from differential Zinbiel algebras.
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1 Introduction

The aim of this paper is to develop a bialgebra theory for differential algebras and get some
applications. The notion of differential antisymmetric infinitesimal bialgebras is introduced,
giving a new kind of derivations, called coherent derivations, on antisymmetric infinitesimal
bialgebras. As an application, we generalize the typical construction of Poisson algebras from
commutative differential algebras to the context of bialgebras.

1.1 Differential algebras

The notion of a differential algebra was introduced in [43], which could be regarded as an
associative algebra with finitely many commuting derivations. Such structures sprang from the
classical study of algebraic differential equations with meromorphic functions as coefficients [31],
and the abstraction of differential operators led to the development of differential algebras, which
in turn have influenced other areas such as Diophantine geometry, computer algebra and model
theory [6, 15, 42].
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Differential algebras also have applications in mathematical physics such as Yang–Mills the-
ory. A K-cycle over the tensor product algebra is used in [18] to derive the full standard model,
which turns out to be called Connes–Lott model, and the differential algebras become the basic
mathematical structure in the construction. More details about differential algebras used in
such an approach can be found in [17, 25, 27, 28, 39].

The study of differential algebras themselves is also plentiful. For example, the operad of
differential algebras with one derivation was studied in [38] and the free structure of differ-
ential algebras was studied in [24]. On the other hand, some algebra structures have been
found having tight connections with differential algebras. As a typical example, there is a Pois-
son algebra obtained from a commutative differential algebra with two commuting derivations.
More examples include the Lie algebras obtained from commutative differential algebras with
one derivation [45], the 3-Lie algebras [40] and more general the n-Lie algebras [21] obtained
from commutative differential algebras. Furthermore, every Novikov algebra is illustrated to be
embedded into a commutative differential algebra with one derivation [13].

1.2 Differential antisymmetric infinitesimal bialgebras

A bialgebra structure consists of an algebra structure and a coalgebra structure coupled by
certain compatibility conditions. Such structures play important roles in many areas and have
connections with other structures arising from mathematics and physics. For example, Lie
bialgebras for Lie algebras are the algebra structures of Poisson–Lie groups, and play an im-
portant role in the study of quantized universal enveloping algebras [16, 20]. For associative
algebras, there are two bialgebra structures with different compatibility conditions. They are
associative bialgebras in Hopf algebras with the comultiplication being a homomorphism and
antisymmetric infinitesimal (ASI) bialgebras with the comultiplication being a derivation. For
the former, Hopf algebras have their origin in algebraic topology, serve as universal envelop-
ing algebras of Lie algebras and provide a basic algebraic framework for the study of quantum
groups [1]. The latter is the associative analog of the Lie bialgebras, which can be character-
ized as double constructions of Frobenius algebras, widely applied in 2d topological field and
string theory [3, 7, 26, 30, 32]. Note that the structure of ASI bialgebras first appeared in [46]
where they were called “associative D-bialgebras” (i.e., in the sense of Drinfeld), and later
in [3] where they were called “balanced infinitesimal bialgebras” in the sense of the opposite
algebras.

In this paper, we establish a bialgebra theory for differential algebras, called differential anti-
symmetric infinitesimal (ASI) bialgebras, by extending the study of ASI bialgebras in [7] to the
context of differential algebras. The derivations in a differential algebra play an important role
in such generalizations by introducing an admissibility condition between the linear operators
and the differential algebra, which gives a reasonable bimodule of the differential algebra on
the dual space. Such an admissibility leads to the compatibility among the multiplication, the
comultiplication and the linear operators, so that the theory of ASI bialgebras can be extended
to differential ASI bialgebras.

Explicitly, differential ASI bialgebras are characterized equivalently by matched pairs of differ-
ential algebras and double constructions of differential Frobenius algebras, as the generalizations
of matched pairs of algebras and double constructions of Frobenius algebras respectively to the
context of differential algebras. The coboundary cases lead to the introduction of the notion of
admissible associative Yang–Baxter equation (AYBE) whose antisymmetric solutions are used to
construct differential ASI bialgebras. The notions of O-operators of differential algebras and dif-
ferential dendriform algebras are introduced to construct antisymmetric solutions of admissible
AYBE in differential algebras and hence give rise to differential ASI bialgebras. We summarize
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these results in the following diagram:

differential
dendriform algebras

§4.3

��

double constructions
of differential

Frobenius algebrasOO

§3.2
��

O-operators of
differential algebras

§4.3

OO

§4.2 // anytisymmetric
solutions of

admissible AYBE
§4.2
oo

§4.1 // differential
ASI bialgebras

matched pairs
of differential

algebras

//§3.2oo

1.3 Coherent derivations on ASI bialgebras

We have already regarded differential ASI bialgebras as a bialgebra theory for differential al-
gebras. On the other hand, equivalently, we also regard differential ASI bialgebras as defining
a kind of “derivations” on ASI bialgebras, namely, coherent derivations. It is an attempt to
extend the viewpoint that differential algebras are viewed as “derivatization” of algebras by
equipping derivations to the context of bialgebras, that is, differential ASI bialgebras may be
viewed as “derivatization” of ASI bialgebras. Hence we have the following commutative diagram.
The horizontal arrows are equipping the given algebra structures with suitable derivations and
the vertical arrows are equipping the given algebra structures with suitable bialgebra structures.
In particular, the below horizontal arrow is equipping ASI bialgebras with coherent derivations:

algebras

bialgebraization
��

derivatization //
differential algebras

bialgebraization
��

ASI bialgebras
derivatization //

differential ASI bialgebras

The notion of a coherent derivation is interesting on its own right. It is known that the set
of derivations on an algebra (A, ·) over the real number field R forms a Lie algebra, the set of
automorphisms on (A, ·) forms a Lie group and the former is the Lie algebra of the latter. Such
features and properties are still available for ASI bialgebras, in which coherent derivations play
the role as derivations do. Explicitly, the set of coherent derivations on an ASI bialgebra forms
a Lie algebra. Furthermore, we introduce the notion of a coherent automorphism on an ASI
bialgebra inspired by [11] and show that the set of coherent automorphisms forms a Lie group
whose Lie algebra is exactly the Lie algebra formed by the set of coherent derivations.

On the other hand, motivated by the notion of derivations on Lie bialgebras [16], we introduce
the notion of derivations on ASI bialgebras as an alternative approach. We show that a derivation
on an ASI bialgebra corresponds to a special coherent derivation and hence derivations on ASI
bialgebras can be regarded as special coherent derivations.

1.4 Poisson bialgebras via commutative
and cocommutative differential ASI bialgebras

As aforementioned, there are typical examples of Poisson algebras from commutative differential
algebras with two commuting derivations. It is natural to consider extending such a relation-
ship to the context of bialgebras. On the other hand, there is a bialgebra theory for Poisson
algebras, namely, Poisson bialgebras, established in [41]. Note that there is a noncommutative
version of Poisson bialgebras given in [34]. Therefore we apply the theory of differential ASI
bialgebras to the study of Poisson bialgebras and thus Poisson bialgebras can be constructed
from commutative and cocommutative differential ASI bialgebras.



4 Y. Lin, X. Liu and C. Bai

Such an approach is consistent with the well constructed theory of Poisson bialgebras. We
establish the explicit relationships between commutative and cocommutative differential ASI
bialgebras and Poisson bialgebras, as well as the equivalent interpretation in terms of the corre-
sponding double constructions (Manin triples) and matched pairs. For the coboundary cases, the
relationships between the involved structures on commutative differential algebras and Poisson
algebras, such as admissible AYBE and Poisson Yang–Baxter equation (PYBE), O-operators of
the two algebras, and differential Zinbiel (commutative dendriform) algebras and pre-Poisson
algebras, are also given respectively. In particular, an antisymmetric solution of admissible
AYBE in a commutative differential algebra is naturally a solution of PYBE in the induced
Poisson algebra under certain conditions and thus differential Zinbiel algebras can be employed
to construct Poisson bialgebras. These notions and structures are illustrated by the following
diagram. The up two layers are notions and structures in commutative and cocommutative
differential ASI bialgebras which have been illustrated in the diagram in Section 1.2 and the
below two layers are the corresponding notions and structures in Poisson bialgebras given in [41]
(also see [34]):

double constructions of
commutative differential

Frobenius algebrasOO

��

oo

differential
Zinbiel
algebras

//

��

O-operators of
commutative
differential
algebras

oo
//

��

antisymmetric
solutions of
admissible
AYBE

oo //

��

differential
commutative

and cocommutative
ASI bialgebras

��

matched pairs
of commutative

differential
algebras

//oo

��
pre-Poisson
algebras

// O-operators of
Poisson algebras
oo

//antisymmetric
solutions of

PYBE

oo // Poisson
bialgebras

matched pairs of
Poisson algebras
//oo

Manin triples
of Poisson algebras

��

OO

1.5 Layout of the paper

The paper is organized as follows.

In Section 2, we introduce some basic notions about differential algebras and their bimodules.
We introduce the notion of a bimodule of a differential algebra, while the notion of an admissible
quadruple of a differential algebra is introduced to get a bimodule on the dual space. Moreover,
the notion of a matched pair of differential algebras is introduced to interpret the differential
algebra whose underlying vector space is a linear direct sum of two differential subalgebras.

In Section 3, after the introduction of the notions of a double construction of differential
Frobenius algebra and a differential ASI bialgebra, we give their equivalence in terms of matched
pairs of differential algebras. Inspired by the notion of a differential ASI bialgebra, we then
introduce the notion of a coherent derivation on an ASI bialgebra as an equivalent structure of
a differential ASI bialgebra. Furthermore, the set of coherent derivations on an ASI bialgebra
turns out to be a Lie algebra, which is exactly the Lie algebra of the Lie group consisting of
coherent automorphisms on this ASI bialgebra.

In Section 4, we study the coboundary differential ASI bialgebras. We first introduce the
notion of Ψ-admissible AYBE in a differential algebra, whose antisymmetric solutions are used to
construct differential ASI bialgebras. Then we introduce the notion of O-operators of differential
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algebras to construct antisymmetric solutions of Ψ-admissible AYBE in semi-direct product
differential algebras. Finally, we introduce the notion of a differential dendriform algebra, which
gives an O-operator of the associated differential algebra. Thus both O-operators of differential
algebras and differential dendriform algebras give rise to differential ASI bialgebras.

In Section 5, proceeding from the typical construction of Poisson algebras from commuta-
tive algebras with a pair of commuting derivations, we construct Poisson bialgebras introduced
in [41] from commutative and cocommutative differential ASI bialgebras. The explicit rela-
tionships between them, as well as the equivalent interpretation in terms of the corresponding
double constructions (Manin triples) and matched pairs, are established. We also exhibit the
relationships between the involved structures on commutative differential algebras and Poisson
algebras for the coboundary cases, such as admissible AYBE and PYBE, O-operators of the two
algebras, and differential Zinbiel algebras and pre-Poisson algebras. Finally, a construction of
Poisson bialgebras from differential Zinbiel algebras is given.

Throughout this paper, all vector spaces and algebras are of finite dimension over a field F
of characteristic 0, although many results still hold in the infinite-dimensional cases. Note
that all the results might be extended to the graded locally finite-dimensional case, i.e., when all
homogeneous components are finite-dimensional: the notion of graded dual offers a duality which
is as satisfactory as the algebraic duality in the finite-dimensional case. The term “algebra”
always stands for an associative algebra not necessarily having a unit unless otherwise stated.

2 Differential algebras and their bimodules

We introduce the notion of a bimodule of a differential algebra. The notion of an admissible
quadruple of a differential algebra is introduced to get a reasonable bimodule on the dual space.
We also introduce the notion of a matched pair of differential algebras to interpret the differential
algebra whose underlying vector space is a linear direct sum of two differential subalgebras.

2.1 Bimodules and admissible quadruples of differential algebras

Definition 2.1. Let (A, ·) be an algebra. A linear map ∂ : A → A is called a derivation if the
Leibniz rule is satisfied, i.e.,

∂(a · b) = ∂(a) · b+ a · ∂(b), ∀a, b ∈ A. (2.1)

Definition 2.2 ([43]). A differential algebra is a triple (A, ·,Φ), consisting of an algebra (A, ·)
and a finite set of commuting derivations Φ = {∂k : A → A}mk=1. A differential algebra (A, ·,Φ)
is called commutative if (A, ·) is commutative.

Definition 2.3. Let (A, ·) be an algebra, V be a vector space and l, r : A → End(V ) be two
linear maps. Then (V, l, r) is called an A-bimodule if the following conditions are satisfied:

l(a)l(b)v = l(a · b)v, r(b)r(a)v = r(a · b)v, r(b)l(a)v = l(a)r(b)v, ∀a, b ∈ A, v ∈ V.

In particular, for an algebra (A, ·), define two linear maps LA, RA : A→ End(A) by LA(a)b =
a · b = RA(b)a, for all a, b ∈ A respectively. Then the triple (A,LA, RA) is an A-bimodule.

Let (A, ·) be an algebra and l, r : A→ End(V ) be linear maps. Define a bilinear multiplication
still denoted by · on A⊕ V by

(a+ u) · (b+ v) := a · b+ (l(a)v + r(b)u), ∀a, b ∈ A, u, v ∈ V. (2.2)

Then (V, l, r) is an A-bimodule if and only if (A ⊕ V, ·) is an algebra, which is denoted by
(A⋉l,r V, ·) and called the semi-direct product algebra by (A, ·) and (V, l, r).
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Definition 2.4. A bimodule of a differential algebra (A, ·,Φ={∂k}mk=1) is a quadruple (V, l, r,Ω),
where (V, l, r) is an A-bimodule and Ω = {αk : V → V }mk=1 is a set of commuting linear maps
such that for all k = 1, . . . ,m,

αk(l(a)v) = l(∂k(a))v + l(a)αk(v), (2.3)

αk(r(a)v) = r(∂k(a))v + r(a)αk(v), ∀a ∈ A, v ∈ V. (2.4)

Two bimodules (V1, l1, r1, {α1k}mk=1) and (V2, l2, r2, {α2k}mk=1) of (A, ·,Φ) are called equivalent if
there exists a linear isomorphism φ : V1 → V2 such that for all k = 1, . . . ,m,

φ(l1(a)v) = l2(a)φ(v), φ(r1(a)v) = r2(a)φ(v),

φ(α1k(v)) = α2k(φ(v)), ∀a ∈ A, v ∈ V.

Example 2.5. Let (A, ·,Φ) be a differential algebra. Then (A,LA, RA,Φ) is a bimodule of
(A, ·,Φ).

For vector spaces V1 and V2, and linear maps ϕ1 : V1 → V1 and ϕ2 : V2 → V2, we abbreviate
ϕ1 + ϕ2 for the linear map

ϕV1⊕V2 : V1 ⊕ V2 → V1 ⊕ V2, v1 + v2 7→ ϕ1(v1) + ϕ2(v2), ∀v1 ∈ V1, v2 ∈ V2.

Moreover, let Π1 = {αk : V1 → V1}mk=1 and Π2 = {βk : V2 → V2}mk=1 be two sets of commuting
linear maps, then obviously {αk+βk}mk=1 is still a set of commuting linear maps, which is denoted
by Π1 +Π2.

Proposition 2.6. Let (A, ·A,Φ = {∂k}mk=1) be a differential algebra. Let l, r : A → End(V ) be
linear maps and Ω = {αk : V → V }mk=1 be a set of commuting linear maps. Then (V, l, r,Ω)
is a bimodule of (A, ·A,Φ) if and only if (A ⊕ V, ·,Φ + Ω) is a differential algebra, where the
multiplication · on A⊕ V is defined by equation (2.2).

Proof. It can be proved directly according to Definitions 2.2 and 2.4 or as a special case of the
matched pair of differential algebras in Theorem 2.13, where B = V is equipped with the zero
multiplication. ■

If (V, l, r,Ω) is a bimodule of a differential algebra (A, ·A,Φ), then the resulting differential
algebra above is denoted by (A ⋉l,r V, ·,Φ + Ω) and called the semi-direct product differential
algebra by (A, ·A,Φ) and (V, l, r,Ω).

Denote the standard pairing between the dual space V ∗ and V by

⟨ , ⟩ : V ∗ × V → F, ⟨v∗, v⟩ := v∗(v), ∀v ∈ V, v∗ ∈ V ∗.

Let V , W be two vector spaces. For a linear map φ : V →W , the transpose map φ∗ : W ∗ → V ∗

is defined by

⟨φ∗(w∗), v⟩ := ⟨w∗, φ(v)⟩, ∀v ∈ V, w∗ ∈W ∗.

Obviously we have (φψ)∗ = ψ∗φ∗, where V , W , U are vector spaces, φ : V →W and ψ : U → V
are linear maps. Furthermore, when Π = {αk} is a finite set of linear maps, set Π∗ := {α∗

k : αk ∈
Π} to be the linear dual of Π.

Let A be an algebra and V be a vector space. For a linear map µ : A → End(V ), the linear
map µ∗ : A→ End(V ∗) is defined by

⟨µ∗(a)v∗, v⟩ := ⟨v∗, µ(a)v⟩, ∀a ∈ A, v ∈ V, v∗ ∈ V ∗,

that is, µ∗(a) = µ(a)∗ for all a ∈ A.
Note that for an algebra (A, ·) and an A-bimodule (V, l, r), (V ∗, r∗, l∗) is again an A-bimodule.
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Lemma 2.7. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra. Let (V, l, r) be an A-bimodule and
Π = {βk : V → V }mk=1 be a set of commuting linear maps. Then the quadruple (V ∗, r∗, l∗,Π∗) is
a bimodule of the differential algebra (A, ·,Φ) if and only if for all k = 1, . . . ,m, the following
equations hold:

r(a)βk(v) = r(∂k(a))v + βk(r(a)v), (2.5)

l(a)βk(v) = l(∂k(a))v + βk(l(a)v), ∀a ∈ A, v ∈ V. (2.6)

Proof. Let a ∈ A. Then we have

β∗kr(a)
∗ − r(a)∗β∗k = (r(a)βk − βkr(a))

∗.

Hence β∗kr(a)
∗ − r(a)∗β∗k = r(∂k(a))

∗ if and only if r(a)βk − βkr(a) = r(∂k(a)). Therefore
equation (2.3) holds in which αk is replaced by β∗k and l is replaced by r∗, if and only if
equation (2.5) holds. Similarly, equation (2.4) holds in which αk is replaced by β∗k and r is
replaced by l∗, if and only if equation (2.6) holds. Thus the conclusion follows. ■

We introduce a notion to conceptualize this basic property.

Definition 2.8. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra. Let (V, l, r) be an A-bimodule
and Π = {βk : V → V }mk=1 be a set of commuting linear maps. Then we say (V, l, r,Π) is an
admissible quadruple of the differential algebra (A, ·,Φ) or Π is admissible to (A, ·,Φ) on (V, l, r)
if (V ∗, r∗, l∗,Π∗) is a bimodule of (A, ·,Φ) or equivalently equations (2.5)–(2.6) hold. When
(V, l, r) is taken to be (A,LA, RA), we say Π is admissible to (A, ·,Φ) or (A, ·,Φ) is Π-admissible.

Immediately we have the following conclusion by Lemma 2.7.

Corollary 2.9. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra and Ψ = {ðk : A → A}mk=1

be a set of commuting linear maps. Then Ψ is admissible to (A, ·,Φ) if and only if for all
k = 1, . . . ,m, the following equations hold:

ðk(a) · b = a · ∂k(b) + ðk(a · b), (2.7)

a · ðk(b) = ∂k(a) · b+ ðk(a · b), ∀a, b ∈ A. (2.8)

Example 2.10. Let (V, l, r, {αk}mk=1) be a bimodule of a differential algebra (A, ·,Φ = {∂k}mk=1).
Let (θ1, . . . , θm) ∈ Fm be given. Then by a straightforward checking, we have the following
results.

1. Suppose that θk = ±1 (1 ≤ k ≤ m). Then {θkαk}mk=1 is admissible to (A, ·,Φ) on (V, l, r)
if and only if

(1 + θk)r(∂k(a))v = 0, (1 + θk)l(∂k(a))v = 0, ∀a ∈ A, v ∈ V, 1 ≤ k ≤ m.

2. {−αk + θkidV }mk=1 is admissible to (A, ·,Φ) on (V, l, r). In particular, {−∂k + θkidA}mk=1 is
admissible to (A, ·,Φ).

3. Suppose that αk is invertible and θk ̸= 0 for all k = 1, . . . ,m. Then
{
θkα

−1
k

}m
k=1

is
admissible to (A, ·,Φ) on (V, l, r) if and only if

θkr(∂k(a))α
−1
k (v) = αk(r(∂k(a))v), θkl(∂k(a))α

−1
k (v) = αk(l(∂k(a))v),

for all a ∈ A, v ∈ V , 1 ≤ k ≤ m.

Hence for all (θ1, . . . , θm) ∈ Fm, (V ∗, r∗, l∗, {−α∗
k + θkidV ∗}mk=1) is a bimodule of (A, ·,Φ). Thus

(A⋉r∗,l∗ V
∗, ·,Φ+ {−α∗

k + θkidV ∗}mk=1}) is a differential algebra.
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2.2 Matched pairs of differential algebras

We recall the concept of a matched pair of algebras.

Definition 2.11. A matched pair of algebras consists of algebras (A, ·A) and (B, ·B), together
with linear maps lA, rA : A → End(B) and lB, rB : B → End(A) such that (A ⊕ B, ⋆) is an
algebra, where ⋆ is defined by

(a+ b) ⋆ (a′ + b′) := (a ·A a′ + rB(b
′)a+ lB(b)a

′) + (b ·B b′ + lA(a)b
′ + rA(a

′)b), (2.9)

for all a, a′ ∈ A, b, b′ ∈ B. The matched pair of algebras is denoted by ((A, ·A), (B, ·B), lA, rA,
lB, rB) and the resulting algebra (A⊕B, ⋆) is denoted by

(
A ▷◁lB ,rB

lA,rA
B, ⋆

)
or simply (A ▷◁ B, ⋆).

Note that such a notion of a matched pair of algebras is equivalent to the one given in [7, Defi-
nition 2.1.5]. Moreover, for a matched pair of algebras ((A, ·A), (B, ·B), lA, rA, lB, rB), (A, lB, rB)
is a B-bimodule and (B, lA, rA) is an A-bimodule.

Definition 2.12. Let (A, ·A,ΦA) and (B, ·B,ΦB) be two differential algebras. Suppose that
lA, rA : A → End(B) and lB, rB : B → End(A) are linear maps. If the following conditions are
satisfied:

(1) (A, lB, rB,ΦA) is a bimodule of (B, ·B,ΦB);

(2) (B, lA, rA,ΦB) is a bimodule of (A, ·A,ΦA);

(3) ((A, ·A), (B, ·B), lA, rA, lB, rB) is a matched pair of algebras,

then ((A, ·A,ΦA), (B, ·B,ΦB), lA, rA, lB, rB) is called a matched pair of differential algebras.

Theorem 2.13. Let (A, ·A,ΦA) and (B, ·B,ΦB) be two differential algebras. Suppose that
((A, ·A), (B, ·B), lA, rA, lB, rB) is a matched pair of algebras and (A ▷◁ B, ⋆) is the algebra
defined by equation (2.9). Then (A ▷◁ B, ⋆,ΦA + ΦB) is a differential algebra if and only if
((A, ·A,ΦA), (B, ·B,ΦB), lA, rA, lB, rB) is a matched pair of differential algebras. Further, any
differential algebra whose underlying vector space is the linear direct sum of two differential
subalgebras is obtained from a matched pair of these two differential subalgebras.

Proof. We only need to prove the first part since the second part follows straightforwardly. Set
ΦA = {∂A,k}mk=1 and ΦB = {∂B,k}mk=1.

(⇐=) Suppose that ((A, ·A,ΦA), (B, ·B,ΦB), lA, rA, lB, rB) is a matched pair of differential
algebras. Then for all a, a′ ∈ A, b, b′ ∈ B and k = 1, . . . ,m, we have

(∂A,k + ∂B,k)(a+ b) ⋆ (a′ + b′) + (a+ b) ⋆ (∂A,k + ∂B,k)(a
′ + b′)

= (∂A,k(a) ·A a′ + rB(b
′)∂A,k(a) + lB(∂B,k(b))a

′)

+ (∂B,k(b) ·B b′ + lA(∂A,k(a))b
′ + rA(a

′)∂B,k(b))

+ (a ·A ∂A,k(a
′) + rB(∂B,k(b

′))a+ lB(b)∂A,k(a
′))

+ (b ·B ∂B,k(b
′) + lA(a)∂B,k(b

′) + rA(∂A,k(a
′))b)

(2.3), (2.4)
= ∂A,k(a ·A a′) + ∂A,k(rB(b

′)a) + ∂A,k(lB(b)a
′)

+ ∂B,k(b ·B b′) + ∂B,k(lA(a)b
′) + ∂B,k(rA(a

′)b)

= (∂A,k + ∂B,k)((a+ b) ⋆ (a′ + b′)).

Hence ΦA +ΦB is a set of commuting derivations on the algebra (A ▷◁ B, ⋆).
(=⇒) Suppose that ΦA +ΦB is a set of commuting derivations on (A ▷◁ B, ⋆). Then

(∂A,k + ∂B,k)((a+ b) ⋆ (a′ + b′))

= (∂A,k + ∂B,k)(a+ b) ⋆ (a′ + b′) + (a+ b) ⋆ (∂A,k + ∂B,k)(a
′ + b′),
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for all a, a′ ∈ A, b, b′ ∈ B and k = 1, . . . ,m. Taking a′ = b = 0 and a = b′ = 0 in the above
equation respectively, we obtain

∂A,k(rB(b
′)a) = rB(b

′)∂A,k(a) + rB(∂B,k(b
′))a,

∂B,k(lA(a)b
′) = lA(∂A,k(a))b

′ + lA(a)∂B,k(b
′),

∂A,k(lB(b)a
′) = lB(∂B,k(b))a

′ + lB(b)∂A,k(a
′),

∂B,k(rA(a
′)b) = rA(a

′)∂B,k(b) + rA(∂A,k(a
′))b.

Thus (A, lB, rB,ΦA) is a bimodule of (B, ·B,ΦB) and (B, lA, rA,ΦB) is a bimodule of (A, ·A,ΦA).
Hence ((A, ·A,ΦA), (B, ·B,ΦB), lA, rA, lB, rB) is a matched pair of differential algebras. ■

3 Differential ASI bialgebras and coherent derivations
on ASI bialgebras

We introduce the notions of a double construction of differential Frobenius algebra and a dif-
ferential antisymmetric infinitesimal (ASI) bialgebra, and give their equivalence in terms of
matched pairs of differential algebras. The notion of a coherent derivation on an ASI bialgebra
is introduced as an equivalent structure of a differential ASI bialgebra. The set of coherent
derivations on an ASI bialgebra forms a Lie algebra, which is the Lie algebra of the Lie group
consisting of coherent automorphisms on this ASI bialgebra.

3.1 Double constructions of differential Frobenius algebras

We recall the concept of a double construction of Frobenius algebra [7].

Definition 3.1. A bilinear form B( , ) on an algebra (A, ·) is called invariant if

B(a · b, c) = B(a, b · c), ∀a, b, c ∈ A.

A Frobenius algebra (A, ·,B) is an algebra (A, ·) with a nondegenerate invariant bilinear form
B( , ). A Frobenius algebra (A, ·,B) is called symmetric if B( , ) is symmetric.

Let (A, ·) be an algebra. Suppose that there is an algebra structure ◦ on its dual space A∗

and an algebra structure ⋆ on the direct sum A⊕A∗ of the underlying vector spaces A and A∗,
which contains both (A, ·) and (A∗, ◦) as subalgebras. Define a bilinear form on A⊕A∗ by

Bd(a+ a∗, b+ b∗) := ⟨a, b∗⟩+ ⟨a∗, b⟩, ∀a, b ∈ A, a∗, b∗ ∈ A∗. (3.1)

If Bd is invariant, that is, (A⊕A∗, ⋆,Bd) is a symmetric Frobenius algebra, then the Frobenius
algebra (A ⊕ A∗, ⋆,Bd) is called a double construction of Frobenius algebra associated to (A, ·)
and (A∗, ◦), and denoted by (A ▷◁ A∗, ⋆,Bd). The notation A ▷◁ A∗ is justified since the algebra
structure on A ⊕ A∗ comes from a matched pair of algebras, that is, the product ⋆ on A ⊕ A∗

is given by equation (2.9) for certain matched pair of algebras which in fact is shown to be
((A, ·), (A∗, ◦), R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗).
We extend these notions to the context of differential algebras.

Definition 3.2. A differential Frobenius algebra is a quadruple (A, ·,Φ,B), where (A, ·, Φ =
{∂k}mk=1) is a differential algebra and (A, ·,B) is a Frobenius algebra. It is called symmetric

if B is symmetric. For all k = 1, . . . ,m, let ∂̂k be the adjoint linear operator of ∂k under the
nondegenerate bilinear form B:

B(∂k(a), b) = B
(
a, ∂̂k(b)

)
, ∀a, b ∈ A.

We call Φ̂ :=
{
∂̂k
}m
k=1

the adjoint of Φ = {∂k}mk=1 with respect to B.
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Proposition 3.3. Let (A, ·,Φ,B) be a symmetric differential Frobenius algebra. Let Φ̂ be the ad-
joint of Φ with respect to B. Then Φ̂ is admissible to (A, ·,Φ), or equivalently,

(
A∗, R∗

A, L
∗
A, Φ̂

∗) is
a bimodule of the differential algebra (A, ·,Φ). Moreover as bimodules of (A, ·,Φ), (A,LA, RA,Φ)
and

(
A∗, R∗

A, L
∗
A, Φ̂

∗) are equivalent. Conversely let (A, ·,Φ) be a differential algebra and Ψ be
admissible to (A, ·,Φ). If the resulting bimodule (A∗, R∗

A, L
∗
A,Ψ

∗) of (A, ·,Φ) is equivalent to
(A,LA, RA,Φ), then there exists a nondegenerate invariant bilinear form B on A such that
Φ̂ = Ψ.

Proof. Suppose that (A, ·,Φ = {∂k}mk=1,B) is a symmetric differential Frobenius algebra. Then
for all a, b, c ∈ A and k = 1, . . . ,m, we have

0
(2.1)
= B(∂k(a · b), c)−B(∂k(a) · b, c)−B(a · ∂k(b), c)
= B(a · b, ∂̂k(c))−B(∂k(a), b · c)−B(a, ∂k(b) · c)
= B(a, b · ∂̂k(c))−B(a, ∂̂k(b · c))−B(a, ∂k(b) · c).

Thus b · ∂̂k(c) = ∂̂k(b · c)+ ∂k(b) · c, that is, equation (2.8) holds. Similarly, equation (2.7) holds.
Hence Φ̂ is admissible to (A, ·,Φ), that is,

(
A∗, R∗

A, L
∗
A, Φ̂

∗) is a bimodule of (A, ·,Φ). Define
a linear map φ : A→ A∗ by

φ(a)(b) := ⟨φ(a), b⟩ = B(a, b), ∀a, b ∈ A.

Obviously, φ is a linear isomorphism. Moreover for all a, b, c ∈ A and k = 1, . . . ,m, we have

⟨φ(LA(a)b), c⟩ = ⟨φ(a · b), c⟩ = B(a · b, c) = B(b, c · a) = ⟨φ(b), c · a⟩ = ⟨R∗
A(a)φ(b), c⟩,

⟨φ(RA(b)a), c⟩ = ⟨φ(a · b), c⟩ = B(a · b, c) = B(a, b · c) = ⟨φ(a), b · c⟩ = ⟨L∗
A(b)φ(a), c⟩,

⟨φ(∂k(a)), b⟩ = B(∂k(a), b) = B(a, ∂̂k(b)) = ⟨φ(a), ∂̂k(b)⟩ = ⟨∂̂k
∗
φ(a), b⟩.

Hence (A,LA, RA,Φ) and
(
A∗, R∗

A, L
∗
A, Φ̂

∗) are equivalent as bimodules of (A, ·,Φ).
Conversely, suppose that φ : A→ A∗ is the linear isomorphism giving the equivalence between

(A,LA, RA, Φ) and (A∗, R∗
A, L

∗
A,Ψ

∗). Define a bilinear form B on A by

B(a, b) := ⟨φ(a), b⟩, ∀a, b ∈ A.

Then by a similar argument as above, we show that B is a nondegenerate invariant bilinear
form on (A, ·) such that Φ̂ = Ψ. ■

Definition 3.4. Let (A, ·,Φ) be a differential algebra. Suppose that there is a differential algebra
structure (A∗, ◦,Ψ∗) on the dual space A∗. A double construction of differential Frobenius algebra
associated to (A, ·,Φ) and (A∗, ◦,Ψ∗) is a double construction of Frobenius algebra (A ▷◁ A∗,
⋆,Bd) associated to (A, ·) and (A∗, ◦) such that (A ▷◁ A∗, ⋆,Φ + Ψ∗) is a differential algebra,
which is denoted by (A ▷◁ A∗, ⋆,Φ+Ψ∗,Bd).

Lemma 3.5. Let (A ▷◁ A∗, ⋆,Φ + Ψ∗,Bd) be a double construction of differential Frobenius
algebra associated to (A, ·,Φ) and (A∗, ◦,Ψ∗). Then the following conclusions hold:

(1) The adjoint Φ̂ + Ψ∗ of Φ+Ψ∗ with respect to Bd is Ψ+Φ∗. Further Ψ+Φ∗ is admissible
to (A ▷◁ A∗, ⋆,Φ+Ψ∗).

(2) Ψ is admissible to (A, ·,Φ).

(3) Φ∗ is admissible to (A∗, ◦,Ψ∗).
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Proof. Set Φ = {∂k}mk=1 and Ψ∗ = {ð∗k}mk=1. Let a, b ∈ A, a∗, b∗ ∈ A∗.

(1) By equation (3.1), we have

Bd((∂k + ð∗k)(a+ a∗), b+ b∗) = Bd(∂k(a) + ð∗k(a∗), b+ b∗) = ⟨∂k(a), b∗⟩+ ⟨ð∗k(a∗), b⟩
= ⟨a, ∂∗k(b∗)⟩+ ⟨a∗, ðk(b)⟩ = Bd(a+ a∗, (ðk + ∂∗k)(b+ b∗)).

Hence the adjoint Φ̂ + Ψ∗ of Φ +Ψ∗ with respect to Bd is Ψ + Φ∗. By Proposition 3.3, Ψ + Φ∗

is admissible to (A ▷◁ A∗, ⋆,Φ+Ψ∗).

(2) By (1), Ψ + Φ∗ is admissible to (A ▷◁ A∗, ⋆,Φ +Ψ∗). Then by equations (2.7) and (2.8),
we have

(ðk + ∂∗k)(a+ a∗) ⋆ (b+ b∗) = (a+ a∗) ⋆ (∂k + ð∗k)(b+ b∗) + (ðk + ∂∗k)((a+ a∗) ⋆ (b+ b∗)),

(a+ a∗) ⋆ (ðk + ∂∗k)(b+ b∗) = (∂k + ð∗k)(b+ b∗) ⋆ (b+ b∗) + (ðk + ∂∗k)((a+ a∗) ⋆ (b+ b∗)).

Taking a∗ = b∗ = 0 in the above equations, we show that Ψ is admissible to (A, ·,Φ).
(3) Taking a = b = 0 in the above equations, we show that Φ∗ is admissible to (A∗, ◦,Ψ∗). ■

Theorem 3.6. Let (A, ·,Φ) be a differential algebra. Suppose that there is a differential al-
gebra structure (A∗, ◦,Ψ∗) on A∗. Then there is a double construction of differential Frobe-
nius algebra (A ▷◁ A∗, ⋆,Φ + Ψ∗,Bd) associated to (A, ·,Φ) and (A∗, ◦,Ψ∗) if and only if(
(A, ·,Φ), (A∗, ◦,Ψ∗), R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗
)
is a matched pair of differential algebras.

Proof. (=⇒) By assumption, (A ⊕ A∗, ⋆,Bd) is a double construction of Frobenius algebra
associated to (A, ·) and (A∗, ◦). By [7, Theorem 2.2.1],

(
(A, ·), (A∗, ◦), R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗
)
is

a matched pair of algebras. On the other hand, by Lemma 3.5, (A∗, R∗
A, L

∗
A,Ψ

∗) is a bimod-
ule of (A, ·,Φ) and (A,R∗

A∗ , L∗
A∗ ,Φ) is a bimodule of (A∗, ◦,Ψ∗) respectively. Hence

(
(A, ·,Φ),

(A∗, ◦,Ψ∗), R∗
A, L

∗
A, R

∗
A∗ , L∗

A∗
)
is a matched pair of differential algebras.

(⇐=) If
(
(A, ·,Φ), (A∗, ◦,Ψ∗), R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗
)
is a matched pair of differential algebras,

then
(
(A, ·), (A∗, ◦), R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗
)
is a matched pair of algebras. Hence by [7, Theorem 2.2.1]

again, (A ▷◁ A∗, ⋆,Bd) is a Frobenius algebra, where ⋆ is defined by equation (2.9). Moreover
by Theorem 2.13, (A ▷◁ A∗, ⋆,Φ+Ψ∗) is a differential algebra. Hence (A ▷◁ A∗, ⋆,Φ+Ψ∗,Bd) is
a double construction of differential Frobenius algebra associated to (A, ·,Φ) and (A∗, ◦,Ψ∗). ■

3.2 Differential ASI bialgebras

With the previous preparations, we are ready to introduce the notion of a differential ASI
bialgebra as an enrichment of the notion of an ASI bialgebra [3, 7, 26, 46].

Recall that a coalgebra (A,∆) is a vector space A with a linear map ∆: A→ A⊗A satisfying
the coassociative law:

(∆⊗ id)∆ = (id⊗∆)∆.

A coalgebra (A,∆) is called cocommutative if ∆ = σ∆, where σ : A ⊗ A → A ⊗ A is the flip
operator defined by σ(a⊗ b) := b⊗ a for all a, b ∈ A.

Definition 3.7 ([7]). An antisymmetric infinitesimal bialgebra or simply an ASI bialgebra is
a triple (A, ·,∆) consisting of a vector space A and linear maps · : A⊗A→ A and ∆: A→ A⊗A
such that

(1) (A, ·) is an algebra;

(2) (A,∆) is a coalgebra;
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(3) the following equations hold:

∆(a · b) = (RA(b)⊗ id)∆(a) + (id⊗ LA(a))∆(b), (3.2)

(LA(a)⊗ id− id⊗RA(a))∆(b) = σ
(
(id⊗RA(b)− LA(b)⊗ id)∆(a)

)
, (3.3)

for all a, b ∈ A.

Definition 3.8 ([19]). Let (A,∆) be a coalgebra. A linear map ð : A→ A is called a coderivation
on (A,∆) if the following equation holds:

∆ð = (ð⊗ id + id⊗ ð)∆. (3.4)

Definition 3.9. A differential coalgebra is a triple (A,∆,Ψ), consisting of a coalgebra (A,∆)
and a finite set of commuting coderivations Ψ = {ðk : A → A}mk=1. A differential coalgebra
(A,∆,Ψ) is called cocommutative if (A,∆) is cocommutative.

Remark 3.10. The notion of a differential coalgebra is the dualization of the notion of a differen-
tial algebra, that is, (A,∆,Ψ) is a differential coalgebra if and only if (A∗,∆∗,Ψ∗) is a differential
algebra. Moreover, (A,∆) is cocommutative if and only if (A∗,∆∗) is commutative.

Lemma 3.11. Let (A,∆,Ψ = {ðk}mk=1) be a differential coalgebra and Φ = {∂k : A→ A}mk=1 be
a set of commuting linear maps. Then Φ∗ is admissible to the differential algebra (A∗,∆∗,Ψ∗)
if and only if the following equations hold:

(∂k ⊗ id)∆ = (id⊗ ðk)∆ +∆∂k, (3.5)

(id⊗ ∂k)∆ = (ðk ⊗ id)∆ +∆∂k, ∀k = 1, . . . ,m. (3.6)

Proof. By Corollary 2.9, Φ∗ is admissible to (A∗,∆∗,Ψ∗) if and only if the following equations
hold:

∂∗k(a
∗) ◦ b∗ = a∗ ◦ ð∗k(b∗) + ∂∗k(a

∗ ◦ b∗),
a∗ ◦ ∂∗k(b∗) = ð∗k(a∗) ◦ b∗ + ∂∗k(a

∗ ◦ b∗), ∀k = 1, . . . ,m,

where a∗ ◦ b∗ = ∆∗(a∗ ⊗ b∗), for all a∗, b∗ ∈ A∗. Rewriting the above equations in terms of the
comultiplication, we get equations (3.5) and (3.6) respectively. Hence the conclusion holds. ■

Definition 3.12. A differential antisymmetric infinitesimal bialgebra or simply a differential
ASI bialgebra is a quintuple (A, ·,∆,Φ,Ψ) satisfying

(1) (A, ·,∆) is an ASI bialgebra;

(2) (A, ·,Φ = {∂k}mk=1) is a differential algebra;

(3) (A,∆,Ψ = {ðk}mk=1) is a differential coalgebra;

(4) Ψ and Φ∗ are admissible to the differential algebras (A, ·,Φ) and (A∗,∆∗,Ψ∗) respectively,
that is, equations (2.7), (2.8), (3.5) and (3.6) hold.

A differential ASI bialgebra (A, ·,∆,Φ,Ψ) is called commutative and cocommutative if (A, ·) is
a commutative algebra and (A,∆) is a cocommutative coalgebra.

Theorem 3.13. Let (A, ·,Φ) be a differential algebra. Suppose that there is a differential algebra
structure (A∗, ◦,Ψ∗) on A∗. Let ∆: A → A ⊗ A denote the linear dual of the multiplication
◦ : A∗⊗A∗ → A∗, that is, (A,∆,Ψ) is a differential coalgebra. Then the quintuple (A, ·,∆,Φ,Ψ)
is a differential ASI bialgebra if and only if ((A, ·,Φ), (A∗, ◦,Ψ∗), R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗) is a matched
pair of differential algebras.
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Proof. (=⇒) If the quintuple (A, ·,∆,Φ,Ψ) is a differential ASI bialgebra, then (A, ·,∆) is
an ASI bialgebra, and Ψ and Φ∗ are admissible to (A, ·,Φ) and (A∗, ◦,Ψ∗) respectively. The
former means that ((A, ·), (A∗, ◦), R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗) is a matched pair of algebras by [7, Theo-
rem 2.2.3]. The latter means that (A∗, R∗

A, L
∗
A,Ψ

∗) is a bimodule of (A, ·,Φ) and (A,R∗
A∗ , L∗

A∗ ,Φ)
is a bimodule of (A∗, ◦,Ψ∗). Hence ((A, ·,Φ), (A∗, ◦,Ψ∗), R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗) is a matched pair of
differential algebras.

(⇐=) If ((A, ·,Φ), (A∗, ◦,Ψ∗), R∗
A, L

∗
A, R

∗
A∗ , L∗

A∗) is a matched pair of differential algebras,
then ((A, ·), (A∗, ◦), R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗) is a matched pair of algebras, and Ψ and Φ∗ are admis-
sible to (A, ·,Φ) and (A∗, ◦,Ψ∗) respectively. By [7, Theorem 2.2.3] again, (A, ·,∆) is an ASI
bialgebra and hence (A, ·,∆,Φ,Ψ) is a differential ASI bialgebra. ■

Combining Theorems 3.6 and 3.13, we have the following conclusion.

Theorem 3.14. Let (A, ·,Φ) be a differential algebra. Suppose that there is a differential algebra
structure (A∗, ◦,Ψ∗) on A∗. Let ∆: A → A ⊗ A denote the linear dual of the multiplication
◦ : A∗ ⊗A∗ → A∗. Then the following conditions are equivalent:

1. There is a double construction of differential Frobenius algebra associated to (A, ·,Φ) and
(A∗, ◦, Ψ∗).

2. ((A, ·,Φ), (A∗, ◦,Ψ∗), R∗
A, L

∗
A, R

∗
A∗ , L∗

A∗) is a matched pair of differential algebras.

3. (A, ·,∆,Φ,Ψ) is a differential ASI bialgebra.

3.3 Coherent derivations on ASI bialgebras

In this subsection, we consider the case that the set Φ in a differential algebra (A, ·,Φ) contains
exactly one derivation.

Definition 3.12 motivates us to give the following notion.

Definition 3.15. A coherent derivation on an ASI bialgebra (A, ·,∆) is a pair (∂,ð), where ∂
is a derivation on the algebra (A, ·) and ð is a coderivation on the coalgebra (A,∆) satisfying
equations (2.7), (2.8), (3.5) and (3.6).

Corollary 3.16. Let (A, ·,∆) be an ASI bialgebra. Then the following conditions are equivalent:

1. (A, ·,∆, {∂}, {ð}) is a differential ASI bialgebra.

2. (∂,ð) is a coherent derivation on the ASI bialgebra (A, ·,∆).

3. ∂+ð∗ is a derivation on the algebra
(
A ▷◁

R∗
A∗ ,L

∗
A∗

R∗
A,L∗

A
A∗, ⋆

)
, where the algebra structure on A∗

is given by ∆∗.

Proof. (1) ⇐⇒ (2). It follows from Definitions 3.12 and 3.15.

(1) ⇐⇒ (3). It follows from Theorems 3.13 and 2.13. ■

Recall [29, 33] that f ∈ End(A) is called a generalized derivation on an algebra (A, ·) if there
exist f ′, f ′′ ∈ End(A) such that

f(a) · b+ a · f ′(b) = f ′′(a · b), ∀a, b ∈ A.

For a coherent derivation (∂,ð) on an ASI bialgebra (A, ·,∆), we have the following conclusions.

1. Since ∂ is a derivation on the algebra (A, ·), it is a generalized derivation automatically.
By equation (2.7), ð is a generalized derivation on (A, ·). By equation (2.8), we get again
that ∂ is a generalized derivation on (A, ·) from another approach.
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2. Since ð∗ is a derivation on the algebra (A∗,∆∗), it is a generalized derivation automatically.
Due to Lemma 3.11, ∂∗ is a generalized derivation on (A∗,∆∗) by equation (3.5). Moreover,
by equation (3.6), we show again that ð∗ is a generalized derivation on (A∗,∆∗) from
another approach.

Following the notion of a derivation on a Lie bialgebra [16], we give the following notion.

Definition 3.17. A derivation on an ASI bialgebra (A, ·,∆) is a linear map ∂ : A → A such
that ∂ is both a derivation on the algebra (A, ·) and a coderivation on the coalgebra (A,∆).

Note that such derivations on ASI bialgebras are called biderivations in [4]. However, the no-
tion of a biderivation (defined on an algebra (A, ·)) usually refers to a bilinear map f : A⊗A→ A
satisfying certain conditions, which is a different structure [35]. Hence in order to avoid the pos-
sible confusion, we adopt the present notion.

Example 3.18. Every ASI bialgebra has a canonical derivation. Let (A, ·,∆) be an ASI bialge-
bra and ∂ : A→ A be the composite of the comultiplication ∆: A→ A⊗A, the flip operator σ,
and the multiplication · : A ⊗ A → A, i.e., ∂(a) =

∑
i a

2
i · a1i if ∆(a) =

∑
i a

1
i ⊗ a2i for all

a ∈ A. Then ∂ is a derivation on the ASI bialgebra (A, ·,∆). In fact, let a, b ∈ A and write
∆(a) =

∑
i a

1
i ⊗ a2i , ∆(b) =

∑
i b

1
i ⊗ b2i . Hence we have

∂(a · b) = ·σ∆(a · b) (3.2)
= ·σ

(∑
i

a1i · b⊗ a2i +
∑
i

b1i ⊗ a · b2i
)

=
∑
i

a2i · a1i · b+
∑
i

a · b2i · b1i = ∂(a) · b+ a · ∂(b),

that is, ∂ is a derivation on (A, ·). Applying the preceding argument to (A∗,∆∗), we obtain ∂∗

is a derivation on (A∗,∆∗). Thus ∂ is a derivation on the ASI bialgebra (A, ·,∆).

Proposition 3.19. Let (A, ·,∆) be an ASI bialgebra. Then ∂ is a derivation on (A, ·,∆) if and
only if (∂,−∂) is a coherent derivation on (A, ·,∆).

Proof. (=⇒) Take ð = −∂. Since ∂ is a coderivation on (A,∆), ð is a coderivation. Moreover,
equations (2.7), (2.8), (3.5) and (3.6) hold naturally. Thus (∂,−∂) is a coherent derivation on
the ASI bialgebra (A, ·,∆).

(⇐=) Since −∂ is a coderivation on (A,∆), ∂ is a coderivation. Thus ∂ is a derivation on the
ASI bialgebra (A, ·,∆). ■

The notions of coherent homomorphisms and coherent isomorphisms on Lie bialgebras were
introduced in [11] to interpret the categorial equivalences among Lie bialgebras, Manin triples
and matched pairs. Transferring them to the context of ASI bialgebras, we give the following
notion.

Definition 3.20. A coherent endomorphism on an ASI bialgebra (A, ·,∆) is a pair (ϕ, ψ) consist-
ing of an algebra endomorphism ϕ : A→ A on the algebra (A, ·) and a coalgebra endomorphism
ψ : A → A on the coalgebra (A,∆), that is, ψ is a linear map satisfying (ψ ⊗ ψ)∆ = ∆ψ, such
that

ψ(ϕ(a) · b) = a · ψ(b), (3.7)

ψ(a · ϕ(b)) = ψ(a) · b, ∀a, b ∈ A, (3.8)

(id⊗ ϕ)∆ = (ψ ⊗ id)∆ϕ, (3.9)

(ϕ⊗ id)∆ = (id⊗ ψ)∆ϕ. (3.10)

If in addition both ϕ and ψ are bijective, then the pair (ϕ, ψ) is called a coherent automorphism
on the ASI bialgebra (A, ·,∆).
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Lemma 3.21. Let (A, ·,∆) be an ASI bialgebra and ϕ, ψ : A → A be linear maps. Then
(ϕ, ψ) is a coherent endomorphism on (A, ·,∆) if and only if ϕ + ψ∗ is an endomorphism on(
A ▷◁

R∗
A∗ ,L

∗
A∗

R∗
A,L∗

A
A∗, ⋆

)
, where the algebra structure on A∗ is given by ∆∗.

Proof. It follows from a similar proof as the one for the equivalence between items (1) and (3)
in Corollary 3.16 or a direct proof as follows. Note that ϕ + ψ∗ is an endomorphism on(
A ▷◁

R∗
A∗ ,L

∗
A∗

R∗
A,L∗

A
A∗, ⋆

)
if and only if

(ϕ+ ψ∗)(a+ a∗) ⋆ (ϕ+ ψ∗)(b+ b∗) = (ϕ+ ψ∗)((a+ a∗) ⋆ (b+ b∗)),

for all a, b ∈ A, a∗, b∗ ∈ A∗. By equation (2.9), the above equation holds if and only if the
following equations hold:

ψ∗(a∗) ◦ ψ∗(b∗) = ψ∗(a∗ ◦ b∗), R∗
A(ϕ(a))ψ

∗(b∗) = ψ∗(R∗
A(a)b

∗),

L∗
A(ϕ(b))ψ

∗(a∗) = ψ∗(L∗
A(b)a

∗), ϕ(a) · ϕ(b) = ϕ(a · b),
L∗
A∗(ψ∗(b∗))ϕ(a) = ϕ(L∗

A∗(b∗)a), R∗
A∗(ψ∗(a∗))ϕ(b) = ϕ(R∗

A∗(a∗)b),

for all a, b ∈ A and a∗, b∗ ∈ A∗. Thus these equations hold if and only if (ϕ, ψ) is a coherent
endomorphism on (A, ·,∆). In fact, as an example, we give an explicit proof for the case that
L∗
A∗(ψ∗(b∗))ϕ(a) = ϕ(L∗

A∗(b∗)a) for all a ∈ A, b∗ ∈ A∗ if and only if equation (3.9) holds and the
proofs for the other cases are similar. Note that for all a ∈ A and a∗, b∗ ∈ A∗, we have

⟨a∗, L∗
A∗(ψ∗(b∗))ϕ(a)⟩ = ⟨ψ∗(b∗) ◦ a∗, ϕ(a)⟩ = ⟨b∗ ⊗ a∗, (ψ ⊗ id)∆(ϕ(a))⟩,

⟨a∗, ϕ(L∗
A∗(b∗)a)⟩ = ⟨b∗ ◦ ϕ∗(a∗), a⟩ = ⟨b∗ ⊗ a∗, (id⊗ ϕ)∆(a)⟩.

Hence the conclusion follows and thus the proof is completed. ■

Proposition 3.22. Suppose that (A, ·,∆) is an ASI bialgebra over the real number field R and
∂,ð : A → A are linear maps. Then (∂,ð) is a coherent derivation on (A, ·,∆) if and only if
(et∂ , etð) is a coherent automorphism on (A, ·,∆) for all t ∈ R.

Proof. Let t ∈ R. Note that et∂ , etð and et(∂+ð∗) are invertible. By Lemma 3.21,
(
et∂ , etð

)
is

a coherent automorphism if and only if et∂+
(
etð
)∗

= et(∂+ð∗) is an automorphism on the algebra(
A ▷◁

R∗
A∗ ,L

∗
A∗

R∗
A,L∗

A
A∗, ⋆

)
, where the algebra structure on A∗ is given by ∆∗. On the other hand, it

is known that for all t ∈ R, et(∂+ð∗) is an automorphism on
(
A ▷◁

R∗
A∗ ,L

∗
A∗

R∗
A,L∗

A
A∗, ⋆

)
, if and only if

∂+ð∗ is a derivation on
(
A ▷◁

R∗
A∗ ,L

∗
A∗

R∗
A,L∗

A
A∗, ⋆

)
. Hence by Corollary 3.16, the conclusion holds. ■

Given a Lie algebra (g, [ , ]), we define the opposite Lie algebra gop as the vector space g with
the Lie bracket [ , ]op given by

[a, b]op := [b, a] = −[a, b], ∀a, b ∈ g.

In particular, let V be a vector space and gl(V ) be the general linear Lie algebra with the Lie
bracket [S, T ] = ST − TS for all S, T ∈ gl(V ). Then gl(V )op ⊕ gl(V ) is a Lie algebra with the
following Lie bracket

[(S1, S2), (T1, T2)] := (−[S1, T1], [S2, T2]) = (T1S1 − S1T1, S2T2 − T2S2), (3.11)

for all S1, S2, T1, T2 ∈ gl(V ).
Given a Lie group G, let Gop be the opposite group of G with the same manifold structure

as G. Then Gop is a Lie group, called the opposite Lie group of G. Let Lie(G) denote the Lie
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algebra of the Lie group G. Then Lie(Gop) = (Lie(G))op [14]. In particular, let V be a vector
space and GL(V ) be the general linear Lie group. Then the direct product GL(V )op × GL(V )
is a Lie group with the following multiplication:

(α1, α2)(β1, β2) = (β1α1, α2β2), ∀α1, α2, β1, β2 ∈ GL(V ). (3.12)

Moreover, we have Lie(GL(V )op×GL(V )) ∼= Lie(GL(V )op)⊕Lie(GL(V )) = gl(V )op⊕ gl(V ).

Theorem 3.23. Let (A, ·,∆) be a real ASI bialgebra. Let G be the set of coherent automorphisms
on (A, ·,∆) and D be the set of coherent derivations on (A, ·,∆). Then G is a closed Lie subgroup
of GL(A)op × GL(A) and D is a Lie subalgebra of gl(A)op ⊕ gl(A). Moreover the Lie algebra
of G is exactly D.

Proof. It is straightforward to verify that D is a vector space by

λ(∂1,ð1) + µ(∂2,ð2) = (λ∂1 + µð1, λ∂2 + µð2), ∀(∂1,ð1), (∂2,ð2) ∈ D, λ, µ ∈ R.

Let (∂1, ð2), (∂2, ð2) ∈ D and a, b ∈ A. It is known that −[∂1, ∂2] is a derivation on (A, ·) and
[ð1, ð2] is a coderivation on (A,∆). Moreover, we have

[ð1,ð2](a · b) = ð1(ð2(a · b))− ð2(ð1(a · b))
(2.8)
= a · ð1(ð2(b))− ∂1(a) · ð2(b)− (∂2(a) · ð1(b)− ∂1(∂2(a)) · b)

− (a · ð2(ð1(b))− ∂2(a) · ð1(b)) + (∂1(a) · ð2(b)− ∂2(∂1(a)) · b)
= a · [ð1,ð2](b) + [∂1, ∂2](a) · b,

∆[∂1, ∂2] = ∆∂1∂2 −∆∂2∂1
(3.5)
= (∂1 ⊗ id− id⊗ ð1)(∂2 ⊗ id− id⊗ ð2)∆
− (∂2 ⊗ id− id⊗ ð2)(∂1 ⊗ id− id⊗ ð1)∆

= ([∂1, ∂2]⊗ id)∆ + (id⊗ [ð1,ð2])∆.

Similarly we have

[ð1, ð2](a · b) = a · [ð1,ð2](b) + [∂1, ∂2](a) · b,
∆[∂1, ∂2] = (id⊗ [∂1, ∂2])∆ + ([ð1, ð2]⊗ id)∆.

Thus (−[∂1, ∂2], [ð1,ð2]) is a coherent derivation on (A, ·,∆). Then D is a Lie algebra with the
Lie bracket defined by equation (3.11). Hence D is a Lie subalgebra of gl(A)op ⊕ gl(A).

Let (ϕ1, ψ1), (ϕ2, ψ2) ∈ G and a, b ∈ A. It is known that ϕ2ϕ1 is an algebra automorphism
on (A, ·) and ψ1ψ2 is a coalgebra automorphism. Moreover, we have

(ψ1ψ2)((ϕ2ϕ1)(a) · b)
(3.7)
= ψ1(ϕ1(a) · ψ2(b))

(3.7)
= a · (ψ1ψ2)(b),

(id⊗ ϕ2ϕ1)∆
(3.9)
= (ψ1 ⊗ ϕ2)∆ϕ1

(3.9)
= (ψ1ψ2 ⊗ id)∆(ϕ2ϕ1).

Similarly, we have

(ψ1ψ2)(a · (ϕ2ϕ1)(b)) = (ψ1ψ2)(a) · b, (ϕ2ϕ1 ⊗ id)∆ = (id⊗ ψ1ψ2)∆(ϕ2ϕ1).

Thus (ϕ2ϕ1, ψ1ψ2) is a coherent automorphism. Meanwhile, it is straightforward to verify
(id, id) ∈ G and

(
ϕ−1
1 , ψ−1

1

)
∈ G. Then G is a group with the multiplication defined by equa-

tion (3.12). Hence G is a subgroup of GL(A)op ×GL(A).
Moreover, G is closed in GL(A)op ×GL(A) since A is finite-dimensional and G is a subset of

GL(A)op ×GL(A) determined by equations (3.7)–(3.10) and the following equations

ϕ(a · b) = ϕ(a) · ϕ(b), (ψ ⊗ ψ)∆ = ∆ψ, ∀a, b ∈ A.

Hence by [44, Theorem 6.9], G is a closed Lie subgroup of GL(A)op × GL(A) and the Lie
algebra of G is

{
(∂,ð) ∈ gl(A)op ⊕ gl(A) :

(
et∂ , etð

)
∈ G,∀t ∈ R

}
. By Proposition 3.22, we have

Lie(G) = D. ■
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4 Coboundary differential ASI bialgebras

We study the coboundary differential ASI bialgebras, leading to the introduction of the notion of
Ψ-admissible associative Yang–Baxter equation (AYBE) in a differential algebra. The antisym-
metric solutions of the latter give the former. The notions of O-operators of differential algebras
and differential dendriform algebras are introduced to provide antisymmetric solutions of Ψ-
admissible AYBE in semi-direct product differential algebras and hence give rise to differential
ASI bialgebras.

4.1 Coboundary differential ASI bialgebras and admissible AYBE

Definition 4.1. A differential ASI bialgebra (A, ·,∆,Φ,Ψ) is called coboundary if ∆ is defined
by

∆(a) := (id⊗ LA(a)−RA(a)⊗ id)(r), ∀a ∈ A, (4.1)

for some r ∈ A⊗A.

Proposition 4.2 ([7, Theorem 2.3.5]). Let (A, ·) be an algebra and r ∈ A⊗A. Define a linear
map ∆: A → A ⊗ A by equation (4.1). Then (A, ·,∆) is an ASI bialgebra if and only if the
following equations hold:

(LA(a)⊗ id− id⊗RA(a))(id⊗ LA(b)−RA(b)⊗ id)(r + σ(r)) = 0, (4.2)

(id⊗ id⊗ LA(a)−RA(a)⊗ id⊗ id)(r12r13 + r13r23 − r23r12) = 0, ∀a, b ∈ A. (4.3)

Here for r =
∑

i ai ⊗ bi, we denote

r12r13 =
∑
i,j

ai · aj ⊗ bi ⊗ bj , r13r23 =
∑
i,j

ai ⊗ aj ⊗ bi · bj ,

r23r12 =
∑
i,j

aj ⊗ ai · bj ⊗ bi.

Proposition 4.3. Let (A, ·,Φ = {∂k}mk=1) be a Ψ = {ðk}mk=1-admissible differential algebra and
r ∈ A⊗A. Define a linear map ∆: A→ A⊗A by equation (4.1). Then the following conclusions
hold.

1. For all k = 1, . . . ,m, equation (3.4) holds in which ð is replaced by ðk if and only if the
following equation holds:

(id⊗ LA(a))(id⊗ ∂k − ðk ⊗ id)(r)

+ (RA(a)⊗ id)(id⊗ ðk − ∂k ⊗ id)(r) = 0, ∀a ∈ A. (4.4)

2. For all k = 1, . . . ,m, equation (3.5) holds if and only if the following equation holds:

(id⊗ LA(a)−RA(a)⊗ id)(∂k ⊗ id− id⊗ ðk)(r) = 0, ∀a ∈ A. (4.5)

3. For all k = 1, . . . ,m, equation (3.6) holds if and only if the following equation holds:

(id⊗ LA(a)−RA(a)⊗ id)(id⊗ ∂k − ðk ⊗ id)(r) = 0, ∀a ∈ A. (4.6)

Proof. (1) By equations (2.7)–(2.8), we have

LA(ðk(a)) = LA(a)∂k + ðkLA(a), RA(ðk(a)) = RA(a)∂k + ðkRA(a), ∀a ∈ A. (4.7)
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Then for all a ∈ A, we have

∆ðk(a)− (ðk ⊗ id + id⊗ ðk)∆(a)

= (id⊗ LA(ðk(a))−RA(ðk(a))⊗ id)(r)

− (ðk ⊗ LA(a)− ðkRA(a)⊗ id + id⊗ ðkLA(a)−RA(a)⊗ ðk)(r)
(4.7)
= (id⊗ LA(a)∂k −RA(a)∂k ⊗ id− ðk ⊗ LA(a) +RA(a)⊗ ðk)(r)
= (id⊗ LA(a))(id⊗ ∂k − ðk ⊗ id)(r) + (RA(a)⊗ id)(id⊗ ðk − ∂k ⊗ id)(r).

Hence equation (3.4) holds if and only if equation (4.4) holds.
(2) By equations (2.8) and (2.1), we have

LA(a)ðk = LA(∂k(a)) + ðkLA(a), ∂kRA(a) = RA(a)∂k +RA(∂k(a)), ∀a ∈ A. (4.8)

Then for all a ∈ A, we have

(∂k ⊗ id)∆(a)− (id⊗ ðk)∆(a)−∆∂k(a)

= (∂k ⊗ LA(a)− ∂kRA(a)⊗ id− id⊗ ðkLA(a) +RA(a)⊗ ðk)(r)
− (id⊗ LA(∂k(a))−RA(∂k(a))⊗ id)(r)

(4.8)
= (∂k ⊗ LA(a)− id⊗ LA(a)ðk −RA(a)∂k ⊗ id +RA(a)⊗ ðk)(r)
= (id⊗ LA(a)−RA(a)⊗ id)(∂k ⊗ id− id⊗ ðk)(r).

Hence equation (3.5) holds if and only if equation (4.5) holds.
(3) It follows from a similar argument as the one of (2). ■

Combining Propositions 4.2 and 4.3, we have the following conclusion.

Corollary 4.4. Let (A, ·,Φ = {∂k}mk=1) be a Ψ = {ðk}mk=1-admissible differential algebra and
r ∈ A ⊗ A. Define a linear map ∆ by equation (4.1). Then (A, ·,∆,Φ,Ψ) is a differential ASI
bialgebra if and only if equations (4.2)–(4.6) are satisfied.

Theorem 4.5. Let (A, ·,∆,Φ,Ψ) be a differential ASI bialgebra. Let δ : A∗ → A∗ ⊗ A∗ be the
linear dual of the multiplication · on A and ◦ : A∗ ⊗ A∗ → A∗ be the linear dual of ∆. Then
(A∗, ◦,−δ,Ψ∗,Φ∗) is a differential ASI bialgebra. Further, there is a differential ASI bialgebra
structure on the direct sum A⊕A∗ of the underlying vector spaces of A and A∗, containing the
two differential ASI bialgebras as differential ASI sub-bialgebras.

Proof. By [7, Remark 2.2.4], (A∗, ◦,−δ) is an ASI bialgebra. Moreover Ψ is admissible to the
differential algebra (A,−δ∗,Φ) if and only if Ψ is admissible to the differential algebra (A, δ∗,Φ).
Therefore with the fact that Φ∗ is admissible to (A∗, ◦,Ψ∗), we know that (A∗, ◦,−δ,Ψ∗,Φ∗) is
a differential ASI bialgebra.

Let r ∈ A ⊗ A∗ ⊂ (A ⊕ A∗) ⊗ (A ⊕ A∗) correspond to the identity map id : A → A. Let
{e1, e2, . . . , en} be a basis of A and {e∗1, e∗2, . . . , e∗n} be the dual basis. Then r =

∑n
i=1 ei ⊗ e∗i .

Let (A ▷◁ A∗, ⋆) be the algebra structure on A⊕A∗ obtained from the matched pair of algebras(
A,A∗, R∗

A, L
∗
A, R

∗
A∗ , L∗

A∗
)
. Define

∆A▷◁A∗(u) = (id⊗ LA▷◁A∗(u)−RA▷◁A∗(u)⊗ id)(r), ∀u ∈ A ▷◁ A∗.

Moreover, (A ▷◁ A∗, ⋆,Φ+Ψ∗) is a (Ψ+Φ∗)-admissible differential algebra by Theorem 3.14
and Lemma 3.5. Set Φ = {∂k}mk=1 and Ψ = {ðk}mk=1. For all k = 1, . . . ,m, we have

((∂k + ð∗k)⊗ id− id⊗ (ðk + ∂∗k))(r) = ((∂k + ð∗k)⊗ id− id⊗ (ðk + ∂∗k))

(
n∑

i=1

ei ⊗ e∗i

)
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=
n∑

i=1

(∂k(ei)⊗ e∗i − ei ⊗ ∂∗k(e
∗
i )) =

n∑
i=1

∂k(ei)⊗ e∗i −
n∑

i=1

n∑
j=1

ei ⊗ ⟨∂∗k(e∗i ), ej⟩e∗j

=

n∑
i=1

∂k(ei)⊗ e∗i −
n∑

j=1

n∑
i=1

⟨e∗i , ∂k(ej)⟩ei ⊗ e∗j =

n∑
i=1

∂k(ei)⊗ e∗i −
n∑

j=1

∂k(ej)⊗ e∗j = 0,

and similarly ((ðk + ∂∗k) ⊗ id − id ⊗ (∂k + ð∗k))(r) = 0. Hence equations (4.4)–(4.6) hold.
By [7, Theorem 2.3.6], we show that r satisfies equations (4.2) and (4.3). Therefore (A ▷◁
A∗, ⋆,∆A▷◁A∗ ,Φ + Ψ∗,Ψ + Φ∗) is a differential ASI bialgebra by Corollary 4.4. Obviously it
contains (A, ·,∆,Φ,Ψ) and (A∗, ◦,−δ,Ψ∗,Φ∗) as differential ASI sub-bialgebras. ■

We have the following conclusion as a consequence of Corollary 4.4.

Corollary 4.6. Let (A, ·,Φ = {∂k}mk=1) be a Ψ = {ðk}mk=1-admissible differential algebra and
r ∈ A⊗A. Then the linear map ∆ defined by equation (4.1) makes (A, ·,∆,Φ,Ψ) be a differential
ASI bialgebra if equation (4.2) and the following equations hold:

r12r13 + r13r23 − r23r12 = 0, (4.9)

(∂k ⊗ id− id⊗ ðk)(r) = 0, (4.10)

(ðk ⊗ id− id⊗ ∂k)(r) = 0 (4.11)

for all i = 1, . . . ,m.

Definition 4.7. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra. Suppose that r ∈ A⊗A and
Ψ = {ðk : A → A}mk=1 is a set of commuting linear maps. Then equation (4.9) with conditions
given by equations (4.10) and (4.11) is called Ψ-admissible associative Yang–Baxter equation in
(A, ·,Φ) or simply Ψ-admissible AYBE in (A, ·,Φ).

Remark 4.8. Note that equation (4.9) is exactly the associative Yang–Baxter equation (AYBE)
in an algebra. Also note that if r is antisymmetric (i.e., r = −σ(r)), then equation (4.2) holds
naturally, and in this case, equation (4.10) holds if and only if equation (4.11) holds.

In terms of Ψ-admissible AYBE, we have the following conclusion.

Corollary 4.9. Let (A, ·,Φ) be a Ψ-admissible differential algebra and r ∈ A ⊗ A. If r is an
antisymmetric solution of Ψ-admissible AYBE in (A, ·,Φ), then (A, ·,∆,Φ,Ψ) is a differential
ASI bialgebra, where the linear map ∆ is defined by equation (4.1).

For a vector space A, through the isomorphism A ⊗ A ∼= Hom(A∗, A), any r =
∑

i ai ⊗ bi ∈
A⊗A can be identified as a map from A∗ to A, which we denote by r♯, explicitly,

r♯ : A∗ → A, a∗ 7→
∑
i

⟨a∗, ai⟩bi, ∀a∗ ∈ A∗.

Theorem 4.10. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra and r ∈ A⊗A be antisymmetric.
Let Ψ = {ðk : A → A}mk=1 be a set of commuting linear maps. Then r is a solution of Ψ-
admissible AYBE in (A, ·,Φ) if and only if r♯ satisfies the following equations:

r♯(a∗) · r♯(b∗) = r♯
(
R∗

A(r
♯(a∗))b∗ + L∗

A(r
♯(b∗))a∗

)
, ∀a∗, b∗ ∈ A∗, (4.12)

∂kr
♯ = r♯ð∗k, ∀k = 1, . . . ,m. (4.13)

Proof. By [7, Proposition 2.4.7], r is a solution of AYBE in (A, ·) if and only if equation (4.12)
holds. Moreover, writing r =

∑
i ai ⊗ bi, then for all a∗ ∈ A∗ and k = 1, . . . ,m, we have

r♯(ð∗k(a∗)) =
∑
i

⟨ð∗k(a∗), ai⟩bi =
∑
i

⟨a∗,ðk(ai)⟩bi, ∂k(r
♯(a∗)) =

∑
i

⟨a∗, ai⟩∂k(bi).

So ∂kr
♯ = r♯ð∗k if and only if equation (4.11) holds. ■
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Now let (A, ·,Φ,B) be a symmetric differential Frobenius algebra. Then under the natural
bijection Hom(A⊗A,F) ∼= Hom(A,A∗), the bilinear form B corresponds to the linear map (see
the proof of Proposition 3.3)

φ : A→ A∗, a 7→ φ(a), where ⟨φ(a), b⟩ := B(a, b), ∀a, b ∈ A.

For any r ∈ A⊗A, define a linear map Pr : A→ A by

Pr : A→ A, a 7→ r♯(φ(a)), ∀a ∈ A.

Theorem 4.11. Let (A, ·,Φ = {∂k}mk=1,B) be a symmetric differential Frobenius algebra and

r ∈ A ⊗ A be antisymmetric. Suppose that Φ̂ is the adjoint of Φ with respect to B. Then r is
a solution of Φ̂-admissible AYBE in (A, ·,Φ) if and only if Pr satisfies the following equations:

Pr(a) · Pr(b) = Pr(a · Pr(b) + Pr(a) · b), ∀a, b ∈ A, (4.14)

∂kPr = Pr∂k, ∀k = 1, . . . ,m. (4.15)

Moreover, in this case,
(
A, ·,∆,Φ, Φ̂

)
is a differential ASI bialgebra, where ∆ is defined by

equation (4.1).

Proof. By [9, Corollary 3.17], r is a solution of AYBE in the algebra (A, ·) if and only if Pr

satisfies equation (4.14). Moreover, set r =
∑

i ai ⊗ bi. For all a ∈ A, we have

∂kPr(a) = ∂kr
♯(φ(a)),

Pr∂k(a) = r♯(φ(∂k(a))) =
∑
i

B(∂k(a), ai)bi =
∑
i

B(a, ∂̂k(ai))bi

=
∑
i

⟨φ(a), ∂̂k(ai)⟩bi = r♯∂̂k
∗
(φ(a)).

Note that φ is a linear isomorphism. Thus ∂kr
♯ = r♯∂̂k

∗
if and only if ∂kPr = Pr∂k. Hence the

conclusion follows from Theorem 4.10, Proposition 3.3 and Corollary 4.9. ■

4.2 O-operators of differential algebras

Theorem 4.10 leads us to give the following notion.

Definition 4.12. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra and (V, l, r,Ω) be a bimodule
of (A, ·,Φ). A linear map T : V → A is called an O-operator of (A, ·,Φ) associated to (V, l, r,Ω)
if T satisfies

T (u) · T (v) = T (l(T (u))v + r(T (v))u), ∀u, v ∈ V, (4.16)

∂kT = Tαk, ∀k = 1, . . . ,m. (4.17)

Example 4.13. Let (A, ·,Φ) be a differential algebra. Then the identity map id: A → A is an
O-operator of (A, ·,Φ) associated to (A,LA, 0,Φ) or (A, 0, RA,Φ).

Note [7] that for an algebra (A, ·) and an A-bimodule (V, l, r), a linear map T : V → A
satisfying equation (4.16) is called an O-operator of (A, ·) associated to (V, l, r). In particular,
when (V, l, r) is taken to be (A,LA, RA), an O-operator R : A → A is called a Rota–Baxter
operator (of weight zero) on (A, ·), that is, R satisfies

R(a) ·R(b) = R(R(a) · b+ a ·R(b)), ∀a, b ∈ A.

Hence equation (4.14) means that Pr is a Rota–Baxter operator on the algebra (A, ·).
Furthermore we have the following conclusion.
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Lemma 4.14 ([10]). Let (A, ·) be an algebra and (V, l, r) be an A-bimodule. A linear map
T : V → A is an O-operator of (A, ·) associated to (V, l, r) if and only if T̂ := 0 + T : A⊕ V →
A⊕V is a Rota–Baxter operator on the semi-direct product algebra (A⋉l,r V, ·), where the linear

map T̂ is defined as

T̂ (a+ u) = T (u), ∀a ∈ A, u ∈ V. (4.18)

In terms of O-operators, Theorem 4.10 is rewritten as follows.

Corollary 4.15. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra. Let r ∈ A ⊗ A be antisym-
metric and Ψ = {ðk : A → A}mk=1 be a set of commuting linear maps. Then r is a solution
of Ψ-admissible AYBE in (A, ·,Φ) if and only if r♯ is an O-operator of (A, ·) associated to
(A∗, R∗

A, L
∗
A) such that ∂kr

♯ = r♯ð∗k for all k = 1, . . . ,m. If in addition, (A, ·,Φ) is Ψ-admissible,
then r is a solution of Ψ-admissible AYBE in (A, ·,Φ) if and only if r♯ is an O-operator of
(A, ·,Φ) associated to the bimodule (A∗, R∗

A, L
∗
A,Ψ

∗).

Recall that O-operators of algebras give antisymmetric solutions of AYBE in semi-direct
product algebras.

Proposition 4.16 ([9, Corollary 3.10]). Let (A, ·) be an algebra and (V, l, r) be an A-bimodule.
Let T : V → A be a linear map which is identified as an element in (A⋉r∗,l∗ V

∗)⊗ (A⋉r∗,l∗ V
∗)

(through Hom(V,A) ∼= A ⊗ V ∗ ⊂ (A ⋉r∗,l∗ V
∗) ⊗ (A ⋉r∗,l∗ V

∗)). Then r = T − σ(T ) is an
antisymmetric solution of AYBE in the algebra (A⋉r∗,l∗ V

∗, ·) if and only if T is an O-operator
of (A, ·) associated to (V, l, r).

We next generalize the above construction to the context of differential algebras, showing
that O-operators of differential algebras give antisymmetric solutions of admissible AYBE in
semi-direct product differential algebras and hence give rise to differential ASI bialgebras.

Proposition 4.17. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra and (V, l, r) be an A-
bimodule. Let Ψ = {ðk : A → A}mk=1, Ω = {αk : V → V }mk=1 and Π = {βk : V → V }mk=1 be
sets of commuting linear maps. Then the following conditions are equivalent.

1. There is a differential algebra (A⋉l,r V, ·,Φ+Ω) such that Ψ+Π is admissible to (A⋉l,r

V, ·,Φ+ Ω).

2. There is a differential algebra (A ⋉r∗,l∗ V
∗, ·,Φ + Π∗) such that Ψ + Ω∗ is admissible to

(A⋉r∗,l∗ V
∗,Φ+Π∗).

3. The following conditions are satisfied:

(i) (V, l, r,Ω) is a bimodule of (A, ·,Φ);
(ii) (A, ·,Φ) is Ψ-admissible;

(iii) Π is admissible to (A, ·,Φ) on (V, l, r);

(iv) for all a ∈ A, v ∈ V and k = 1, . . . ,m, the following equations hold:

l(ðk(a))v = l(a)αk(v) + βk(l(a)v), (4.19)

r(ðk(a))v = r(a)αk(v) + βk(r(a)v). (4.20)

Proof. (1) ⇐⇒ (3). By Proposition 2.6, (A ⋉l,r V, ·,Φ + Ω) is a differential algebra if and
only if (V, l, r,Ω) is a bimodule of the differential algebra (A, ·,Φ). Let a, b ∈ A, u, v ∈ V and
k = 1, . . . ,m. Then

((ðk + βk)(a+ u)) · (b+ v) = ðk(a) · b+ r(b)βk(u) + l(ðk(a))v,
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(a+ u) · ((∂k + αk)(b+ v)) = a · ∂k(b) + l(a)αk(v) + r(∂k(b))u,

(ðk + βk)((a+ u) · (b+ v)) = ðk(a · b) + βk(l(a)v) + βk(r(b)u).

Therefore equation (2.7) holds (where ðk is replaced by ðk + βk, ∂k by ∂k + αk, a by a+ u and
b by b+ v) if and only if equation (2.7) (corresponding to u = v = 0), equation (2.5), where a is
replaced by b and v by u, (corresponding to a = v = 0) and equation (4.19) (corresponding to
b = u = 0) hold. Similarly, equation (2.8) holds (where ðk is replaced by ðk +βk, ∂k by ∂k +αk,
a by a+ u and b by b+ v) if and only if equation (2.8), equation (2.6) and equation (4.20) hold.

(2) ⇐⇒ (3). In item (1), take V = V ∗, l = r∗, r = l∗, Π = Ω∗, Ω = Π∗. Then from the
above equivalence between item (1) and item (3), we show that item (2) holds if and only if the
conditions (i)–(iii) in item (3) as well as the following equations hold (for all a ∈ A, v∗ ∈ V ∗,
k = 1, . . . ,m):

r∗(ðk(a))v∗ = r∗(a)β∗k(v
∗) + α∗

k(r
∗(a)v∗), (4.21)

l∗(ðk(a))v∗ = l∗(a)β∗k(v
∗) + α∗

k(l
∗(a)v∗). (4.22)

Let a ∈ A. Then we have

r∗(a)β∗k + α∗
kr

∗(a) = (βkr(a) + r(a)αk)
∗.

Hence equation (4.21) holds if and only if equation (4.20) holds. Similarly, equation (4.22) holds
if and only if equation (4.19) holds. Therefore item (2) holds if and only if item (3) holds. ■

Theorem 4.18. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra. Suppose that Π = {βk : V →
V }mk=1 is admissible to (A, ·,Φ) on (V, l, r) and hence (V ∗, r∗, l∗,Π∗) is a bimodule of (A, ·,Φ).
Let Ψ = {ðk : A → A}mk=1 and Ω = {αk : V → V }mk=1 be sets of commuting linear maps. Let
T : V → A be a linear map.

1. The element r = T − σ(T ) is an antisymmetric solution of (Ψ + Ω∗)-admissible AYBE in
the differential algebra (A ⋉r∗,l∗ V

∗, ·,Φ + Π∗) if and only if T is an O-operator of (A, ·)
associated to (V, l, r) such that ∂kT = Tαk and Tβk = ðkT for all k = 1, . . . ,m.

2. Assume that (V, l, r,Ω) is a bimodule of (A, ·,Φ). If T is an O-operator of (A, ·,Φ) associ-
ated to (V, l, r,Ω) and Tβk = ðkT for all k = 1, . . . ,m, then r = T−σ(T ) is an antisymmet-
ric solution of (Ψ+Ω∗)-admissible AYBE in the differential algebra (A⋉r∗,l∗ V

∗, ·,Φ+Π∗).
If in addition, (A, ·,Φ) is Ψ-admissible and equations (4.19)–(4.20) are satisfied, then the
differential algebra (A⋉r∗,l∗ V

∗, ·,Φ+Π∗) is (Ψ + Ω∗)-admissible. Therefore in this case,
there is a differential ASI bialgebra (A ⋉r∗,l∗ V

∗, ·,∆,Φ + Π∗,Ψ + Ω∗), where the linear
map ∆ is defined by equation (4.1) with r = T − σ(T ).

Proof. (1) By Proposition 4.16, r satisfies equation (4.9) if and only if equation (4.16) holds. Let
{v1, v2, . . . , vn} be a basis of V and {v∗1, v∗2, . . . , v∗n} be the dual basis. Then T =

∑n
i=1 T (vi)⊗v∗i ∈

(A⋉r∗,l∗ V
∗)⊗ (A⋉r∗,l∗ V

∗) and r = T − σ(T ) =
∑n

i=1(T (vi)⊗ v∗i − v∗i ⊗ T (vi)). Note that for
all k = 1, . . . ,m, we have

((∂k + β∗k)⊗ id)(r) =
n∑

i=1

(∂kT (vi)⊗ v∗i − β∗k(v
∗
i )⊗ T (vi)),

(id⊗ (ðk + α∗
k))(r) =

n∑
i=1

(T (vi)⊗ α∗
k(v

∗
i )− v∗i ⊗ ðkT (vi)).

Moreover, we have

n∑
i=1

β∗k(v
∗
i )⊗ T (vi) =

n∑
i=1

 n∑
j=1

⟨β∗k(v∗i ), vj⟩v∗j ⊗ T (vi)

 =
n∑

j=1

v∗j ⊗
n∑

i=1

⟨v∗i , βk(vj)⟩T (vi)



Differential Antisymmetric Infinitesimal Bialgebras 23

=
n∑

i=1

v∗i ⊗ T

 n∑
j=1

⟨βk(vi), v∗j ⟩vj

 =
n∑

i=1

v∗i ⊗ Tβk(vi).

And similarly,
∑n

i=1 T (vi) ⊗ α∗
k(v

∗
i ) =

∑n
i=1 Tαk(vi) ⊗ v∗i . Therefore ((∂k + β∗k) ⊗ id)(r) =

(id⊗ (ðk+α∗
k))(r) if and only if ∂kT = Tαk and ðkT = Tβk for all k = 1, . . . ,m. Hence item (1)

holds.
(2) It follows from item (1), Proposition 4.17 and Corollary 4.9. ■

Corollary 4.19. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra and (V, l, r,Ω = {αk}mk=1) be
a bimodule of (A, ·,Φ). Let (θ1, . . . , θm) ∈ Fm be given. Let T : V → A be an O-operator of
(A, ·,Φ) associated to (V, l, r,Ω). Then r = T − σ(T ) is an antisymmetric solution of ({−∂k +
θkidA}mk=1+Ω∗)-admissible AYBE in the ({−∂k+θkidA}mk=1+Ω∗)-admissible differential algebra
(A⋉r∗,l∗V

∗, ·,Φ+{−α∗
k+θkidV ∗}mk=1). Therefore there is a differential ASI bialgebra (A⋉r∗,l∗V

∗,
·,∆,Φ + {−α∗

k + θkidV ∗}mk=1, {−∂k + θkidA}mk=1 + Ω∗), where the linear map ∆ is defined by
equation (4.1) with r = T − σ(T ).

Proof. Take Ψ = {−∂k + θkidA}mk=1 and Π = {−αk + θkidV }mk=1 in Theorem 4.18 (2). By
Example 2.10, Π is admissible to the differential algebra (A, ·,Φ) on (V, l, r) and (A, ·,Φ) is
Ψ-admissible. Obviously, we have

T (−αk + θkidV ) = (−∂k + θkidA)T, ∀k = 1, . . . ,m,

for T being an O-operator of (A, ·,Φ) associated to (V, l, r,Ω). Moreover, equations (4.19)–(4.20)
hold, where ðk = −∂k + θkidA, βk = −αk + θkidV for all k = 1, . . . ,m. Hence the conclusion
follows from Theorem 4.18 (2). ■

Corollary 4.20. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra. Let {e1, e2, . . . , en} be a basis
of A and {e∗1, e∗2, . . . , e∗n} be the dual basis. Let (θ1, . . . , θm) ∈ Fm be given. Then r =

∑n
i=1(ei ⊗

e∗i − e∗i ⊗ ei) is an antisymmetric solution of ({−∂k + θkidA}mk=1 +Φ∗)-admissible AYBE in the
({−∂k + θkidA}mk=1 +Φ∗)-admissible differential algebra (A⋉R∗

A,0 A
∗, ·,Φ+ {−∂∗k + θkidA∗}mk=1)

or (A⋉0,L∗
A
A∗, ·,Φ+ {−∂∗k + θkidA∗}mk=1). Hence there are differential ASI bialgebras (A⋉R∗

A,0

A∗, ·,∆,Φ + {−∂∗k + θkidA∗}mk=1, {−∂k + θkidA}mk=1 + Φ∗) and (A ⋉0,L∗
A
A∗, ·,∆,Φ + {−∂∗k +

θkidA∗}mk=1, {−∂k + θkidA}mk=1 + Φ∗), where the linear map ∆ is defined by equation (4.1) with
the above r.

Proof. By Example 4.13, the identity map id: A → A is an O-operator of (A, ·,Φ) associated
to (A,LA, 0,Φ) or (A, 0, RA,Φ). Note that id =

∑n
i=1 ei⊗ e∗i . Hence the conclusion follows from

Corollary 4.19. ■

4.3 Differential dendriform algebras

We recall the notion of dendriform algebras.

Definition 4.21 ([37]). Let A be a vector space with two bilinear multiplications denoted by ≻
and ≺ respectively. The triple (A,≻,≺) is called a dendriform algebra if

(a ≺ b) ≺ c = a ≺ (b ≺ c+ b ≻ c), (a ≻ b) ≺ c = a ≻ (b ≺ c),

(a ≺ b+ a ≻ b) ≻ c = a ≻ (b ≻ c)

for all a, b, c ∈ A.

For a dendriform algebra (A,≻,≺), define two linear maps L≻, R≺ : A→ End(A) respectively
by

L≻(a)b = a ≻ b, R≺(a)b = b ≺ a, ∀a, b ∈ A.
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Proposition 4.22 ([7, 37]). Let (A,≻,≺) be a dendriform algebra. Then the bilinear multipli-
cation

a · b := a ≻ b+ a ≺ b, ∀a, b ∈ A, (4.23)

defines an algebra (A, ·), called the associated algebra of (A,≻,≺). Moreover (A,L≻, R≺) is an
A-bimodule and the identity map id is an O-operator of (A, ·) associated to (A,L≻, R≺).

Definition 4.23. A derivation on a dendriform algebra (A,≻,≺) is a linear map ∂ : A → A
satisfying the following equations:

∂(a ≻ b) = ∂(a) ≻ b+ a ≻ ∂(b), (4.24)

∂(a ≺ b) = ∂(a) ≺ b+ a ≺ ∂(b), ∀a, b ∈ A. (4.25)

(A,≻,≺,Φ) is called a differential dendriform algebra if (A,≻,≺) is a dendriform algebra and
Φ = {∂k : A→ A}mk=1 is a finite set of commuting derivations on (A,≻,≺).

Proposition 4.24. Let (A,≻,≺,Φ) be a differential dendriform algebra. Then with the bilinear
multiplication · defined by equation (4.23), (A, ·,Φ) is a differential algebra, called the associated
differential algebra of (A,≻,≺,Φ). Moreover, (A,L≻, R≺,Φ) is a bimodule of the associated dif-
ferential algebra (A, ·,Φ) and the identity map id : A→ A is an O-operator of (A, ·,Φ) associated
to (A,L≻, R≺,Φ).

Proof. Set Φ = {∂k}mk=1. It is straightforward that ∂k is a derivation on (A, ·) for all k =
1, . . . ,m. Moreover, equations (2.3) and (2.4) hold, where l = L≻, r = R≺, if and only if
equations (4.24) and (4.25) hold respectively. That is, (A,L≻, R≺,Φ) is a bimodule of the
differential algebra (A, ·,Φ) and the last conclusion follows immediately. ■

Recall [2, 8] that a Rota–Baxter operator R on an algebra (A, ·) gives a dendriform algebra
(A,≻,≺), where

a ≻ b = R(a) · b, a ≺ b = a ·R(b), ∀a, b ∈ A. (4.26)

It is straightforward to get the following conclusion.

Lemma 4.25. Let (A, ·,Φ = {∂k}mk=1) be a differential algebra and R be a Rota–Baxter operator
on the algebra (A, ·). If R∂k = ∂kR for all k = 1, . . . ,m, then (A,≻,≺,Φ) is a differential
dendriform algebra, where ≻ and ≺ are respectively defined by equation (4.26).

Proposition 4.26. Let T : V → A be an O-operator of a differential algebra (A, ·,Φ) asso-
ciated to a bimodule (V, l, r,Ω). Then there exists a differential dendriform algebra structure
(V,≻,≺, Ω) on V , where ≻ and ≺ are respectively defined by

u ≻ v := l(T (u))v and u ≺ v := r(T (v))u, ∀u, v ∈ V. (4.27)

Proof. By Lemma 4.14, the linear map T̂ defined by equation (4.18) is a Rota–Baxter operator
on the algebra (A ⋉l,r V, ·). Then there is a dendriform algebra structure on the direct sum
A⊕ V of vector spaces defined by

(a+ u) ≻ (b+ v) := T̂ (a+ u) · (b+ v) = T (u) · (b+ v) = T (u) · b+ l(T (u))v,

(a+ u) ≺ (b+ v) := (a+ u) · T̂ (b+ v) = (a+ u) · T (v) = a · T (v) + r(T (v))u,

for all a, b ∈ A, u, v ∈ V . Set Φ = {∂k}mk=1 and Ω = {αk}mk=1. By equation (4.17), T̂ commutes
with ∂k + αk for all k = 1, . . . ,m. Hence by Lemma 4.25, (A ⊕ V,≻,≺,Φ + Ω) is a differential
dendriform algebra. In particular, on the vector space V , there is a differential dendriform
subalgebra (V,≻,≺,Ω), in which ≻ and ≺ are exactly defined by equation (4.27). ■
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At the end of this section, we illustrate a construction of antisymmetric solutions of admissible
AYBE in differential algebras and thus differential ASI bialgebras from differential dendriform
algebras.

Proposition 4.27. Let (A,≻,≺,Φ = {∂k}mk=1) be a differential dendriform algebra and (A, ·,Φ)
be the associated differential algebra. Let {e1, e2, . . . , en} be a basis of A and {e∗1, e∗2, . . . , e∗n} be the
dual basis. Let (θ1, . . . , θm) ∈ Fm be given. Then r =

∑n
i=1(ei⊗e∗i −e∗i ⊗ei) is an antisymmetric

solution of ({−∂k+θkidA}mk=1+Φ∗)-admissible AYBE in the ({−∂k+θkidA}mk=1+Φ∗)-admissible
differential algebra (A ⋉R∗

≺,L∗
≻ A

∗, ·,Φ + {−∂∗k + θkidA∗}). Therefore there is a differential ASI
bialgebra (A⋉R∗

≺,L∗
≻ A

∗, ·,∆,Φ+ {−∂∗k + θkidA∗}mk=1, {−∂k + θkidA}mk=1 +Φ∗), where the linear
map ∆ is defined by equation (4.1) with the above r.

Proof. By Proposition 4.24, (A, ·,Φ) is a differential algebra and the identity map id is an
O-operator of (A, ·,Φ) associated to (A,L≻, R≺,Φ). Note that id =

∑n
i=1 ei ⊗ e∗i . Then the

conclusion follows from Corollary 4.19. ■

Remark 4.28. Corollary 4.20 is a special case of Proposition 4.27, that is, the former cor-
responds to the trivial differential dendriform algebra structure (A,≻,≺,Φ) on a differential
algebra (A, ·,Φ) given by ≻= ·, ≺= 0 or ≻= 0, ≺= ·.

5 Poisson bialgebras via commutative
and cocommutative differential ASI bialgebras

We generalize the construction of Poisson algebras from commutative algebras with a pair of
commuting derivations to the context of bialgebras, that is, we construct Poisson bialgebras
introduced in [41] from commutative and cocommutative differential ASI bialgebras. We estab-
lish the explicit relationships between them, as well as the equivalent interpretation in terms of
the corresponding double constructions (Manin triples) and matched pairs. For the coboundary
cases, the relationships between the involved structures on commutative differential algebras
and Poisson algebras, such as admissible AYBE and Poisson Yang–Baxter equation (PYBE), O-
operators of the two structures, and differential Zinbiel (commutative dendriform) algebras and
pre-Poisson algebras, are also given. In particular, we give a construction of Poisson bialgebras
from differential Zinbiel algebras.

In this section, we always assume that (A, ·) is a commutative algebra. In this case, we
use (V, µ) to denote an A-bimodule (V, l, r), where µ = l = r, and call (V, µ) an A-module.
In particular, (A,LA) is an A-module, and (V ∗, µ∗) is again an A-module if (V, µ) is an A-
module. Further, we use (A ⋉µ V, ·) to denote the semi-direct product algebra by (A, ·) and
(V, µ). Bimodules of commutative differential algebras are also called modules of commutative
differential algebras.

Definition 5.1. A Poisson algebra is a triple (A, [ , ], ·), where (A, [ , ]) is a Lie algebra and
(A, ·) is a commutative algebra satisfying the following equation:

[a, b · c] = [a, b] · c+ b · [a, c], ∀a, b, c ∈ A.

The following result is known (cf. [12]).

Proposition 5.2. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra. Then (A, [ , ], ·)
is a Poisson algebra, called the induced Poisson algebra of (A, ·,Φ), where [ , ] is defined by

[a, b] := ∂1(a) · ∂2(b)− ∂2(a) · ∂1(b), ∀a, b ∈ A. (5.1)
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Moreover, if (A, ·,Φ = {∂k1 , ∂k2}mk=1) is a commutative differential algebra, that is, the number
of the commuting derivations is even, then

[a, b] :=
m∑
k=1

∂k1 (a)∂
k
2 (b)− ∂k2 (a)∂

k
1 (b), ∀a, b ∈ A,

still defines a Lie algebra (A, [ , ]) such that (A, [ , ], ·) is a Poisson algebra. Therefore all the
results of this section that are proved for one pair {∂1, ∂2} of derivations remain valid for several
pairs, whereas we illustrate these results in terms of one pair of derivations for simplicity.

5.1 Poisson algebras via commutative differential algebras:
modules and matched pairs

Definition 5.3 ([41]). Let (A, [ , ], ·) be a Poisson algebra, V be a vector space and ρ, µ : A→
End(V ) be two linear maps. Then (V, ρ, µ) is called a module of the Poisson algebra (A, [ , ], ·) if
(V, ρ) is a module of the Lie algebra (A, [ , ]) and (V, µ) is an A-module such that the following
equations hold:

ρ(a · b) = µ(b)ρ(a) + µ(a)ρ(b), µ([a, b]) = ρ(a)µ(b)− µ(b)ρ(a), ∀a, b ∈ A.

Lemma 5.4. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra and (A, [ , ], ·) be the
induced Poisson algebra of (A, ·,Φ). Suppose that (V, µ,Ω = {α1, α2}) is a module of (A, ·,Φ).
Define ρµ : A→ End(V ) by

ρµ(a) := µ(∂1(a))α2 − µ(∂2(a))α1, ∀a ∈ A. (5.2)

Then (V, ρµ, µ) is a module of the Poisson algebra (A, [ , ], ·), called the induced module of
(A, [ , ], ·) with respect to (V, µ,Ω).

Proof. Let a, b ∈ A. Note that

ρµ(a) = µ(∂1(a))α2 − µ(∂2(a))α1

(2.3)
= (α1µ(a)− µ(a)α1)α2 − (α2µ(a)− µ(a)α2)α1 = α1µ(a)α2 − α2µ(a)α1.

Hence we have

ρµ(a)ρµ(b)

= α1µ(a)α2α1µ(b)α2 − α1µ(a)α2α2µ(b)α1 − α2µ(a)α1α1µ(b)α2 + α2µ(a)α1α2µ(b)α1

(2.3)
= α1(α2µ(a)− µ(∂2(a)))(µ(∂1(b)) + µ(b)α1)α2

− α1(α2µ(a)− µ(∂2(a)))(µ(∂2(b)) + µ(b)α2)α1

− α2(α1µ(a)− µ(∂1(a)))(µ(∂1(b)) + µ(b)α1)α2

+ α2(α1µ(a)− µ(∂1(a)))(µ(∂2(b)) + µ(b)α2)α1

= α1µ(∂2(a) · ∂2(b))α1 − α1µ(∂2(a) · ∂1(b))α2 + α2µ(∂1(a) · ∂1(b))α2 − α2µ(∂1(a) · ∂2(b))α1.

Therefore we have

[ρµ(a), ρµ(b)] = ρµ(a)ρµ(b)− ρµ(b)ρµ(a) = α1µ([a, b])α2 − α2µ([a, b])α1 = ρµ([a, b]).

That is, (V, ρµ) is a module of the Lie algebra (A, [ , ]). Similarly, we show that

ρµ(a)µ(b)− µ(b)ρµ(a) = µ([a, b]), µ(b)ρµ(a) + µ(a)ρµ(b) = ρµ(a · b).

Therefore (V, ρµ, µ) is a module of (A, [ , ], ·). ■
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Example 5.5. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra and (A, [ , ], ·) be
the induced Poisson algebra of (A, ·,Φ). The induced module (A, ρLA

, LA) of (A, [ , ], ·) with
respect to the module (A,LA,Φ) of (A, ·,Φ) is exactly the module (A, adA, LA) of (A, [ , ], ·),
where adA : A→ End(A) is defined by adA(a)(b) = [a, b] for all a, b ∈ A.

Lemma 5.6 ([34, Proposition 2.5]). Let (A, [ , ], ·) be a Poisson algebra and (V, ρ, µ) be a module
of (A, [ , ], ·). Then (V ∗,−ρ∗, µ∗) is a module of (A, [ , ], ·).

Proposition 5.7. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra and (A, [ , ], ·) be
the induced Poisson algebra of (A, ·,Φ). Suppose that (V, µ,Ω = {α1, α2}) is a module of (A, ·,Φ)
and Π = {β1, β2} is admissible to (A, ·,Φ) on (V, µ). Then the induced module (V ∗, ρµ∗ , µ∗) of
the Poisson algebra (A, [ , ], ·) with respect to (V ∗, µ∗,Π∗) is exactly the module (V ∗,−ρ∗µ, µ∗) of
(A, [ , ], ·), where (V, ρµ, µ) is the induced module of (A, [ , ], ·) with respect to (V, µ,Ω), if and
only if the following equation holds:

β2(µ(∂1(a))v)− β1(µ(∂2(a))v) + µ(∂1(a))α2(v)− µ(∂2(a))α1(v) = 0, (5.3)

for all a ∈ A, v ∈ V . In particular, when taking (V, µ,Ω) = (A,LA,Φ), the induced module
(A∗, ρL∗

A
, L∗

A) of (A, [ , ], ·) with respect to (A∗, L∗
A,Π

∗) is exactly the module (A∗,−ad∗A, L
∗
A) of

(A, [ , ], ·) if and only if the following equation holds:

β2(∂1(a)) · b = β1(∂2(a)) · b, ∀a, b ∈ A. (5.4)

Proof. For all a ∈ A, v ∈ V , v∗ ∈ V ∗, we have

⟨ρµ∗(a)v∗, v⟩ = ⟨
(
µ∗(∂1(a))β

∗
2 − µ∗(∂2(a))β

∗
1

)
(v∗), v⟩

= ⟨v∗, β2(µ(∂1(a))v)− β1(µ(∂2(a))v)⟩,
⟨−ρ∗µ(a)v∗, v⟩ = ⟨v∗,−ρµ(a)v⟩ = ⟨v∗,−µ(∂1(a))α2(v) + µ(∂2(a))α1(v)⟩.

Therefore ρµ∗ = −ρ∗µ if and only if equation (5.3) holds. For the particular case, we have

β2(∂1(a) · b)− β1(∂2(a) · b) + ∂1(a) · ∂2(b)− ∂2(a) · ∂1(b)
(2.7)
= β2(∂1(a)) · b− β1(∂2(a)) · b, ∀a, b ∈ A.

Note the induced module of (A, [ , ], ·) with respect to (A,LA,Φ) is (A, adA, LA). We conclude
ρL∗

A
= −ad∗A if and only if equation (5.4) holds. ■

Definition 5.8. A matched pair of Poisson algebras consists of Poisson algebras (A, [ , ]A, ·A)
and (B, [ , ]B, ·B), together with linear maps ρA, µA : A → End(B) and ρB, µB : B → End(A)
such that (A⊕B, [ , ], ·) is a Poisson algebra, where [ , ] and · are respectively defined by

[a+ b, a′ + b′] := ([a, a′]A + ρB(b)a
′ − ρB(b

′)a) + ([b, b′]B + ρA(a)b
′ − ρA(a

′)b),

(a+ b) · (a′ + b′) := (a ·A a′ + µB(b)a
′ + µB(b

′)a) + (b ·B b′ + µA(a)b
′ + µA(a

′)b),

for all a, a′ ∈ A and b, b′ ∈ B. The matched pair of Poisson algebras is denoted by ((A, [ , ]A, ·A),
(B, [ , ]B, ·B), ρA, µA, ρB, µB) and the resulting Poisson algebra (A ⊕ B, [ , ], ·) is denoted by(
A ▷◁ρB ,µB

ρA,µA B, [ , ], ·
)
or simply (A ▷◁ B, [ , ], ·).

Note that such a notion of a matched pair of Poisson algebras is equivalent to the one given
in [41, Theorem 1]. Moreover, for a matched pair of Poisson algebras ((A, [ , ]A, ·A), (B, [ , ]B,
·B), ρA, µA, ρB, µB), (A, ρB, µB) is a module of (B, [ , ]B, ·B) and (B, ρA, µA) is a module of
(A, [ , ]A, ·A). In particular, for the case that B = V which is a vector space equipped with the
zero multiplication, we have the following conclusion.
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Lemma 5.9 ([41]). Let (A, [ , ], ·) be a Poisson algebra and (V, ρ, µ) be a module of (A, [ , ], ·).
Define two bilinear multiplications still denoted by [ , ] and · on A⊕ V respectively by

[(a+ u), (b+ v)] := [a, b] + (ρ(a)v − ρ(b)u),

(a+ u) · (b+ v) := a · b+ (µ(a)v + µ(b)u), ∀a, b ∈ A, u, v ∈ V.

Then (A ⊕ V, [ , ], ·) is a Poisson algebra, which is denoted by (A ⋉ρ,µ V, [ , ], ·) and called the
semi-direct product Poisson algebra by (A, [ , ], ·) and (V, ρ, µ).

Proposition 5.10. Let ((A, ·A,ΦA = {∂A,1, ∂A,2}), (B, ·B,ΦB = {∂B,1, ∂B,2}), µA, µB) be a mat-
ched pair of commutative differential algebras. Let (A, [ , ]A, ·A) and (B, [ , ]B, ·B) be the induced
Poisson algebras of (A, ·A,ΦA) and (B, ·B,ΦB) respectively. Then ((A, [ , ]A, ·A), (B, [ , ]B, ·B),
ρµA , µA, ρµB , µB) is a matched pair of Poisson algebras, called the induced matched pair of Pois-
son algebras with respect to ((A, ·A,ΦA), (B, ·B,ΦB), µA, µB), where (B, ρµA , µA) is the induced
module of (A, [ , ]A, ·A) with respect to (B,µA,ΦB) and (A, ρµB , µB) is the induced module of
(B, [ , ]B, ·B) with respect to (A,µB,ΦA). Moreover, the Poisson algebra (A ▷◁ B, [ , ], ·) obtained
in Definition 5.8 by the matched pair of Poisson algebras ((A, [ , ]A, ·A), (B, [ , ]B, ·B), ρµA , µA,
ρµB , µB) is exactly the induced Poisson algebra of the commutative differential algebra (A ▷◁ B,
⋆,ΦA +ΦB) obtained in Theorem 2.13 by the matched pair of commutative differential algebras
((A, ·A,ΦA), (B, ·B,ΦB), µA, µB).

Proof. Let (A ▷◁ B, ⋆,ΦA + ΦB) be the commutative differential algebra obtained in Theo-
rem 2.13 by the matched pair of commutative differential algebras ((A, ·A,ΦA), (B, ·B,ΦB), µA,
µB). Suppose that (A ⊕ B, { , }, ⋆) is the induced Poisson algebra of (A ▷◁ B, ⋆,ΦA + ΦB).
Therefore for all a, a′ ∈ A and b, b′ ∈ B, we have

{a+ b, a′ + b′}
= (∂A,1(a) + ∂B,1(b)) ⋆ (∂A,2(a

′) + ∂B,2(b
′))− (∂A,2(a) + ∂B,2(b)) ⋆ (∂A,1(a

′) + ∂B,1(b
′))

= (∂A,1(a) ·A ∂A,2(a
′) + µB(∂B,2(b

′))∂A,1(a) + µB(∂B,1(b))∂A,2(a
′))

+(∂B,1(b) ·B ∂B,2(b
′) + µA(∂A,1(a))∂B,2(b

′) + µA(∂A,2(a
′))∂B,1(b))

−(∂A,2(a) ·A ∂A,1(a
′) + µB(∂B,1(b

′))∂A,2(a) + µB(∂B,2(b))∂A,1(a
′))

−(∂B,2(b) ·B ∂B,1(b
′) + µA(∂A,2(a))∂B,1(b

′) + µA(∂A,1(a
′))∂B,2(b))

= ([a, a′]A − ρµB (b
′)a+ ρµB (b)a

′) + ([b, b′]B + ρµA(a)b
′ − ρµA(a

′)b).

Hence ((A, [ , ]A, ·A), (B, [ , ]B, ·B), ρµA , µA, ρµB , µB) is a matched pair of Poisson algebras. Note
that by the above proof, we have already shown that the Poisson algebra structure on A ⊕ B
obtained from this induced matched pair of Poisson algebras is exactly the induced Poisson
algebra of the commutative differential algebra (A ▷◁ B, ⋆,ΦA +ΦB). ■

When taking B = V which is a vector space equipped with the zero multiplication in Propo-
sition 5.10, we have the following conclusion.

Corollary 5.11. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra and (A, [ , ], ·)
be the induced Poisson algebra of (A, ·,Φ). Let (V, µ,Ω) be a module of (A, ·,Φ). Suppose that
(A ⋉µ V, ·,Φ + Ω) is the semi-direct product (commutative) differential algebra by (A, ·,Φ) and
(V, µ,Ω). Then the semi-direct product Poisson algebra by (A, [ , ], ·) and (V, ρµ, µ), where
(V, ρµ, µ) is the induced module of (A, [ , ], ·) with respect to (V, µ,Ω), is exactly the induced
Poisson algebra of (A⋉µ V, ·,Φ+ Ω).

Corollary 5.12. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra. Suppose that
there is a commutative differential algebra structure (A∗, ◦,Ψ∗ = {ð∗1,ð∗2}) on A∗. Let (A, [ , ]A, ·)
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and (A∗, [ , ]A∗ , ◦) be the induced Poisson algebras of (A, ·,Φ) and (A∗, ◦,Ψ∗) respectively. Sup-
pose that ((A, ·,Φ), (A∗, ◦,Ψ∗), L∗

A, L
∗
A∗) is a matched pair of commutative differential algebras.

Then ((A, [ , ]A, ·), (A∗, [ , ]A∗ , ◦),−ad∗A, L
∗
A, −ad∗A∗, L∗

A∗) is a matched pair of Poisson al-
gebras such that it is the induced matched pair of Poisson algebras with respect to ((A, ·,Φ),
(A∗, ◦,Ψ∗),L∗

A, L
∗
A∗) if and only if the following equations hold:

∂∗2(ð∗1(a∗)) ◦ b∗ = ∂∗1(ð∗2(a∗)) ◦ b∗, ∀a∗, b∗ ∈ A∗, (5.5)

ð2(∂1(a)) · b = ð1(∂2(a)) · b, ∀a, b ∈ A. (5.6)

Proof. It follows from Propositions 5.10 and 5.7. ■

Remark 5.13. Let ∆: A→ A⊗A denote the linear dual of the multiplication ◦ : A∗⊗A∗ → A∗,
we rewrite equation (5.5) in terms of the comultiplication as

(ð2∂1 ⊗ id)∆ = (ð1∂2 ⊗ id)∆. (5.7)

Given a matched pair of commutative differential algebras ((A, ·,Φ), (A∗, ◦,Ψ∗), L∗
A, L

∗
A∗),

there is a more general condition such that ((A, [ , ]A, ·), (A∗, [ , ]A∗ , ◦), −ad∗A, L
∗
A,−ad∗A∗ , L∗

A∗)
is a matched pair of Poisson algebras, without the requirement that ((A, [ , ]A, ·), (A∗, [ , ]A∗ , ◦),
−ad∗A, L

∗
A, −ad∗A∗ , L∗

A∗) is the induced matched pair of Poisson algebras with respect to ((A, ·,Φ),
(A∗, ◦,Ψ∗),L∗

A, L
∗
A∗). Explicitly,

Proposition 5.14. With the same assumptions in Corollary 5.12. Let ∆: A → A ⊗ A denote
the linear dual of the multiplication ◦ : A∗ ⊗ A∗ → A∗. Then ((A, [ , ]A, ·), (A∗, [ , ]A∗ , ◦),
−ad∗A, L

∗
A,−ad∗A∗ , L∗

A∗) is a matched pair of Poisson algebras if and only if the following equa-
tions hold:

(id⊗ LA(b)− LA(b)⊗ id)(S ⊗ id)∆(a) + (LA(S(a))⊗ id)∆(b) = 0, (5.8)

(adA(a)⊗ S − S ⊗ adA(a))∆(b)− (adA(b)⊗ S − S ⊗ adA(b))∆(a)

− (LA(S(a))⊗ S − S ⊗ LA(S(a)))∆(b) + (LA(S(b))⊗ S − S ⊗ LA(S(b)))∆(a)

+ (LA(S(a)⊗ id + id⊗ LA(S(a)))(ð1 ⊗ ð2 − ð2 ⊗ ð1))∆(b)

− (LA(S(b)⊗ id + id⊗ LA(S(b)))(ð1 ⊗ ð2 − ð2 ⊗ ð1))∆(a) = 0, (5.9)

for all a, b ∈ A, where S := ð2∂1 − ð1∂2.

Proof. Note that (A∗,−ad∗A, L
∗
A) is a module of (A, [ , ]A, ·) and (A,−ad∗A∗ , L∗

A∗) is a module
of (A∗, [ , ]A∗ , ◦). By [41, Theorem 1], it is sufficient to show equations (5.8)–(5.9) hold if and
only if the following equations hold:

−ad∗A(a)[a
∗, b∗]A∗ + [ad∗A(a)a

∗, b∗]A∗ + [a∗, ad∗A(a)b
∗]A∗

= −ad∗A(ad
∗
A∗(a∗)a)b∗ + ad∗A(ad

∗
A∗(b∗)a)a∗, (5.10)

−ad∗A∗(a∗)[a, b]A + [ad∗A∗(a∗)a, b]A + [a, ad∗A∗(a∗)b]A

= −ad∗A∗(ad∗A(a)a
∗)b+ ad∗A∗(ad∗A(b)a

∗)a, (5.11)

−ad∗A∗(a∗)(a · b)− (−ad∗A∗(a∗)a) · b− a · (−ad∗A∗(a∗)b)

= −L∗
A∗(−ad∗A(a)a

∗)b+ L∗
A∗(ad∗A(b)a

∗)a, (5.12)

L∗
A∗(−ad∗A(a)a

∗)b+ (ad∗A∗(a∗)a) · b+ L∗
A∗(a∗)([a, b]A)

= [a, L∗
A∗(a∗)b]A + ad∗A∗(L∗

A(b)a
∗)a, (5.13)

−ad∗A(a)(a
∗ ◦ b∗)− (−ad∗A(a)a

∗) ◦ b∗ − a∗ ◦ (−ad∗A(a)b
∗)

= −L∗
A(−ad∗A∗(a∗)a)b∗ + L∗

A(ad
∗
A∗(b∗)a)a∗, (5.14)

L∗
A(−ad∗A∗(a∗)a)b∗ + (ad∗A(a)a

∗) ◦ b∗ + L∗
A(a)([a

∗, b∗]A∗)
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= [a∗, L∗
A(a)b

∗]A∗ + ad∗A(L
∗
A∗(b∗)a)a∗, (5.15)

for all a, b ∈ A and a∗, b∗ ∈ A∗. Let (A∗, ρL∗
A
, L∗

A) be the induced module of (A, [ , ]A, ·) with
respect to (A∗, L∗

A,Ψ
∗) and (A, ρL∗

A∗ , L
∗
A∗) be the induced module of (A∗, [ , ]A∗ , ◦) with respect

to (A,L∗
A∗ ,Φ). By the proof of Proposition 5.7, we have

−ad∗A(a) = ρL∗
A
(a)− L∗

A(S(a)), ∀a ∈ A;

−ad∗A∗(a∗) = ρL∗
A∗ (a

∗) + L∗
A∗(S∗(a∗)), ∀a∗ ∈ A∗.

Note that here we have ∂∗2ð∗1 − ∂∗1ð∗2 = −(ð2∂1 − ð1∂2)∗ = −S∗. Let a, b ∈ A and a∗, b∗ ∈ A∗.
Then we have

−(ad∗A∗(a∗)a) · b− a · (ad∗A∗(a∗)b) + L∗
A∗(ad∗A(a)a

∗)b+ L∗
A∗(ad∗A(b)a

∗)a+ ad∗A∗(a∗)(a · b)
= (ρL∗

A∗ (a
∗)a) · b+ a · (ρL∗

A∗ (a
∗)b)− L∗

A∗(ρL∗
A
(a)a∗)b− L∗

A∗(ρL∗
A
(b)a∗)a− ρL∗

A∗ (a
∗)(a · b)

+ (L∗
A∗(S∗(a∗))a) · b+ a · (L∗

A∗(S∗(a∗))b) + L∗
A∗(L∗

A(S(a))a
∗)b

+ L∗
A∗(L∗

A(S(b))a
∗)a− L∗

A∗(S∗(a∗))(a · b)
= (L∗

A∗(S∗(a∗))a) · b+ a · (L∗
A∗(S∗(a∗))b) + L∗

A∗(L∗
A(S(a))a

∗)b

+ L∗
A∗(L∗

A(S(b))a
∗)a− L∗

A∗(S∗(a∗))(a · b)
= (L∗

A∗(S∗(a∗))a) · b+ L∗
A∗(L∗

A(S(a))a
∗)b+ L∗

A∗(L∗
A(S(b))a

∗)a− L∗
A∗(L∗

A(b)S
∗(a∗))a.

Hence, equation (5.12) holds if and only if the following equation holds:

(L∗
A∗(S∗(a∗))a) · b+ L∗

A∗(L∗
A(S(a))a

∗)b+ L∗
A∗(L∗

A(S(b))a
∗)a− L∗

A∗(L∗
A(b)S

∗(a∗))a = 0.

Rewrite the above equation in terms of the comultiplication as

(S ⊗ LA(b) + LA(S(b))⊗ id− S(LA(b))⊗ id)∆(a) + (LA(S(a))⊗ id)∆(b) = 0.

Note that S(a·b) = a·S(b)+S(a)·b. Therefore equation (5.12) holds if and only if equation (5.8)
holds. Similarly we show that any equation of equations (5.13)–(5.15) holds if and only if equa-
tion (5.8) holds, and any equation of equations (5.10)–(5.11) holds if and only if equation (5.9)
holds. ■

Remark 5.15. If equations (5.6)–(5.7) hold, then equations (5.8)–(5.9) hold naturally, but the
converse is not true. A counterexample could be given when ∆ = 0 with S(a) · b ̸= 0. That
is, Corollary 5.12 is a particular case of Proposition 5.14. Furthermore, note that in the case
of Proposition 5.14, the Poisson algebra structure on A ⊕ A∗ obtained from the matched pair
((A, [ , ]A, ·), (A∗, [ , ]A∗ , ◦), −ad∗A, L

∗
A,−ad∗A∗ , L∗

A∗) might not be the induced Poisson algebra
of the commutative differential algebra on A ⊕ A∗ obtained from the matched pair ((A, ·,Φ),
(A∗, ◦,Ψ∗), L∗

A, L
∗
A∗).

5.2 Manin triples of Poisson algebras via double constructions
of commutative differential Frobenius algebras

Recall that a bilinear form B on a Poisson algebra (A, [ , ], ·) is called invariant if

B([a, b], c) = B(a, [b, c]), B(a · b, c) = B(a, b · c), ∀a, b, c ∈ A.

Definition 5.16 ([41]). A Manin triple of Poisson algebras is a triple ((A, [ , ], ·,B), A+, A−),
where (A, [ , ], ·) is a Poisson algebra and B is a nondegenerate symmetric invariant bilinear
form on (A, [ , ], ·) such that the following conditions are satisfied:
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(1) A+ and A− are Poisson subalgebras of A;

(2) A = A+ ⊕A− as vector spaces;

(3) A+ and A− are isotropic with respect to B.

Remark 5.17. It is obvious that a Manin triple of Poisson algebras is simultaneously a Manin
triple of Lie algebras [16] and a double construction of Frobenius algebra.

Proposition 5.18. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra. Suppose that
there is a commutative differential algebra structure (A∗, ◦,Ψ∗ = {ð∗1,ð∗2}) on A∗. Let (A, [ , ]A, ·)
and (A∗, [ , ]A∗ , ◦) be the induced Poisson algebras of (A, ·,Φ) and (A∗, ◦,Ψ∗) respectively. Let
∆: A → A ⊗ A denote the linear dual of the multiplication ◦ : A∗ ⊗ A∗ → A∗. Suppose that
(A ▷◁ A∗, ⋆,Φ + Ψ∗,Bd) is a double construction of commutative differential Frobenius algebra
associated to (A, ·,Φ) and (A∗, ◦,Ψ∗). Then there is a Manin triple ((A⊕A∗, [ , ], ⋆,Bd), A,A

∗)
of Poisson algebras such that the Poisson algebra structure on A ⊕ A∗ is the induced Poisson
algebra of (A ▷◁ A∗, ⋆,Φ+Ψ∗) if and only equations (5.6)–(5.7) hold.

Proof. Let (A⊕A∗, [ , ], ⋆) be the induced Poisson algebra of (A ▷◁ A∗, ⋆,Φ+Ψ∗). It is sufficient
to prove that Bd is invariant on (A ⊕ A∗, [ , ], ⋆) if and only if equations (5.6)–(5.7) hold. Let
a, b, c ∈ A, a∗, b∗, c∗ ∈ A∗. Then we have

Bd(a+ a∗, [b+ b∗, c+ c∗])

= Bd(a+ a∗, (∂1(b) + ð∗1(b∗)) ⋆ (∂2(c) + ð∗2(c∗))− (∂2(b) + ð∗2(b∗)) ⋆ (∂1(c) + ð∗1(c∗)))
= Bd(a+ a∗, ∂1(b) ⋆ ∂2(c) + ∂1(b) ⋆ ð∗2(c∗) + ð∗1(b∗) ⋆ ∂2(c) + ð∗1(b∗) ⋆ ð∗2(c∗))

−Bd(a+ a∗, ∂2(b) ⋆ ∂1(c) + ∂2(b) ⋆ ð∗1(c∗) + ð∗2(b∗) ⋆ ∂1(c) + ð∗2(b∗) ⋆ ð∗1(c∗))
= Bd(a, ∂1(b) · ∂2(c)) +Bd(ð∗2(c∗), a · ∂1(b)) +Bd(ð∗1(b∗), ∂2(c) · a)

+Bd(a,ð∗1(b∗) ◦ ð∗2(c∗)) +Bd(a
∗, ∂1(b) · ∂2(c)) +Bd(ð∗2(c∗) ◦ a∗, ∂1(b))

+Bd(a
∗ ◦ ð∗1(b∗), ∂2(c)) +Bd(a

∗, ð∗1(b∗) ◦ ð∗2(c∗))
−Bd(a, ∂2(b) · ∂1(c))−Bd(ð∗1(c∗), a · ∂2(b))−Bd(ð∗2(b∗), ∂1(c) · a)
−Bd(a,ð∗2(b∗) ◦ ð∗1(c∗))−Bd(a

∗, ∂2(b) · ∂1(c))−Bd(ð∗1(c∗) ◦ a∗, ∂2(b))
−Bd(a

∗ ◦ ð∗2(b∗), ∂1(c))−Bd(a
∗, ð∗2(b∗) ◦ ð∗1(c∗))

= ⟨a,ð∗1(b∗) ◦ ð∗2(c∗)− ð∗2(b∗) ◦ ð∗1(c∗)⟩+ ⟨a∗, ∂1(b) · ∂2(c)− ∂2(b) · ∂1(c)⟩
+ ⟨b, ∂∗1(ð∗2(c∗) ◦ a∗)− ∂∗2(ð∗1(c∗) ◦ a∗)⟩+ ⟨b∗,ð1(∂2(c) · a)− ð2(∂1(c) · a)⟩
+ ⟨c, ∂∗2(ð∗1(b∗) ◦ a∗)− ∂∗1(ð∗2(b∗) ◦ a∗)⟩+ ⟨c∗,ð2(∂1(b) · a)− ð1(∂2(b) · a)⟩.

Similarly, we show that

Bd([a+ a∗, b+ b∗], c+ c∗)

= ⟨a, ∂∗1(ð∗2(b∗) ◦ c∗)− ∂∗2(ð∗1(b∗) ◦ c∗)⟩+ ⟨a∗, ð1(∂2(b) · c)− ð2(∂1(b) · c)⟩
+ ⟨b, ∂∗2(ð∗1(a∗) ◦ c∗)− ∂∗1(ð∗2(a∗) ◦ c∗)⟩+ ⟨b∗,ð2(∂1(a) · c)− ð1(∂2(a) · c)⟩
+ ⟨c,ð∗1(a∗) ◦ ð∗2(b∗)− ð∗2(a∗) ◦ ð∗1(b∗)⟩+ ⟨c∗, ∂1(a) · ∂2(b)− ∂2(a) · ∂1(b)⟩.

Therefore Bd(a+ a∗, [b+ b∗, c+ c∗]) = Bd([a+ a∗, b+ b∗], c+ c∗) if and only if the following six
equations hold:

ð∗1(b∗) ◦ ð∗2(c∗)− ð∗2(b∗) ◦ ð∗1(c∗) = ∂∗1(ð∗2(b∗) ◦ c∗)− ∂∗2(ð∗1(b∗) ◦ c∗), (5.16)

∂∗1(ð∗2(c∗) ◦ a∗)− ∂∗2(ð∗1(c∗) ◦ a∗) = ∂∗2(ð∗1(a∗) ◦ c∗)− ∂∗1(ð∗2(a∗) ◦ c∗), (5.17)

∂∗2(ð∗1(b∗) ◦ a∗)− ∂∗1(ð∗2(b∗) ◦ a∗) = ð∗1(a∗) ◦ ð∗2(b∗)− ð∗2(a∗) ◦ ð∗1(b∗), (5.18)

∂1(b) · ∂2(c)− ∂2(b) · ∂1(c) = ð1(∂2(b) · c)− ð2(∂1(b) · c), (5.19)
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ð1(∂2(c) · a)− ð2(∂1(c) · a) = ð2(∂1(a) · c)− ð1(∂2(a) · c), (5.20)

ð2(∂1(b) · a)− ð1(∂2(b) · a) = ∂1(a) · ∂2(b)− ∂2(a) · ∂1(b). (5.21)

Note that we have the following relationships:

equation (5.16) ⇐⇒ equation (5.18), equation (5.19) ⇐⇒ equation (5.21),

equation (5.16) =⇒ equation (5.17), equation (5.19) =⇒ equation (5.20).

Hence Bd(a + a∗, [b + b∗, c + c∗]) = Bd([a + a∗, b + b∗], c + c∗) if and only if equations (5.16)
and (5.19) hold.

On the other hand, by Lemma 3.5, Ψ is admissible to (A, ·,Φ) and Φ∗ is admissible to
(A∗, ◦,Ψ∗). By Corollary 2.9, we have

∂1(b) · ∂2(c)− ∂2(b) · ∂1(c)− ð1(∂2(b) · c) + ð2(∂1(b) · c) = ð2(∂1(b)) · c− ð1(∂2(b)) · c,
ð∗1(b∗) ◦ ð∗2(c∗)− ð∗2(b∗) ◦ ð∗1(c∗)− ∂∗1(ð∗2(b∗) ◦ c∗) + ∂∗2(ð∗1(b∗) ◦ c∗)

= ∂∗2(ð∗1(b∗)) ◦ c∗ − ∂∗1(ð∗2(b∗)) ◦ c∗.

Hence equations (5.16) and (5.19) hold if and only if equations (5.5)–(5.6) hold. By Remark 5.13,
the conclusion follows. ■

With the conditions above, if equations (5.6)–(5.7) hold, then the resulting Manin triple of
Poisson algebras is called the induced Manin triple of Poisson algebras with respect to (A ▷◁
A∗, ⋆,Φ+Ψ∗,Bd).

As in the study of matched pairs, given a double construction of commutative differential
Frobenius algebra (A ▷◁ A∗, ⋆,Φ+Ψ∗,Bd), there is a more general condition, such that ((A⊕A∗,
[ , ], ⋆,Bd), A,A

∗) is a Manin triple of Poisson algebras, without the requirement that (A⊕A∗,
[ , ], ⋆) is the induced Poisson algebra of (A ▷◁ A∗, ⋆,Φ + Ψ∗). With a similar study as the one
of Proposition 5.14, we give the following conclusion omitting the proof.

Proposition 5.19. With the same assumptions in Proposition 5.18. Then there is a Manin
triple ((A⊕A∗, [ , ], ⋆,Bd), A,A

∗) of Poisson algebras if and only equations (5.8)–(5.9) hold.

5.3 Poisson bialgebras via commutative and cocommutative differential
ASI bialgebras: the general case

Recall that a pair (A, δ) is called a Lie coalgebra, where A is a vector space and δ : A→ A⊗A is
a linear map, if δ is co-antisymmetric, in the sense that δ = −σδ, and satisfies the co-Jacobian
identity:(

id + τ + τ2
)
(id⊗ δ)δ = 0,

where τ(a ⊗ b ⊗ c) := c ⊗ a ⊗ b for all a, b, c ∈ A. A Lie bialgebra is a triple (A, [ , ], δ), where
(A, [ , ]) is a Lie algebra and (A, δ) is a Lie coalgebra, satisfying the following equation:

δ([a, b]) = (adA(a)⊗ id + id⊗ adA(a))δ(b)− (adA(b)⊗ id + id⊗ adA(b))δ(a), (5.22)

for all a, b ∈ A.

Definition 5.20 ([41]). A Poisson coalgebra is a triple (A, δ,∆), where (A, δ) is a Lie coalgebra
and (A,∆) is a commutative coalgebra such that the following equation holds:

(id⊗∆)δ(a) = (δ ⊗ id)∆(a) + (σ ⊗ id)(id⊗ δ)∆(a), ∀a ∈ A.



Differential Antisymmetric Infinitesimal Bialgebras 33

Remark 5.21. The notion of a Poisson coalgebra is the dualization of the notion of a Poisson
algebra, that is, (A, δ,∆) is a Poisson coalgebra if and only if (A∗, δ∗,∆∗) is a Poisson algebra.

Lemma 5.22. Let (A,∆,Ψ={ð1,ð2}) be a cocommutative differential coalgebra. Then (A, δ,∆)
is Poisson coalgebra, called the induced Poisson coalgebra of (A,∆,Ψ), where δ is defined by

δ = (ð1 ⊗ ð2 − ð2 ⊗ ð1)∆. (5.23)

Moreover, (A∗, δ∗,∆∗) is exactly the induced Poisson algebra of the commutative differential
algebra (A∗,∆∗,Ψ∗).

Proof. By assumption, (A∗,∆∗,Ψ∗) is a commutative differential algebra. Let (A∗, [ , ]A∗ ,∆∗)
be the induced Poisson algebra of (A∗,∆∗,Ψ∗), that is, [ , ]A∗ is defined by

[a∗, b∗]A∗ := ð∗1(a∗) ◦ ð∗2(b∗)− ð∗2(a∗) ◦ ð∗1(b∗), ∀a∗, b∗ ∈ A∗,

where ◦ = ∆∗. It is straightforward that [ , ]A∗ is the linear dual of δ. Hence (A∗, δ∗,∆∗) is the
induced Poisson algebra of (A∗,∆∗,Ψ∗) and thus (A, δ,∆) is a Poisson coalgebra. ■

Definition 5.23 ([41]). Let (A, [ , ], ·) be a Poisson algebra. Suppose that it is equipped with
two comultiplications δ,∆: A→ A⊗A such that (A, δ,∆) is a Poisson coalgebra. If in addition,
(A, [ , ], δ) is a Lie bialgebra, (A, ·,∆) is a commutative and cocommutative ASI bialgebra, δ
and ∆ are compatible in the following sense:

δ(a · b) = (LA(a)⊗ id)δ(b) + (LA(b)⊗ id)δ(a)

+ (id⊗ adA(a))∆(b) + (id⊗ adA(b))∆(a), (5.24)

∆([a, b]) = (adA(a)⊗ id + id⊗ adA(a))∆(b) + (LA(b)⊗ id− id⊗ LA(b))δ(a), (5.25)

for all a, b ∈ A, then (A, [ , ], ·, δ,∆) is called a Poisson bialgebra.

Theorem 5.24. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra and (A,∆,Ψ =
{ð1,ð2}) be a cocommutative differential coalgebra. Let (A, [ , ], ·) be the induced Poisson al-
gebra of (A, ·,Φ) and (A, δ,∆) be the induced Poisson coalgebra of (A,∆,Ψ), that is, [ , ] is
defined by equation (5.1) and δ is defined by equation (5.23). Suppose that (A, ·,∆,Φ,Ψ) is
a commutative and cocommutative differential ASI bialgebra. Then (A, [ , ], ·, δ,∆) is a Poisson
bialgebra if and only if equations (5.8)–(5.9) hold. In particular, if equations (5.6)–(5.7) hold,
then (A, [ , ], ·, δ,∆) is a Poisson bialgebra.

Proof. Let a, b ∈ A. Then we have

[a, b] = ∂1(a) · ∂2(b)− ∂2(a) · ∂1(b)
(2.7)
= −ð2(∂1(a) · b) + ð1(∂2(a) · b) + ð2(∂1(a)) · b− ð1(∂2(a)) · b.

Hence adA(a) = LA(∂1(a))∂2 − LA(∂2(a))∂1 = ð1LA(∂2(a)) − ð2LA(∂1(a)) + LA(S(a)). Mean-
while,

δ = (ð1 ⊗ ð2 − ð2 ⊗ ð1)∆
(3.6)
= (id⊗ ð2)((id⊗ ∂1)∆−∆∂1)− (id⊗ ð1)((id⊗ ∂2)∆−∆∂2)

= (id⊗ ð1)∆∂2 − (id⊗ ð2)∆∂1 + (id⊗ S)∆.

Therefore we have

(LA(a)⊗ id)δ(b) + (LA(b)⊗ id)δ(a) + (id⊗ adA(a))∆(b) + (id⊗ adA(b))∆(a)− δ(a · b)
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= (LA(a)⊗ id)((id⊗ ð1)∆(∂2(b))− (id⊗ ð2)∆(∂1(b)) + (id⊗ S)∆(b))

+ (LA(b)⊗ id)((id⊗ ð1)∆(∂2(a))− (id⊗ ð2)∆(∂1(a)) + (id⊗ S)∆(a))

+ (id⊗ (ð1LA(∂2(a))− ð2LA(∂1(a)) + LA(S(a))))∆(b)

+ (id⊗ (ð1LA(∂2(b))− ð2LA(∂1(b)) + LA(S(b))))∆(a)

− (id⊗ ð1)∆(∂2(a · b)) + (id⊗ ð2)∆(∂1(a · b))− (id⊗ S)∆(a · b)
(3.2)
= (id⊗ ð1)∆(a · ∂2(b) + ∂2(a) · b)− (id⊗ ð2)∆(a · ∂1(b) + ∂1(a) · b)
− (id⊗ ð1)∆(∂2(a · b)) + (id⊗ ð2)∆(∂1(a · b))
+ (−(id⊗ S)(id⊗ LA(b)) + LA(b)⊗ S + id⊗ LA(S(b)))∆(a) + (id⊗ LA(S(a)))∆(b)

= (LA(b)⊗ id− id⊗ LA(b))(id⊗ S)∆(a) + (id⊗ LA(S(a)))∆(b).

Hence equation (5.24) holds if and only if equation (5.8) holds. Similarly we show that equa-
tions (5.25) and (5.22) hold if and only if equations (5.8) and (5.9) hold respectively. So the
first conclusion follows. The particular case is obvious. ■

With the conditions above, if equations (5.6)–(5.7) hold, then (A, [ , ], ·, δ,∆) is called the
induced Poisson bialgebra of (A, ·,∆,Φ,Ψ).

Remark 5.25. Note that for a commutative and cocommutative differential ASI bialgebra
(A, ·,∆,Φ,Ψ), there is a commutative differential algebra structure (A ▷◁ A∗, ⋆,Φ + Ψ∗) on
A ⊕ A∗, and for a Poisson bialgebra (A, [ , ], ·, δ,∆), there is a Poisson algebra structure (A ▷◁
A∗, [ , ], ·) on A ⊕ A∗. Hence with the conditions above, if equations (5.6)–(5.7) hold, then
the resulting induced Poisson bialgebra (A, [ , ], ·, δ,∆) of (A, ·,∆,Φ,Ψ) satisfies an additional
condition that the Poisson structure on A ⊕ A∗ is the induced Poisson algebra of (A ▷◁ A∗, ⋆,
Φ+Ψ∗). So if one characterizes the resulting Poisson bialgebra (A, [ , ], ·, δ,∆) of a commutative
and cocommutative differential ASI bialgebra (A, ·,∆,Φ,Ψ) to be “induced” by this additional
condition, then the converse still holds, that is, (A, [ , ], ·, δ,∆) is the “induced” Poisson bialgebra
in this sense if and only if equations (5.6)–(5.7) hold.

Theorem 5.26 ([41, structure Theorem (II)]). Let (A, [ , ]A, ·) be a Poisson algebra. Suppose
that there is a Poisson algebra structure (A∗, [ , ]A∗ , ◦) on A∗. Let δ,∆: A→ A⊗A denote the
linear duals of the Lie bracket [ , ]A∗ : A∗ ⊗ A∗ → A∗ and the multiplication ◦ : A∗ ⊗ A∗ → A∗

respectively. Then the following conditions are equivalent:

(1) (A, [ , ]A, ·, δ,∆) is a Poisson bialgebra.

(2) ((A, [ , ]A, ·), (A∗, [ , ]A∗ , ◦),−ad∗A, L
∗
A,−ad∗A∗ , L∗

A∗) is a matched pair of Poisson algebras.

(3) There is a Manin triple of Poisson algebras ((A ⊕ A∗, [ , ], ⋆,Bd), A,A
∗) associated to

(A, [ , ]A, ·) and (A∗, [ , ]A∗ , ◦), where Bd is defined by equation (3.1).

By the equivalences given in Theorems 3.14 and 5.26, Proposition 5.14 and Corollary 5.12 (in
the induced case) are the “matched pair version” of Theorem 5.24 and Remark 5.25, whereas
Propositions 5.19 and 5.18 (in the induced case) are the “Manin triple (double construction)
version” of the latter. We illustrate these relationships in the “induced case” through a com-
mutative diagram. Explicitly, let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra.
Suppose that there is a commutative differential algebra structure (A∗, ◦,Ψ∗ = {ð∗1,ð∗2}) on A∗.
Let (A, [ , ]A, ·) and (A∗, [ , ]A∗ , ◦) be the induced Poisson algebras of (A, ·,Φ) and (A∗, ◦,Ψ∗)
respectively, that is, both [ , ]A and [ , ]A∗ are defined by equation (5.1). Let δ,∆: A→ A⊗A
be the linear duals of [ , ]A∗ and ◦ respectively. So δ satisfies equation (5.23). Suppose that
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equations (5.6)–(5.7) hold. Then we have the following commutative diagram:

((A, ·,Φ), (A∗, ◦,Ψ∗),L∗
A, L

∗
A∗)

a matched pair of
commutative differential

algebras

Cor. 5.12

��

ooThm. 3.14//

(A, ·,∆,Φ,Ψ)
a commutative and
cocommutative
differential ASI

bialgebra

ooThm. 3.14 //

Thm. 5.24
��

(A ▷◁ A∗, ⋆,Bd)
a double construction of
commutative differential

Frobenius algebra

Prop. 5.18

��
(A,A∗,−ad∗A, L

∗
A,−ad∗A∗ , L∗

A∗)
the induced matched

pair of Poisson algebras

ooThm. 5.26//
(A, [ , ]A, ·, δ,∆)

the induced
Poisson bialgebra

ooThm. 5.26//
((A⊕A∗, [ , ], ⋆,Bd), A,A

∗)
the induced Manin triple

of Poisson algebras

5.4 Coboundary Poisson bialgebras via coboundary commutative
and cocommutative differential ASI bialgebras

Definition 5.27 ([41]). A Poisson bialgebra (A, [ , ], ·, δ,∆) is called coboundary if δ and ∆ are
respectively defined by

δ(a) := (id⊗ adA(a) + adA(a)⊗ id)(r), (5.26)

∆(a) := (id⊗ LA(a)− LA(a)⊗ id)(r), ∀a ∈ A, (5.27)

for some r ∈ A⊗A.

Definition 5.28 ([41]). Let (A, [ , ], ·) be a Poisson algebra. r ∈ A ⊗ A is called a solution of
Poisson Yang–Baxter equation (PYBE) in (A, [ , ], ·) if r is a solution of both equation (4.9)
and the following equation:

[r12, r13] + [r13, r23] + [r12, r23] = 0, (5.28)

where for r =
∑

i ai ⊗ bi, we denote

[r12, r13] =
∑
i,j

[ai, aj ]⊗ bi ⊗ bj , [r13, r23] =
∑
i,j

ai ⊗ aj ⊗ [bi, bj ],

[r12, r23] =
∑
i,j

ai ⊗ [bi, aj ]⊗ bj .

Proposition 5.29 ([41, Theorem 2]). Let (A, [ , ], ·) be a Poisson algebra and r ∈ A⊗ A. Let
δ : A → A ⊗ A and ∆: A → A ⊗ A be two linear maps defined by equations (5.26) and (5.27)
respectively. If r is an antisymmetric solution of PYBE in (A, [ , ], ·), then (A, [ , ], ·, δ,∆) is
a Poisson bialgebra.

Lemma 5.30. Let (A, ·,Φ = {∂1, ∂2}) be a Ψ = {ð1,ð2}-admissible commutative differential
algebra and (A, [ , ], ·) be the induced Poisson algebra of (A, ·,Φ). Let r ∈ A⊗A be an antisym-
metric solution of Ψ-admissible AYBE in (A, ·,Φ). Suppose that ∆ is defined by equation (5.27).
Then we have the following conclusions.

(1) (A,∆,Ψ) is a cocommutative differential coalgebra.

(2) If equation (5.6) holds, then both equation (5.7) and the following equation hold:

[a, b] = ð2(a · ∂1(b))− ð1(a · ∂2(b)), ∀a, b ∈ A. (5.29)
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Proof. (1) It is straightforward to show that (A,∆) is a cocommutative coalgebra. For all
a ∈ A and k = 1, 2, we have

(ðk ⊗ id + id⊗ ðk)∆(a) = (ðk ⊗ id + id⊗ ðk)(id⊗ LA(a)− LA(a)⊗ id)(r)

(4.10)
= (id⊗ LA(a)∂k + id⊗ ðkLA(a)− ðkLA(a)⊗ id− LA(a)∂k ⊗ id)(r)

(2.7)
= (id⊗ LA(ðk(a))− LA(ðk(a))⊗ id)(r) = ∆(ðk(a)).

Hence ðk is a coderivation on (A,∆). Therefore, (A,∆,Ψ) is a cocommutative differential
coalgebra.

(2) Let a, b ∈ A. Then we have

ð1(∂2(a · b)) = ð1(∂2(a) · b+ a · ∂2(b))
(2.7)
= ð1(∂2(a)) · b− ∂2(a) · ∂1(b) + a · ð1(∂2(b))− ∂1(a) · ∂2(b),

ð2(∂1(a · b)) = ð2(∂1(a) · b+ a · ∂1(b))
(2.7)
= ð2(∂1(a)) · b− ∂1(a) · ∂2(b) + a · ð2(∂1(b))− ∂2(a) · ∂1(b).

Hence by assumption, we have ð1(∂2(a · b)) = ð2(∂1(a · b)), i.e., ð1∂2LA(a) = ð2∂1LA(a). There-
fore

(id⊗ ð1∂2)∆(a)− (id⊗ ð2∂1)∆(a) = (id⊗ ð1∂2 − id⊗ ð2∂1)(id⊗ LA(a)− LA(a)⊗ id)(r)

= −(LA(a)⊗ (ð1∂2 − ð2∂1))(r)
(4.10)
= −(LA(a)ð2∂1 ⊗ id)(r) + (LA(a)ð1∂2 ⊗ id)(r) = 0.

That is, equation (5.7) holds. Moreover, we have

∂1(a) · ∂2(b) + ð1(a · ∂2(b))− ∂2(a) · ∂1(b)− ð2(a · ∂1(b))
(2.8)
= a · ð1(∂2(b))− a · ð2(∂1(b))

(5.6)
= 0.

Therefore equation (5.29) holds. ■

Proposition 5.31. Let (A, ·,Φ = {∂1, ∂2}) be a Ψ = {ð1, ð2}-admissible commutative differen-
tial algebra and (A, [ , ], ·) be the induced Poisson algebra of (A, ·,Φ). Suppose that equation (5.6)
holds. Then every solution of Ψ-admissible AYBE in (A, ·,Φ) is a solution of PYBE in the Pois-
son algebra (A, [ , ], ·).

Proof. Suppose that r =
∑

i ai ⊗ bi is a solution of Ψ-admissible AYBE in (A, ·,Φ). Then we
have ∑

i,j

[ai, aj ]⊗ bi ⊗ bj =
∑
i,j

(∂1(ai) · ∂2(aj)− ∂2(ai) · ∂1(aj))⊗ bi ⊗ bj

(4.10)
=

∑
i,j

(ai · aj ⊗ ð1(bi)⊗ ð2(bj)− ai · aj ⊗ ð2(bi)⊗ ð1(bj))

(4.9)
=
∑
i,j

(ai ⊗ ð1(bi · aj)⊗ ð2(bj)− ai ⊗ ð1(aj)⊗ ð2(bi · bj))

−
∑
i,j

(ai ⊗ ð2(bi · aj)⊗ ð1(bj)− ai ⊗ ð2(aj)⊗ ð1(bi · bj))

(4.10)
=

∑
i,j

(ai ⊗ ð1(bi · ∂2(aj))⊗ bj − ai ⊗ aj ⊗ ð2(bi · ∂1(bj)))
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−
∑
i,j

(ai ⊗ ð2(bi · ∂1(aj))⊗ bj − ai ⊗ aj ⊗ ð1(bi · ∂2(bj)))

(5.29)
=

∑
i,j

(−ai ⊗ [bi, aj ]⊗ bj − ai ⊗ aj ⊗ [bi, bj ]).

Hence r satisfies equation (5.28). Therefore r is a solution of PYBE in (A, [ , ], ·). ■

Let (A, ·,Φ = {∂1, ∂2}) be a Ψ = {ð1,ð2}-admissible commutative differential algebra and
(A, [ , ], ·) be the induced Poisson algebra of (A, ·,Φ). Suppose that equation (5.6) holds
and r ∈ A ⊗ A is an antisymmetric solution of Ψ-admissible AYBE in (A, ·,Φ). On the one
hand, by Corollary 4.9, there is a commutative and cocommutative differential ASI bialgebra
(A, ·,∆,Φ,Ψ), where ∆ is defined by equation (5.27). Furthermore, by Lemma 5.30, (A,∆,Ψ)
is a cocommutative differential coalgebra and equation (5.7) holds, and thus by Theorem 5.24,
there is the induced Poisson bialgebra (A, [ , ], ·, δ,∆) of (A, ·,∆,Φ,Ψ), where δ is defined by
equation (5.23). On the other hand, by Proposition 5.31, r is an antisymmetric solution of
PYBE in the Poisson algebra (A, [ , ], ·) and hence there is a Poisson bialgebra (A, [ , ], ·, δ′,∆)
by Proposition 5.29, where δ′ is defined by equation (5.26).

Corollary 5.32. With the conditions as above. Then the two Poisson bialgebras (A, [ , ], ·, δ,∆)
and (A, [ , ], ·, δ′,∆) coincide. Hence we have the following commutative diagram:

r
an antisymmetric solution of

Ψ-admissible AYBE in (A, ·,Φ)

Prop. 5.31

��

Cor. 4.9 //
(A, ·,∆,Φ,Ψ)

a commutative and cocommutative
differential ASI bialgebra

Thm. 5.24

��r
an antisymmetric solution of

PYBE in (A, [ , ], ·)

Prop. 5.29 // (A, [ , ], ·, δ,∆)
the induced Poisson bialgebra

Proof. Let a ∈ A. Then we have

δ(a) = (ð1 ⊗ ð2 − ð2 ⊗ ð1)∆(a) = (ð1 ⊗ ð2 − ð2 ⊗ ð1)(id⊗ LA(a)− LA(a)⊗ id)(r)

(4.10)
= (id⊗ ð2LA(a)∂1 − id⊗ ð1LA(a)∂2)(r)− (ð1LA(a)∂2 ⊗ id− ð2LA(a)∂1 ⊗ id)(r)

(5.29)
= (id⊗ adA(a))(r) + (adA(a)⊗ id)(r) = δ′(a).

Hence the two Poisson bialgebras (A, [ , ], ·, δ,∆) and (A, [ , ], ·, δ′,∆) coincide. ■

Definition 5.33 ([34]). Let (A, [ , ], ·) be a Poisson algebra and (V, ρ, µ) be a module of
(A, [ , ], ·). A linear map T : V → A is called an O-operator of (A, [ , ], ·) associated to (V, ρ, µ)
if the following equations hold:

[T (u), T (v)] = T (ρ(T (u))v − ρ(T (v))u),

T (u) · T (v) = T (µ(T (u))v + µ(T (v))u), ∀u, v ∈ V.

In particular, when (V, ρ, µ) is taken to be (A, adA, LA), an O-operator R : A → A is called
a Rota–Baxter operator (of weight zero) on (A, [ , ], ·), that is, R satisfies

R(a) ·R(b) = R(R(a) · b+ a ·R(b)),
[R(a), R(b)] = R([R(a), b] + [a,R(b)]), ∀a, b ∈ A.

It is straightforward to get the following conclusion which is similarly to Lemma 4.14.
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Lemma 5.34. Let (A, [ , ], ·) be a Poisson algebra and (V, ρ, µ) be a module of (A, [ , ], ·).
A linear map T : V → A is an O-operator of (A, [ , ], ·) associated to (V, ρ, µ) if and only
if T̂ : A ⊕ V → A ⊕ V is a Rota–Baxter operator on the semi-direct product Poisson algebra
(A⋉ρ,µ V, [ , ], ·), where T̂ is defined by equation (4.18).

Lemma 5.35. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra and (A, [ , ], ·) be
the induced Poisson algebra of (A, ·,Φ). If R is a Rota–Baxter operator on (A, ·) commuting
with ∂k for all k = 1, 2, then R is a Rota–Baxter operator on the Poisson algebra (A, [ , ], ·).

Proof. For all a, b ∈ A, we have

R([R(a), b] + [a,R(b)])

(5.1)
= R

(
∂1(R(a)) · ∂2(b)− ∂2(R(a)) · ∂1(b) + ∂1(a) · ∂2(R(b))− ∂2(a) · ∂1(R(b))

)
= R

(
R(∂1(a)) · ∂2(b)−R(∂2(a)) · ∂1(b) + ∂1(a) ·R(∂2(b))− ∂2(a) ·R(∂1(b))

)
= R(∂1(a)) ·R(∂2(b))−R(∂2(a)) ·R(∂1(b))
= ∂1(R(a)) · ∂2(R(b))− ∂2(R(a)) · ∂1(R(b)) = [R(a), R(b)].

We finish the proof. ■

Proposition 5.36 ([7, Proposition A.6, Theorem 2.4.7]). Let (A, [ , ], ·) be a Poisson algebra
and r ∈ A ⊗ A be antisymmetric. Then r is an antisymmetric solution of PYBE in (A, [ , ], ·)
if and only if r♯ is an O-operator of (A, [ , ], ·) associated to the module (A∗,−ad∗A, L

∗
A).

Proposition 5.37. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra and (A, [ , ], ·)
be the induced Poisson algebra of (A, ·,Φ). Let T : V → A be an O-operator of (A, ·,Φ) associated
to a module (V, µ,Ω = {α1, α2}). Then T is an O-operator of (A, [ , ], ·) associated to (V, ρµ, µ),
where (V, ρµ, µ) is the induced module of (A, [ , ], ·) with respect to (V, µ,Ω). In particular, when
taking (V, µ,Ω) = (A∗, L∗

A,Ψ
∗ = {ð∗1, ð∗2}), if in addition equation (5.6) holds, then T is an

O-operator of (A, [ , ], ·) associated to (A∗,−ad∗A, L
∗
A).

Proof. Since T : V → A is an O-operator of (A, ·,Φ) associated to (V, µ,Ω), by Lemma 4.14,
the linear map T̂ defined by equation (4.18) is a Rota–Baxter operator on the semi-direct algebra
(A ⋉µ V, ·). Moreover, since ∂kT = Tαk for all k = 1, 2, we have T̂ commutes with ∂k + αk

for all k = 1, 2. By Lemma 5.35, T̂ is a Rota–Baxter operator on the induced Poisson algebra
of (A⋉µ V, ·,Φ + Ω). By Corollary 5.11, the induced Poisson algebra is exactly the semi-direct
product Poisson algebra by (A, [ , ], ·) and (V, ρµ, µ). Hence T̂ is a Rota–Baxter operator on
the semi-direct product Poisson algebra by (A, [ , ], ·) and (V, ρµ, µ). Therefore T is an O-
operator of (A, [ , ], ·) associated to (V, ρµ, µ) by Lemma 5.34. The particular case follows from
Proposition 5.7. ■

Combining Corollary 4.15, Propositions 5.31, 5.36 and 5.37 together, we have the following
conclusion.

Corollary 5.38. Let (A, ·,Φ = {∂1, ∂2}) be a Ψ = {ð1, ð2}-admissible commutative differential
algebra and (A, [ , ], ·) be the induced Poisson algebra of (A, ·,Φ). Suppose that equation (5.6)
holds and r is an antisymmetric solution of Ψ-admissible AYBE in (A, ·,Φ). On the one hand,
r is a solution of PYBE in the Poisson algebra (A, [ , ], ·) by Proposition 5.31 and hence r♯

is an O-operator of (A, [ , ], ·) associated to (A∗,−ad∗A, L
∗
A) by Proposition 5.36. On the other

hand, r♯ is an O-operator of (A, ·,Φ) associated to (A∗, L∗
A,Ψ

∗) by Corollary 4.15 and hence r♯

is an O-operator of (A, [ , ], ·) associated to (A∗,−ad∗A, L
∗
A) by Proposition 5.37. That is, the
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two approaches to get r♯ as an O-operator of (A, [ , ], ·) coincide, and thus we have the following
commutative diagram:

r
an antisymmetric solution of

Ψ-admissible AYBE in (A, ·,Φ)

Prop. 5.31

��

Cor. 4.15 //
r♯

an O-operator of (A, ·,Φ)
associated to (A∗, L∗

A,Ψ
∗)

Prop. 5.37

��
r

an antisymmetric solution of
PYBE in (A, [ , ], ·)

Prop. 5.36 //
r♯

an O-operator of (A, [ , ], ·)
associated to (A∗,−ad∗A, L

∗
A)

5.5 Poisson bialgebras via O-operators of commutative differential algebras
and differential Zinbiel algebras

Proposition 5.39. Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra and (A, [ , ], ·)
be the induced Poisson algebra of (A, ·,Φ). Suppose that (V, µ,Ω = {α1, α2}) is a module of
(A, ·,Φ) and (V, ρµ, µ) is the induced module of (A, [ , ], ·) with respect to (V, µ,Ω). Then
(A⋉µ∗ V ∗, ·,Φ−Ω∗) is a (−Φ+Ω∗)-admissible commutative differential algebra. Furthermore,
(A⋉−ρ∗µ,µ

∗ V ∗, [ , ], ·) is the induced Poisson algebra of (A⋉µ∗ V ∗, ·,Φ−Ω∗) and equation (5.6)
holds, where ðk is replaced by −∂k + α∗

k and ∂k is replaced by ∂k − α∗
k for all k = 1, 2.

Proof. By Example 2.10 and the proof of Corollary 4.19, (A⋉µ∗ V ∗, ·,Φ−Ω∗) is a (−Φ+Ω∗)-
admissible commutative differential algebra. By Corollary 5.11, (A ⋉ρµ∗ ,µ∗ V ∗, [ , ], ·) is the
induced Poisson algebra of (A ⋉µ∗ V ∗, ·,Φ − Ω∗), where (V ∗, ρµ∗ , µ∗) is the induced module of
(A, [ , ], ·) with respect to the module (V ∗, µ∗,−Ω∗). For all a ∈ A, v ∈ V , we have

(−α2)(µ(∂1(a))v)− (−α1)(µ(∂2(a))v) + µ(∂1(a))α2(v)− µ(∂2(a))α1(v)

= (µ(∂1(a))α2(v)− α2(µ(∂1(a))v))− (µ(∂2(a))α1(v)− α1(µ(∂2(a))v))

= −µ(∂2(∂1(a)))v + µ(∂1(∂2(a)))v = 0.

Therefore, by Proposition 5.7, we have ρµ∗ = −ρ∗µ and hence (A ⋉−ρ∗µ,µ
∗ V ∗, [ , ], ·) is exactly

the induced Poisson algebra of (A⋉µ∗ V ∗, ·,Φ− Ω). Moreover, we have

(−∂2 + α∗
2)((∂1 − α∗

1)(a+ v∗)) · (b+ w∗) = (−∂1 + α∗
1)((∂2 − α∗

2)(a+ v∗)) · (b+ w∗),

for all a, b ∈ A, v∗, w∗ ∈ V ∗. Hence equation (5.6) holds. ■

Remark 5.40. One may consider extending the above study to the case that
(
A⋉µ∗ V ∗, ·,Φ+

{−α∗
k + θkidV ∗}2k=1

)
is a

(
{−∂k + θkidA}2k=1 + Ω∗)-admissible commutative differential algebra

for any θ1, θ2 ∈ F as in Corollary 4.19. Then by a similar argument, (A ⋉−ρ∗µ,µ
∗ V ∗, [ , ], ·) is

the induced Poisson algebra of
(
A ⋉µ∗ V ∗, ·,Φ + {−α∗

k + θkidV ∗}2k=1

)
, where (V, ρµ, µ) is the

induced module of (A, [ , ], ·) with respect to (V, µ, {α1 − θ1idV , α2 − θ2idV }). Furthermore, it
is straightforward to show that equation (5.6) holds where ðk is replaced by −∂k + θkidA + α∗

k

and ∂k is replaced by ∂k − α∗
k + θkidV ∗ for all k = 1, 2 if and only if

θ2∂1(a)b = θ1∂2(a)b, θ2µ(∂1(a))v = θ1µ(∂2(a))v, θ2α1(µ(a)v) = θ1α2(µ(a)v),(5.30)

for all a ∈ A, v ∈ V . Suppose that equation (5.30) holds for some θk ̸= 0. We assume that
θ1 ̸= 0 without loss of generality. Let a, b ∈ A. Then ∂2(a) · b = θ−1

1 θ2∂1(a) · b and thus we have

[a, b] = ∂1(a) · ∂2(b)− ∂2(a) · ∂1(b) = θ−1
1 θ2∂1(a) · ∂1(b)− θ−1

1 θ2∂1(a) · ∂1(b) = 0.

Similarly, the Lie bracket in (A⋉−ρ∗µ,µ
∗ V ∗, [ , ], ·) is also trivial. So in this sense, we only need

to consider the case that θ1 = θ2 = 0 as we have done in Proposition 5.39.
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Theorem 5.41 ([34, Theorem 5.24]). Let (V, ρ, µ) be a module of a Poisson algebra (A, [ , ], ·).
Let T : V → A be a linear map. Then r = T − σ(T ) is an antisymmetric solution of PYBE in
(A⋉−ρ∗,µ∗ V ∗, [ , ], ·) if and only if T is an O-operator of (A, [ , ], ·) associated to (V, ρ, µ).

By Proposition 5.39, combining Corollary 4.19, Propositions 5.31 and 5.37 and Theorem 5.41
together, we have the following conclusion.

Corollary 5.42. With the conditions in Proposition 5.39. Suppose that T : V → A is an O-
operator of (A, ·,Φ) associated to (V, µ,Ω). On the one hand, T is an O-operator of the induced
Poisson algebra (A, [ , ], ·) associated to (V, ρµ, µ) by Proposition 5.37 and hence r = T − σ(T )
is an antisymmetric solution of PYBE in (A ⋉−ρ∗µ,µ

∗ V ∗, [ , ], ·) by Theorem 5.41. On the
other hand, r = T − σ(T ) is an antisymmetric solution of (−Φ + Ω∗)-admissible AYBE in
(A⋉µ∗V ∗, ·,Φ−Ω∗) by Corollary 4.19. Due to Proposition 5.39, r is an antisymmetric solution of
PYBE in the induced Poisson algebra (A⋉−ρ∗µ,µ

∗ V ∗, [ , ], ·) by Proposition 5.31. That is, the two
approaches to get r = T −σ(T ) as an antisymmetric solution of PYBE in (A⋉−ρ∗µ,µ

∗ V ∗, [ , ], ·)
coincide, and thus we have the following commutative diagram:

T
an O-operator of (A, ·,Φ)
associated to (V, µ,Ω)

Prop. 5.37

��

Cor. 4.19 //

r = T − σ(T )
an antisymmetric solution of
(−Φ+ Ω∗)-admissible AYBE

in (A⋉µ∗ V ∗, ·,Φ− Ω∗)

Prop. 5.31

��
T

an O-operator of (A, [ , ], ·)
associated to (V, ρµ, µ)

Thm. 5.41 //
r = T − σ(T )

an antisymmetric solution of
PYBE in (A⋉−ρ∗µ,µ

∗ V ∗, [ , ], ·)

Definition 5.43 ([22]). A (left) pre-Lie algebra (A, ⋄) is a vector space A together with a bilinear
multiplication ⋄ : A⊗A→ A satisfying the following equation:

a ⋄ (b ⋄ c)− (a ⋄ b) ⋄ c = b ⋄ (a ⋄ c)− (b ⋄ a) ⋄ c, ∀a, b, c ∈ A.

Definition 5.44 ([36]). A (left) Zinbiel algebra (A, ∗) is a vector space A together with a bilinear
multiplication ∗ : A⊗A→ A satisfying the following equation:

a ∗ (b ∗ c) = (a ∗ b) ∗ c+ (b ∗ a) ∗ c, ∀a, b, c ∈ A.

A Zinbiel algebra (A, ∗) is equivalently defined as a dendriform algebra (A,≻,≺) in which

a ≻ b = b ≺ a = a ∗ b, ∀a, b ∈ A.

Hence for a Zinbiel algebra (A, ∗), the associated algebra (A, ·) is commutative, where

a · b = a ∗ b+ b ∗ a, ∀a, b ∈ A. (5.31)

Furthermore, we give the notion of a differential Zinbiel algebra: (A, ∗,Φ) is called a differential
Zinbiel algebra if (A, ∗, ∗op,Φ) is a differential dendriform algebra, where a ∗op b = b ∗ a for all
a, b ∈ A. It is obvious that the associated differential algebra of a differential Zinbiel algebra is
commutative.

Definition 5.45 ([2]). A (left) pre-Poisson algebra is a triple (A, ⋄, ∗), where (A, ⋄) is a pre-Lie
algebra and (A, ∗) is a Zinbiel algebra such that the following conditions hold:

(a ⋄ b− b ⋄ a) ∗ c = a ⋄ (b ∗ c)− b ∗ (a ⋄ c), (a ∗ b+ b ∗ a) ⋄ c = a ∗ (b ⋄ c) + b ∗ (a ⋄ c),

for all a, b, c ∈ A.
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Proposition 5.46 ([2, Proposition 2.2]). Let (A, ⋄, ∗) be a pre-Poisson algebra. Define two
bilinear multiplications ·, [ , ] : A⊗A→ A respectively by

a · b := a ∗ b+ b ∗ a and [a, b] := a ⋄ b− b ⋄ a, ∀a, b ∈ A. (5.32)

Then (A, [ , ], ·) is a Poisson algebra, called the associated Poisson algebra of (A, ⋄, ∗).

Recall that a perm-algebra is a vector space P with a bilinear multiplication (a, b) → ab, such
that P is an algebra which is left-commutative in the following sense:

(ab)c = (ba)c, ∀a, b, c ∈ P,

that is, a perm-algebra is associative and left-commutative.

Lemma 5.47 ([23]). Let A be a vector space with two bilinear multiplications ⋄ and ∗. Then
(A, ⋄, ∗) is a pre-Poisson algebra if and only if for every perm-algebra P , (P ⊗ A, [ , ], ·) is
a Poisson algebra, where [ , ] and · are respectively defined by

[p⊗ a, q ⊗ b] = pq ⊗ a ⋄ b− qp⊗ b ⋄ a,
(p⊗ a) · (q ⊗ b) = pq ⊗ a ∗ b+ qp⊗ b ∗ a, ∀p, q ∈ P, a, b ∈ A.

Proposition 5.48. Let (A, ∗,Φ = {∂1, ∂2}) be a differential Zinbiel algebra. Define a bilinear
multiplication ⋄ : A⊗A→ A by

a ⋄ b := ∂1(a) ∗ ∂2(b)− ∂2(a) ∗ ∂1(b), ∀a, b ∈ A. (5.33)

Then (A, ⋄, ∗) is a pre-Poisson algebra, called the induced pre-Poisson algebra of (A, ∗,Φ).

Proof. The conclusion can be verified by a direct proof or the following approach in terms of
perm-algebras. Let P be a perm-algebra. Define a bilinear multiplication · on P ⊗A by

(p⊗ a) · (q ⊗ b) := pq ⊗ a ∗ b+ qp⊗ b ∗ a, ∀p, q ∈ P, a, b ∈ A.

For all p, q, r ∈ P and a, b, c ∈ A, we have

(p⊗ a) · ((q ⊗ b) · (r ⊗ c))

= pqr ⊗ a ∗ (b ∗ c) + qrp⊗ (b ∗ c) ∗ a+ prq ⊗ a ∗ (c ∗ b) + rqp⊗ (c ∗ b) ∗ a
= pqr ⊗ a ∗ (b ∗ c) + rqp⊗ (b ∗ c) ∗ a+ prq ⊗ a ∗ (c ∗ b) + rqp⊗ (c ∗ b) ∗ a
= pqr ⊗ a ∗ (b ∗ c) + prq ⊗ a ∗ (c ∗ b) + rqp⊗ c ∗ (b ∗ a),

((p⊗ a) · (q ⊗ b)) · (r ⊗ c)

= pqr ⊗ (a ∗ b) ∗ c+ rpq ⊗ c ∗ (a ∗ b) + qpr ⊗ (b ∗ a) ∗ c+ rqp⊗ c ∗ (b ∗ a)
= pqr ⊗ (a ∗ b) ∗ c+ rpq ⊗ c ∗ (a ∗ b) + pqr ⊗ (b ∗ a) ∗ c+ rqp⊗ c ∗ (b ∗ a)
= pqr ⊗ a ∗ (b ∗ c) + rpq ⊗ c ∗ (a ∗ b) + rqp⊗ c ∗ (b ∗ a).

Hence (P ⊗ A, ·) is an algebra. Obviously (P ⊗ A, ·) is commutative. Define linear maps
d1, d2 : P ⊗A→ P ⊗A respectively by

di : P ⊗A→ P ⊗A, p⊗ a 7→ p⊗ ∂i(a), ∀a ∈ A, p ∈ P, i = 1, 2.

It is straightforward to verify that (P ⊗A, ·, {d1, d2}) is a commutative differential algebra. Let
(P ⊗ A, [ , ], ·) be the induced Poisson algebra of (P ⊗ A, ·, {d1, d2}), where [ , ] is defined by
equation (5.1), i.e.,

[p⊗ a, q ⊗ b] = d1(p⊗ a) · d2(q ⊗ b)− d2(p⊗ a) · d1(q ⊗ b)
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= (p⊗ ∂1(a)) · (q ⊗ ∂2(b))− (p⊗ ∂2(a)) · (q ⊗ ∂1(b))·
= (pq ⊗ ∂1(a) ∗ ∂2(b) + qp⊗ ∂2(b) ∗ ∂1(a))− (pq ⊗ ∂2(a) ∗ ∂1(b) + qp⊗ ∂1(b) ∗ ∂2(a))
= pq ⊗ a ⋄ b− qp⊗ b ⋄ a, ∀p, q ∈ P, a, b ∈ A.

Hence the conclusion follows from Lemma 5.47. ■

Theorem 5.49. Let (A, ∗,Φ = {∂1, ∂2}) be a differential Zinbiel algebra. Let (A, ·,Φ) be the
associated commutative differential algebra of (A, ∗,Φ), where · is defined by equation (5.31). Let
(A, ⋄, ∗) be the induced pre-Poisson algebra of (A, ∗,Φ), where ⋄ is defined by equation (5.33).
Then the associated Poisson algebra (A, [ , ], ·) of the pre-Poisson algebra (A, ⋄, ∗), where [ , ]
and · are respectively defined by equation (5.32), is exactly the induced Poisson algebra (A, [ , ], ·)
of the differential algebra (A, ·,Φ), where [ , ] is defined by equation (5.1). Hence we have the
following commutative diagram:

differential Zinbiel algebra
(A, ∗,Φ)

equation (5.33)

��

equation (5.31) // commutative differential algebra
(A, ·,Φ)

equation (5.1)

��
pre-Poisson algebra

(A, ⋄, ∗)
equation (5.32) // Poisson algebra

(A, [ , ], ·)

Proof. Let P be a one-dimensional vector space with a basis {e} with a bilinear multiplication
whose product is given by ee = e. Obviously P is a perm-algebra which is isomorphic to the
field F. Substituting such P into the proof of Proposition 5.48 and noting that in this case,
for any vector space A, P ⊗ A and A are isomorphic as vector spaces, we get the conclusion
immediately. ■

Lemma 5.50 ([34, Theorem 5.18]). Let (A, [ , ], ·) be a Poisson algebra. Suppose that T is an O-
operator of (A, [ , ], ·) associated to (V, ρ, µ). Define two bilinear multiplications ∗, ◦ : V ⊗V → V
respectively by

u ⋄ v := ρ(T (u))v, u ∗ v := µ(T (u))v, ∀u, v ∈ V. (5.34)

Then (V, ⋄, ∗) is a pre-Poisson algebra.

Let (A, ·,Φ = {∂1, ∂2}) be a commutative differential algebra. Suppose that T is an O-
operator of (A, ·,Φ) associated to a module (V, µ,Ω = {α1, α2}). Then (V, ∗,Ω) is a differential
Zinbiel algebra by Proposition 4.26, where ∗ is defined by equation (4.27) in the commutative
case, that is,

u ∗ v := µ(T (u))v, ∀u, v ∈ V. (5.35)

Furthermore, there is the induced pre-Poisson algebra (V, ⋄, ∗) of (V, ∗,Ω) by Proposition 5.48,
where ⋄ is defined by equation (5.33). On the other hand, let (A, [ , ], ·) be the induced Poisson
algebra of (A, ·,Φ), where [ , ] is defined by equation (5.1). Then by Proposition 5.37, T is an
O-operator on (A, [ , ], ·) associated to (V, ρµ, µ) which is the induced module of (A, [ , ], ·) with
respect to (V, µ,Ω). Hence there is a pre-Poisson algebra (V, ⋄′, ∗′) by Lemma 5.50, where ⋄′
and ∗′ are respectively defined by equation (5.34).
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Proposition 5.51. With the conditions above. Then the two pre-Poisson algebras (V, ⋄, ∗) and
(V, ⋄′, ∗′) coincide. Hence we have the following commutative diagram:

T
an O-operator of (A, ·,Φ)
associated to (V, µ,Ω)

Prop. 4.26 //

Prop. 5.37

��

(V, ∗,Ω)
a differential
Zinbiel algebra

Prop. 5.48

��
T

an O-operator of (A, [ , ], ·)
associated to (V, ρµ, µ)

Lem. 5.50 //
(V, ⋄, ∗)

a pre-Poisson
algebra

Proof. Let u, v ∈ V . Then by equations (5.33) and (5.35), we have

u ∗ v = µ(T (u))v,

u ⋄ v = α1(u) ∗ α2(v)− α2(u) ∗ α1(v) = µ(T (α1(u)))α2(v)− µ(T (α2(u)))α1(v).

On the other hand, by equations (5.34) and (5.2), we have

u ∗′ v = µ(T (u))v,

u ⋄′ v = ρµ(T (u))v = µ(∂1(T (u)))α2(v)− µ(∂2(T (u)))α1(v)

(4.17)
= µ(T (α1(u)))α2(v)− µ(T (α2(u)))α1(v).

Hence (V, ⋄, ∗) and (V, ⋄′, ∗′) coincide. ■

Proposition 5.52 ([34, Example 5.16]). Let (A, ⋄, ∗) be a pre-Poisson algebra and (A, [ , ], ·)
be the associated Poisson algebra of (A, ⋄, ∗), where [ , ] and · are respectively defined by equa-
tion (5.32). Then (A,L⋄, L∗) is a module of (A, [ , ], ·), where L⋄, L∗ : A→ End(A) are respec-
tively defined by

L⋄(a)(b) := a ⋄ b, L∗(a)(b) := a ∗ b, ∀a, b ∈ A.

Furthermore, the identity map id : A→ A is an O-operator of (A, [ , ], ·) associated to (A,L⋄, L∗).

Proposition 5.53. Let (A, ∗,Φ = {∂1, ∂2}) be a differential Zinbiel algebra. Let (A, ·,Φ) be the
associated commutative differential algebra of (A, ∗,Φ), where · is defined by equation (5.31), and
(A, [ , ], ·) be the induced Poisson algebra of (A, ·,Φ), where [ , ] is defined by equation (5.1).
Let (A, ⋄, ∗) be the induced pre-Poisson algebra of (A, ∗,Φ) given in Proposition 5.48, where ⋄
is defined by equation (5.33). Then the module (A,L⋄, L∗) of the Poisson algebra (A, [ , ], ·) is
exactly the induced module (A, ρL∗ , L∗) of (A, [ , ], ·) with respect to (A,L∗,Φ), that is, L⋄ = ρL∗.
Furthermore, on the one hand, the identity map id is an O-operator of the commutative differ-
ential algebra (A, ·,Φ) associated to (A,L∗,Φ) by Proposition 4.24 and hence id is an O-operator
of the Poisson algebra (A, [ , ], ·) associated to (A, ρL∗ , L∗) by Proposition 5.37. On the other
hand, id is an O-operator of (A, [ , ], ·) associated to (A,L⋄, L∗) by Proposition 5.52. Therefore
the two approaches for id as an O-operator of the Poisson algebra (A, [ , ], ·) coincide and hence
we have the following commutative diagram:

(A, ∗,Φ)
a differential
Zinbiel algebra

Prop. 5.48

��

Prop. 4.24 //
id

an O-operator of (A, ·,Φ)
associated to (A,L∗,Φ)

Prop. 5.37

��
(A, ⋄, ∗)

a pre-Poisson
algebra

Prop. 5.52 //
id

an O-operator of (A, [ , ], ·)
associated to (A,L⋄, L∗)
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Proof. In fact, we have

ρL∗(a)(b) = L∗(∂1(a))∂2(b)− L∗(∂2(a))∂1(b)
(5.33)
= a ⋄ b = L⋄(a)(b), ∀a, b ∈ A.

Hence the conclusion follows from Propositions 4.24, 5.37, 5.48 and 5.52. ■

At the end of this paper, we give the following construction of Poisson bialgebras from
differential Zinbiel algebras.

Proposition 5.54. Let (A, ∗,Φ = {∂1, ∂2}) be a differential Zinbiel algebra. Let (A, ·,Φ) be the
associated commutative differential algebra of (A, ∗,Φ), where · is defined by equation (5.31), and
(A, [ , ], ·) be the induced Poisson algebra of (A, ·,Φ), where [ , ] is defined by equation (5.1). Let
(A, ⋄, ∗) be the induced pre-Poisson algebra of (A, ∗,Φ), where ⋄ is defined by equation (5.33).
Let {e1, e2, . . . , en} be a basis of A and {e∗1, e∗2, . . . , e∗n} be the dual basis. Set

r =

n∑
i=1

(ei ⊗ e∗i − e∗i ⊗ ei).

Then there is a Poisson bialgebra (A⋉−L∗
⋄,L∗

∗A
∗, [ , ], ·, δ,∆), where δ and ∆ are defined by equa-

tions (5.26) and (5.27) with the above r respectively. Moreover, (A⋉L∗
∗A

∗, ·,∆,Φ−Φ∗,−Φ+Φ∗)
is a commutative and cocommutative differential ASI bialgebra whose induced Poisson bialgebra
is exactly (A⋉−L∗

⋄,L∗
∗ A

∗, [ , ], ·, δ,∆).

Proof. Note that id =
∑n

i=1 ei ⊗ e∗i and r = id − σ(id). The first conclusion follows from
Proposition 5.53, Theorem 5.41 and Proposition 5.29. The second conclusion follows from
Proposition 5.53, Corollaries 5.42 and 5.32. Note that here equation (5.6) holds, where ðk is
replaced by −∂k + ∂∗k and ∂k is replaced by ∂k − ∂∗k for all k = 1, 2. ■

We give the following example to illustrate the above construction explicitly. Note that the
classification of complex differential Zinbiel algebras in dimension ≤ 4 is given in [5].

Example 5.55. Let (A, ∗) be a Zinbiel algebra in dimension 3 with a basis {e1, e2, e3} whose
non-zero product is given by

e1 ∗ e1 = e3, e2 ∗ e1 = e3, e2 ∗ e2 = e3.

Let ∂1, ∂2 : A→ A be two liner maps respectively given by

∂1(e1) = e1, ∂1(e2) = e2, ∂1(e3) = 2e3;

∂2(e1) = e2, ∂2(e2) = −e1 + e2, ∂2(e3) = e3.

Then (A, ∗,Φ = {∂1, ∂2}) is a differential Zinbiel algebra. Let {e∗1, e∗2, e∗3} be the dual basis of
{e1, e2, e3}. Then we have

∂∗1(e
∗
1) = e∗1, ∂∗1(e

∗
2) = e∗2, ∂∗1(e

∗
3) = 2e∗3;

∂∗2(e
∗
1) = −e∗2, ∂∗2(e

∗
2) = e∗1 + e∗2, ∂∗2(e

∗
3) = e∗3.

Let (A, ·,Φ) be the associated commutative differential algebra of (A, ∗,Φ), where · is defined
by equation (5.31) whose non-zero product is given by

e1 · e1 = e2 · e2 = 2e3, e1 · e2 = e2 · e1 = e3.

Let (A, [ , ], ·) be the induced Poisson algebra of (A, ·,Φ), where [ , ] is defined by equation (5.1)
whose non-zero product is given by

[e1, e2] = −[e2, e1] = −3e3.
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Let (A, ⋄, ∗) be the induced pre-Poisson algebra of (A, ∗,Φ), where ⋄ is defined by equation (5.33)
whose non-zero product is given by

e1 ⋄ e1 = −e3, e1 ⋄ e2 = −2e3, e2 ⋄ e1 = e3, e2 ⋄ e2 = −e3.

Hence the non-zero product of [ , ] and · on the Poisson algebra (A⋉−L∗
⋄,L∗

∗ A
∗, [ , ], ·) is given

respectively by

[e1, e2] = −[e2, e1] = −3e3, [e1, e
∗
3] = −[e∗3, e1] = e∗1 + 2e∗2,

[e2, e
∗
3] = −[e∗3, e2] = −e∗1 + e∗2;

e1 · e1 = e2 · e2 = 2e3, e1 · e2 = e2 · e1 = e3, e1 · e∗3 = e∗3 · e1 = e∗1,

e2 · e∗3 = e∗3 · e2 = e∗1 + e∗2.

Set r =
∑3

i=1(ei ⊗ e∗i − e∗i ⊗ ei). Define δ and ∆ by equations (5.26) and (5.27) respectively.
Thus we have

δ(e1) = e3 ⊗ e∗1 − e∗1 ⊗ e3 − e3 ⊗ e∗2 + e∗2 ⊗ e3,

δ(e2) = 2e3 ⊗ e∗1 − 2e∗1 ⊗ e∗3 + e3 ⊗ e∗2 − e∗2 ⊗ e3,

δ(e3) = δ(e∗1) = δ(e∗2) = 0, δ(e∗3) = 3e∗1 ⊗ e∗2 − 3e∗2 ⊗ e∗1;

∆(e1) = −e3 ⊗ e∗1 − e∗1 ⊗ e3 − e∗2 ⊗ e3 − e3 ⊗ e∗2,

∆(e2) = −e3 ⊗ e∗2 − e∗2 ⊗ e3,

∆(e3) = ∆(e∗1) = ∆(e∗2) = 0, ∆(e∗3) = −2e∗1 ⊗ e∗1 − 2e∗2 ⊗ e∗2 − e∗2 ⊗ e∗1 − e∗1 ⊗ e∗2.

Therefore (A ⋉−L∗
⋄,L∗

∗ A
∗, [ , ], ·, δ,∆) is a Poisson bialgebra. At the same time, we obtain

a commutative and cocommutative differential ASI bialgebra (A⋉L∗
∗ A

∗, ·,∆,Φ−Φ∗,−Φ+Φ∗)
whose induced Poisson bialgebra is exactly (A⋉−L∗

⋄,L∗
∗ A

∗, [ , ], ·, δ,∆).
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[16] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1995.

[17] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.

[18] Connes A., Lott J., The metric aspect of noncommutative geometry, in New Symmetry Principles in Quan-
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