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Abstract. In this paper we revisit the subject of stationary flows of Lax hierarchies of
a coupled KdV class. We explain the main ideas in the standard KdV case and then
consider the dispersive water waves (DWW) case, with respectively 2 and 3 Hamiltonian
representations. Each Hamiltonian representation gives us a different form of stationary
flow. Comparing these, we construct Poisson maps, which, being non-canonical, give rise to
bi-Hamiltonian representations of the stationary flows. An alternative approach is to use the
Miura maps, which we do in the case of the DWW hierarchy, which has two “modifications”.
This structure gives us 3 sequences of Poisson related stationary flows. We use the Poisson
maps to build a tri-Hamiltonian representation of each of the three stationary hierarchies.
One of the Hamiltonian representations allows a multi-component squared eigenfunction
expansion, which gives N degrees of freedom Hamiltonians, with first integrals. A Lax
representation for each of the stationary flows is derived from the coupled KdV matrices. In
the case of 3 degrees of freedom, we give a generalisation of our Lax matrices and Hamiltonian
functions, which allows a connection with the rational Calogero–Moser (CM) system. This
gives a coupling of the CM system with other potentials, along with a Lax representation.
We present the particular case of coupling one of the integrable Hénon–Heiles systems to CM.

Key words: KdV hierarchy; stationary flows; bi-Hamiltonian; complete integrability; Hénon–
Heiles; Calogero–Moser
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1 Introduction

It has long been known [6] that the stationary flows of nonlinear evolution equations of “KdV-
type” are themselves (finite-dimensional) completely integrable Hamiltonian systems. Specifi-
cally, [6] considered the KdV hierarchy, with its first Hamiltonian structure:

utn = ∂xδuHn+1, (1.1)

where Hn are the KdV Hamiltonian densities. Setting utn = 0 leads to an ODE in (generalised)
Lagrangian form, with Ln+1 = Hn+1 − αu. The (generalised) Legendre transformation then
leads to canonical variable, in which the stationary flow takes Hamiltonian form. The lower
flows utm , m = 1, . . . , n− 1, then restrict to this finite-dimensional manifold, forming a system
of commuting Hamiltonian flows, corresponding to Hamiltonian functions which are derived
from the fluxes of the lower KdV densities.

In [3], it was shown that each of these stationary flows is bi-Hamiltonian on an extended space,
with additional dynamical variable α. This was derived by using the Miura map, which also
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gave a bi-Hamiltonian formulation of the stationary MKdV equation. This should be compared
with the full MKdV equation, with only one local Hamiltonian structure.

In [12], the 3 known integrable cases of the Hénon–Heiles equation were shown to be re-
lated to the stationary reductions of the 3 known fifth order (single component) nonlinear
evolution equations with a Lax representation. One of these is in the KdV hierarchy, but
not in the canonical coordinates derived from (1.1). In this calculation the fourth order sta-
tionary flow (for one coordinate q1) is derived as a consequence of the coupled second order
system, by differentiation and elimination, so the relation to canonical variables is not ad-
dressed. In [4], these canonical variables are directly constructed by using the second Hamilto-
nian structure of the KdV hierarchy. Indeed, in [4] a general approach, using squared eigen-
function coordinates, was introduced, relating several well-known completely integrable, finite-
dimensional Hamiltonian systems to the stationary flows of various well-known Lax hierar-
chies.

In this paper we revisit this subject, bringing together the ideas of [3] and [4], enabling us to
build bi- and tri-Hamiltonian representations of a number of interesting systems. The approach
also allows us to build Lax representations for these. These systems are certainly completely
integrable, but some are superintegrable [8, 11, 16].

Since many of our formulae follow from those of coupled KdV hierarchies, associated with
“energy-dependent” Schrödinger operators [1, 2], we give a brief overview of these in Sec-
tion 2.

Our main explanation of stationary reductions is given in Section 3, in the context of the
KdV hierarchy. The two Hamiltonian representations of each PDE flow give us two station-
ary manifolds with different coordinates. This can be compared with the approach of [3],
which used the Miura map and the “modified” equation. The second of the Hamiltonian
representations in this paper has a multi-component generalisation which gives some super-
integrable systems, such as the Garnier system (3.5b) and a generalised Hénon–Heiles sys-
tem (3.12b) (both with N -components). Choosing N so that the stationary manifolds of
the two representations have the same dimension, allows us to build Poisson maps between
these manifolds, giving us a bi-Hamiltonian representation of the stationary flows (see Sec-
tions 3.1.1 and 3.2.1). The Lax representations of these stationary flows are discussed in Sec-
tion 3.3.

We discuss the stationary flows of the DWW hierarchy in Section 4. Following the ideas
of Section 3, we find N -component, superintegrable systems (4.4c) and (4.8a), with (respec-
tively) sextic and quartic potentials. Again, choosing N so that the stationary manifolds of
the two representations have the same dimension, allows us to build Poisson maps, giving us
bi-Hamiltonian representations (see Sections 4.1.1 and 4.2.1). Lax representations are presented
in Section 4.3.

In Section 5, we use the Miura maps of Section 2.2.1 to construct a tri-Hamiltonian formu-
lation of the stationary flows of the DWW hierarchy and the two modified hierarchies, depicted
in Figure 1. As this figure indicates, there are six local Hamiltonian operators (for the PDEs),
arranged in a triangular array. In the stationary coordinates, we build a square array of nine
Poisson matrices, so each of the stationary hierarchies is tri-Hamiltonian.

Some of the Lax representations of Sections 3.3 and 4.3 can be generalised to incorporate an
arbitrary function, which enable us to couple some of our potentials to the rational Calogero–
Moser system [7, 17]. This is discussed in Section 6, where we specifically generalise the Gar-
nier system (3.5b), the generalised Hénon–Heiles system (3.12b) and the system with Hamilto-
nian (4.8a). Using the approach of [13], these can all be canonically transformed to the rational
Calogero–Moser Hamiltonian, with additional potential terms. These are all completely inte-
grable and have a Lax representation. To illustrate this, we explicitly present the Hénon–Heiles
case.
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2 Lax representation of coupled KdV equations

In [1, 2] a detailed analysis was given of coupled KdV equations, associated with “energy de-
pendent” Schrödinger operators. Here we give a very brief review to present a few facts which
we use in this paper.

The “energy dependent” Schrödinger equation is

Lψ =
(
∂2x + u

)
ψ = 0, where u =

M−1∑
i=0

uiλ
i − λM , (2.1a)

such that ui are functions of x and some “time” parameters tn. Suppose for one of these
(denoted “t”), we have

ψt = Aψ = (2P∂x − Px)ψ. (2.1b)

From (2.1a) and (2.1b) we can obtain two formulae for ψxxt, which, when equated, lead to

ut =
(
∂3x + 4u∂x + 2ux

)
P. (2.1c)

The coupled KdV hierarchy is given by the polynomial expansion

P (n) =
n∑

k=0

λn−kPk, with P0 = 1. (2.1d)

Substituting this into (2.1c) and equating coefficients of powers of λ gives us a recursive formula
for Pk and then the formulae for uitn , which can be written in matrix form to give the Hamilto-
nian formulation. In this paper we only consider the KdV (M = 1) and DWW (M = 2) cases,
so just describe the Hamiltonian formulations for these specific cases.

This differential operator Lax pair is rewritten in “zero-curvature” form(
ψ1

ψ2

)
x

=

(
0 1
−u 0

)(
ψ1

ψ2

)
= UΨ,

(
ψ1

ψ2

)
t

=

(
−Px 2P

−2uP − Pxx Px

)(
ψ1

ψ2

)
= VΨ, (2.2a)

with integrability condition

Ut − Vx + [U, V ] = 0, (2.2b)

which again leads to (2.1c). For a specific hierarchy, we must substitute the correct form of u.
For the specific tn flow, we must also use P (n) of (2.1d) in V , leading to

Utn − V (n)
x +

[
U, V (n)

]
= 0. (2.2c)

We then have a direct construction of a Lax pair for the stationary flow Utn = 0, by rewriting V (n)

in terms of the coordinates being used on the stationary manifold. This will be explained in
more detail in Section 3.

2.1 The KdV hierarchy and conservation laws

The KdV hierarchy corresponds to choosing M = 1 in (2.1a), so u = u0−λ. The coefficients Pk

in (2.1d) are constructed recursively, the first few being

P0 = 1, P1 =
1

2
u0, P2 =

1

8

(
u0xx + 3u20

)
.
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The flows are given by (2.1c), with P = P (n) and can be written in bi-Hamiltonian form

u0tn = B1δu0Hn = B0δu0Hn+1, n ≥ 0, (2.3a)

with

B1 = ∂3x + 4u0∂x + 2u0x, B0 = 4∂x and Pn = δu0Hn, (2.3b)

where δu0 denotes the variational derivative with respect to u0.

In particular,

H0 = u0, H1 =
1

4
u20, H2 =

1

8

(
u30 −

1

2
u20x

)
,

H3 =
1

64

(
5u40 − 10u0u

2
0x + u20xx

)
. (2.3c)

Corresponding to these densities, we have an array of fluxes Fnm, in local conservation laws,
given by the tn evolution of Hm:

∂tnHm = ∂xFnm. (2.3d)

In particular, we have

F10 =
1

2

(
u0xx + 3u20

)
, F11 =

1

8

(
2u0u0xx − u20x + 4u30

)
,

F20 =
1

8

(
10u30 + 5u20x + 10u0u0xx + u0xxxx

)
,

F21 =
1

32

(
15u40 + 20u20u0xx + u20xx − 2u0xu0xxx + 2u0u0xxxx

)
. (2.3e)

2.2 The DWW hierarchy and conservation laws

The DWW hierarchy corresponds to choosing M = 2 in (2.1a), so u = u0 + u1λ − λ2. The
coefficients Pk in (2.1d) are constructed recursively, the first few being

P0 = 1, P1 =
1

2
u1, P2 =

1

8

(
4u0 + 3u21

)
, P3 =

1

16

(
12u0u1 + 5u31 + 2u1xx

)
.

The general recursion, defined by (2.1c) is

J0Pm−2 + J1Pm−1 + J2Pm = 0, (2.4a)

with

J0 = ∂3x + 4u0∂x + 2u0x, J1 = 4u1∂x + 2u1x, J2 = −4∂x.

For P = P (n), we have

u0tn + λu1tn = J0Pn + λ(J0Pn−1 + J1Pn), (2.4b)

which can be written in vector form(
u0
u1

)
tn

=

(
0 J0
J0 J1

)(
Pn−1

Pn

)
=

(
J0 0
0 −J2

)(
Pn

Pn+1

)
=

(
−J1 −J2
−J2 0

)(
Pn+1

Pn+2

)
, (2.4c)
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with the first being given directly by (2.4b). The general recursion (2.4a) then gives the second
two representations. These matrix operators are the 3 compatible Hamiltonian operators of the
DWW hierarchy, labelled respectively as B2, B1 and B0. Defining(

Pn−1

Pn

)
= δuHn =

(
δu0Hn

δu1Hn

)
, (2.5a)

we have

utn = B2δuHn = B1δuHn+1 = B0δuHn+2, for n ≥ 0, (2.5b)

where u = (u0, u1)
T. This is the construction given in [1, 2]. An r-matrix formulation was given

in [20].

The above construction gives an infinite sequence of Hamiltonian functions, Hn, the first few
of which are

H0 = u1, H1 = u0 +
1

4
u21, H2 =

1

2
u1

(
u0 +

1

4
u21

)
,

H3 =
1

4

(
u20 +

3

2
u0u

2
1 +

5

16
u41 −

1

4
u21x

)
. (2.5c)

We have

B0δuH0 = B0δuH1 = B1δuH0 = 0, (2.5d)

meaning that B0 has two local Casimir functions H0, H1, whilst B1 has one local Casimir
function H0.

We define fluxes Fnm by the same formula (2.3d), giving

F10 = 2u0 +
3

2
u21, F11 =

1

2

(
4u0u1 + u31 + u1xx

)
,

F12 =
1

32

(
16u20 + 40u0u

2
1 + 9u41 − 4u21x + 8u1u1xx

)
, F20 = 3u0u1 +

5

4
u31 +

1

2
u1xx,

F21 =
1

32

(
48u20 + 72u0u

2
1 + 15u41 + 20u21x + 16u0xx + 32u1u1xx

)
,

F22 =
1

32

(
48u20u1 + 9u51 − 8u0xu1x + 8u1u0xx + 18u21u1xx + 8u0

(
6u31 + u1xx

))
. (2.5e)

2.2.1 Miura maps

In [2], Miura maps were presented for the entire class of systems described by the Lax op-
erator (2.1a). In the DWW case, there are 3 sets of variables (u0, u1), (w0, w1) and (v0, v1),
related by

u0 = −w0x − w2
0, u1 = w1 and w0 = v0, w1 = −v1x − 2v0v1

⇒ u0 = −v0x − v20, u1 = −v1x − 2v0v1. (2.6)

In the u-space we have the 3 local Hamiltonian operators Bu
i ≡ Bi, i = 0, 1, 2 given by (2.4c),

with 2 local operators Bw
2 , B

w
1 in the w-space and just 1 local operator Bv

2 in the v-space. These
are depicted in Figure 1 and related by

Bu
k =

Du

Dw
Bw

k

(
Du

Dw

)†
, for k = 1, 2, and Bw

2 =
Dw

Dv
Bv

2

(
Dw

Dv

)†
,
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Bu
2

Bu
1

Bu
0

Bw
2

Bw
1

Bv
2

�

�

�

Figure 1. Hamiltonian operators in the 3 spaces.

where Du
Dw and Dw

Dv are the Jacobians of the maps (2.6), with

Bw
2 =

(
0 −∂x(∂x − 2w0)

(∂x + 2w0)∂x 4w1∂x + 2w1x

)
,

Bv
2 =

(
0 −∂x

−∂x 0

)
, Bw

1 =

(
−∂x 0
0 4∂x

)
.

We have built a sequence of Hamiltonians Hu
k ≡ Hu

k [u0, u1], as functions of u0, u1 and their
x-derivatives. The Miura maps then define Hw

k and Hv
k , by substituting the formulae (2.6)

into Hu
k . The flow utn , defined by (2.5b), gives rise to the flows:

wtn = Bw
2 δwH

w
n = Bw

1 δwH
w
n+1 and vtn = Bv

2δvH
v
n, (2.7)

where w = (w0, w1)
T and v = (v0, v1)

T.

3 KdV stationary flows

In this section we discuss the two different canonical representations of the stationary flows,
related to the two Hamiltonian representations of the KdV hierarchy. This gives us a new way
of constructing a bi-Hamiltonian representation of the stationary flows. We also discuss the Lax
formulation of the derived systems.

A stationary flow (for tn) means that we reduce to a finite-dimensional space with u0tn = 0.
The “time” variable for this system is x, which is the variable which appears in the Lagrangians,
given below.

This gives an ODE, defined by one of the two representations given in (2.3a):

1. Using B0 with the Bogoyavlensky–Novikov coordinates [6], we build the first Lagrangian:

B0δu0Hn+1 = 0 ⇒ δu0(Hn+1 − αu0) = 0 ⇒ Ln+1 = Hn+1 − αu0. (3.1)

We then use the (generalised) Legendre transformation to find canonical coordinates (qi, pi)
and the Hamiltonian function.

2. Using B1 and the squared eigenfunction representation (following [4]):

δu0Hn = aφ2, (3.2a)

and since B1 is skew symmetric, we can show

φ2
(
B1φ

2
)
=
(
2φ3(φxx + u0φ)

)
x
= 0 ⇒ 2φ3(φxx + u0φ) = 4β. (3.2b)

Equations (3.2a) and (3.2b) can then be written as variational derivatives of a single
Lagrangian function

Ln =
1

2a
Hn − 1

2
u0φ

2 +
1

2
φ2
x −

β

φ2
. (3.2c)

Again, the (generalised) Legendre transformation gives canonical coordinates (Qi, Pi) and
the Hamiltonian function.
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Remark 3.1. Clearly, the algorithm for constructing the Hn of (2.3c) leads to awkward looking
overall factors. In the above formulae for Ln and Ln+1, we always choose convenient multiples
of Hn and Hn+1.

Remark 3.2. In equation (3.2a), the parameter a is arbitrary, but we can always rescale φ, so
choose a = 1

2 .

Each of the above representations gives an n-degrees of freedom canonical Hamiltonian system
for the stationary flow u0tn = 0. We can extend the spaces to 2n + 1 dimensions, by adding
the arbitrary constants α and β as dynamical variables, which are just Casimir functions of the
respective extended canonical brackets.

Poisson map. We can then write qi, pi, α in terms of u0(x) and its derivatives, which in turn
can be written in terms of Qi, Pi, β and vice versa, thus giving us a Poisson map between the
two systems. We emphasise that this is not a canonical transformation, so generates a second
Poisson bracket for each of the systems. We give a more detailed description of the procedure
for the simplest case of the t1 flow.

First integrals. Setting u0tn = 0 in (2.3d) means that the fluxes Fnm are first integrals. On
this (extended) stationary manifold, the n+ 1 functions {Fnk}nk=0 are independent.

Multi-component squared eigenfunctions. Since B1 is a linear operator, we can extend
the squared eigenfunction representation (3.2a) to include multiple eigenfunctions, with

δu0Hn =
1

2

∑
i

φ2
i . (3.3a)

The first option is to repeat the calculation (3.2a) for each φi, to obtain 2φ3
i (φixx + u0φi) =

4βi, giving

Ln = Hn +
∑
i

(
1

2
φ2
ix −

1

2
u0φ

2
i −

βi
φ2
i

)
. (3.3b)

For the second option we first define φ2 =
∑

i φ
2
i . We then consider

φ2B1φ
2 = 0 ⇒ φ2

∑
i

φi(φixx + u0φi) +
∑
i<j

(φiφjx − φjφix)
2 = const. (3.3c)

If we now set

φixx + u0φi =
2βφi

φ4
, then φ2

∑
i

φi(φixx + u0φi) = 2β. (3.3d)

Furthermore, (φiφjx−φjφix)x = 0, for each i < j, so the expression in (3.3c) really is a constant.
Therefore, (3.3d) is a solution to our problem. We then have

Ln = Hn +
1

2

∑
i

φ2
ix −

1

2
u0φ

2 − β

φ2
. (3.3e)

It can be seen that this Lagrangian is rotationally invariant in the φ space and that the expres-
sions (φiφjx − φjφix) are just the angular momenta, which are constants of the motion.

3.1 The t1 flow

We build 3 different Hamiltonians.



8 A.P. Fordy and Q. Huang

The Lagrangian (3.1), using 8H2 and labelling −L2 as L, gives

L =
1

2
u20x − u30 + αu0 ⇒ h(q) =

1

2
p21 + q31 − αq1. (3.4)

The Lagrangians (3.3b) and (3.3e) are degenerate, since H1 is independent of u0x. Choosing
−H1 in (3.3b) gives

L̃ =
1

2

N∑
i=1

(
φ2
ix − u0φ

2
i −

2βi
φ2
i

)
− 1

4
u20. (3.5a)

We find δu0L̃ = −1
2

(∑N
i=1 φ

2
i + u0

)
= 0, so substitute u0 = −

∑N
i=1 φ

2
i , to obtain the Garnier

system (see [22])

L̃ =
1

2

N∑
i=1

φ2
x +

1

4

(
N∑
i=1

φ2
i

)2

−
N∑
i=1

βi
φ2
i

⇒ h(Q) =
1

2

N∑
i=1

(
P 2
i +

2βi
Q2

i

)
− 1

4

(
N∑
i=1

Q2
i

)2

. (3.5b)

A similar calculation for the case (3.3e) leads to

h(Q) =
1

2

N∑
i=1

P 2
i − 1

4

(
N∑
i=1

Q2
i

)2

+
β

Q2
, (3.5c)

where Q2 =
∑N

i=1Q
2
i .

First integrals for the Hamiltonian h(Q) of (3.5b). The fluxes (2.3e) give us two
integrals for this Hamiltonian, one of which is h(Q) itself. The other is a deformation of the
rotational Casimir in N dimensions. To describe this, we define

hij = (QiPj −QjPi)
2 + 2

(
βiQ

2
j

Q2
i

+
βjQ

2
i

Q2
j

)
for 1 ≤ i < j ≤ N. (3.6a)

We then have

F10 = −2h(Q), F11 = Φ(Q) =
1

2

∑
i<j

hij +

N∑
i=1

βi. (3.6b)

We see from (3.6b) that h12 is an integral when N = 2. In fact, for arbitrary N , each hij is
a first integral, for all i < j, so for N ≥ 3, this system is superintegrable, as is known [5, 22].

The Poisson relations for hij are particularly simple when N = 3. We first define a cubic
element h123:

h123 = (Q1P2 −Q2P1)(Q2P3 −Q3P2)(Q3P1 −Q1P3)

− 2

(
β1Q2Q3(Q2P3−Q3P2)

Q2
1

+
β2Q1Q3(Q3P1−Q1P3)

Q2
2

+
β3Q1Q2(Q1P2−Q2P1)

Q2
3

)
.

We then have

{h12, h23} = −{h12, h13} = −{h13, h23} = 4h123,

and

{h12, h123} = 2 (h12(h13 − h23)− 4β1h23 + 4β2h13) ,

{h23, h123} = 2 (h23(h12 − h13)− 4β2h13 + 4β3h12) ,

{h13, h123} = 2 (h13(h23 − h12)− 4β3h12 + 4β1h23) .
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Remark 3.3 (rotationally symmetric case). The Hamiltonian h(Q) of (3.5c) is clearly rotation-
ally invariant, so the integrals (3.6a) are replaced by the angular momenta and Φ(Q) just gives
the rotational Casimir in N dimensions.

3.1.1 Bi-Hamiltonian formulation when N = 1

Here we have

h(Q) =
1

2
P 2
1 − 1

4
Q4

1 +
β

Q2
1

. (3.7)

The Hamiltonian formulations (3.4) and (3.7) give coordinates q=(q1, p1, α) andQ=(Q1, P1, β),
respectively. From the definitions of the canonical coordinates, we have

q1 = u0 = −Q2
1, p1 = u0x = −2Q1P1, α = u0xx + 3u20 = −4h(Q). (3.8)

In the 3D space with coordinates q, we introduce the degenerate extension of the canonical
Poisson tensor:

P(q)
0 =

 0 1 0
−1 0 0
0 0 0

 , with
dq

dtf
= P(q)

0 ∇qf,

for any function f(q). The formulae (3.8) represent a mapping from the Q space to the q space,

with Jacobian ∂q
∂Q . We use the inverse map to construct a Poisson tensor P(Q)

0 in the Q space.

The Jacobian of this inverse is just the inverse matrix of ∂q
∂Q , which is conveniently written in

terms of the Q coordinates:

P(Q)
0 =

(
∂q

∂Q

)−1

P(q)
0

((
∂q

∂Q

)−1
)T

, with
dQ

dtf
= P(Q)

0 ∇Qf̃ ,

where f̃(Q) = f(q(Q)). From (3.8), we find (up to numerical factor)

P(Q)
0 =


0 1

Q2
1

−P1

− 1
Q2

1
0 −2β+Q6

1

Q3
1

P1
2β+Q6

1

Q3
1

0

 , with α = −4h(Q), h(q) = −4β.

This is compatible with the canonical bracket on the Q space:

P(Q)
1 =

 0 1 0
−1 0 0
0 0 0

 ,

which in turn allows us to construct a Poisson tensor P(q)
1 , using

( ∂q
∂Q

)
P(Q)
1

( ∂q
∂Q

)T
= −4P(q)

1 ,
which should be written in terms of the q variables:

P(q)
1 =

 0 q1 p1
−q1 0 α− 3q21
−p1 3q21 − α 0

 .

We use the two independent fluxes from (2.3e):

F10 =
1

2
α = −2h(Q), F11 = −1

4
h(q) = β,
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to build the bi-Hamiltonian ladders, which satisfy

P(q)
0 ∇qα = 0, qth = P(q)

1 ∇qα = P(q)
0 ∇qh

(q), P(q)
1 ∇qh

(q) = 0,

P(Q)
0 ∇Qh

(Q) = 0, Qth = P(Q)
1 ∇Qh

(Q) = P(Q)
0 ∇Q(−β), P(Q)

1 ∇Qβ = 0.

Whereas α and β were chosen to be the Casimirs of the canonical brackets, we see that h(q)

and h(Q) are the Casimirs of the “second” brackets.

3.2 The t2 flow

We build 3 different Hamiltonians.
The Lagrangian (3.1), with 32H3 and labelling L3 as L, gives

L =
1

2

(
5u40 − 10u0u

2
0x + u20xx

)
− αu0

⇒ h(q) =
1

2
p22 + q2p1 + 5q1q

2
2 −

5

2
q41 + αq1, (3.10)

where we have used the generalised Legendre transformation

q1 = u0, q2 = u0x, p1 =
∂L
∂u0x

− d

dx

(
∂L
∂u0xx

)
= −10u0u0x − u0xxx,

p2 =
∂L
∂u0xx

= u0xx. (3.11)

The Lagrangian (3.3b), with −8H2, gives

L̃ =
1

2

(
u20x +

N−1∑
i=1

φ2
ix

)
− u30 −

1

2
u0

N−1∑
i=1

φ2
i −

N−1∑
i=1

βi+1

φ2
i

. (3.12a)

Defining Q1 = u0, P1 = u0x, Qi+1 = φi, Pi+1 = φix, i = 1, . . . , N − 1, we obtain a generalised
Hénon–Heiles system

h(Q) =
1

2

N∑
i=1

P 2
i +

1

2
Q1

(
2Q2

1 +
N∑
i=2

Q2
i

)
+

N∑
i=2

βi
Q2

i

. (3.12b)

The fluxes (2.3e) then give three integrals

4F20 = −h(Q), 16F21 = f (Q) = P1

N∑
i=1

QiPi − 2Q1h
(Q) +

1

8

(
16Q4

1 + 12Q2
1Q

2 +Q4
)
,

64F22 = Φ(Q) =
1

2

∑
2≤i<j≤N

hij +
N∑
i=2

βi, (3.12c)

where hij are given by (3.6a) and Q2 =
∑N

i=2Q
2
i . Again, each hij is a first integral.

For the case (3.3e), an identical calculation leads to

h(Q) =
1

2

N∑
i=1

P 2
i +

1

2
Q1

(
2Q2

1 +

N∑
i=2

Q2
i

)
+

β

Q2
.

This Hamiltonian is clearly rotationally invariant (in Q2, . . . , QN space), so the integrals (3.6a)
are replaced by the angular momenta and F22 just gives the rotational Casimir in (N − 1)
dimensions.
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3.2.1 Bi-Hamiltonian formulation when N = 2

Here we have the usual 2 degrees of freedom Hénon–Heiles Hamiltonian

h(Q) =
1

2

(
P 2
1 + P 2

2

)
+

1

2
Q1

(
2Q2

1 +Q2
2

)
+

β

Q2
2

. (3.13)

The Hamiltonian formulations (3.10) and (3.13) gave coordinates q = (qi, pi, α) and Q =
(Qi, Pi, β), respectively. From the definitions of the canonical coordinates, we have (3.11) and
α = 10u30+5u20x+10u0u0xx+u0xxxx. Since u0 = Q1, we can use h(Q) to calculate all x-derivatives:

u
(m+1)
0 =

{
u
(m)
0 , h(Q)

}
, where u

(i)
0 is the ith derivative of u0 with respect to x, giving

q1 = Q1, q2 = P1, p1 = −4Q1P1 +Q2P2, p2 = −3Q2
1 −

1

2
Q2

2,

α = −2h(Q). (3.14)

The three independent fluxes from (2.3e) give

4F20 =
1

2
α = −h(Q), 16F21 = h(q) = f (Q), 64F22 = −1

2
f (q) = β, (3.15a)

where

f (q) = p21 + 4q1p
2
2 + 8q1q2p1 + 2

(
10q31 − q22

)
p2 + 2q21

(
12q31 + 5q22

)
− 2α

(
p2 + 3q21

)
, (3.15b)

f (Q) = P2(Q2P1 −Q1P2) +
1

8
Q2

2

(
4Q2

1 +Q2
2

)
− 2βQ1

Q2
2

. (3.15c)

In the 5D space with coordinates q, we introduce a degenerate extension of the canonical

Poisson tensor and use (3.14) as a Poisson map to obtain P(Q)
0 :

P(q)
0 =


0 0 1 0 0
0 0 0 1 0

−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0

 ⇒ P(Q)
0 =



0 0 0 1
Q2

a15

0 0 1
Q2

−2Q1

Q2
2

a25

0 − 1
Q2

0 P2

Q2
2

a35

− 1
Q2

2Q1

Q2
2

− P2

Q2
2

0 a45

−a15 −a25 −a35 −a45 0


,

where the column (a15, a25, a35, a45, 0)
T = −P (Q)

1 ∇Qf
(Q), with P(Q)

1 being the compatible canon-
ical bracket on the Q space, which is similarly transformed to the q space:

P(Q)
1 =


0 0 1 0 0
0 0 0 1 0

−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0



⇒ P(q)
1 =


0 1 −4q1 0 b15

−1 0 4q2 6q1 b25
4q1 −4q2 0 −30q21 − 2p2 b35
0 −6q1 30q21 + 2p2 0 b45

−b15 −b25 −b35 −b45 0

 ,

where the column (b15, b25, b35, b45, 0)
T = −2P

(q)
0 ∇qh

(q).
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The Hamiltonian ladders are

P(q)
0 ∇qα = 0, P(q)

1 ∇q

(
−α

2

)
= P(q)

0 ∇qh
(q),

P(q)
1 ∇qh

(q) = P(q)
0 ∇q

(
1
2f

(q)
)
, P(q)

1 ∇qf
(q) = 0,

P(Q)
0 ∇Qh

(Q) = 0, P(Q)
1 ∇Qh

(Q) = P(Q)
0 ∇Qf

(Q),

P(Q)
1 ∇Qf

(Q) = P(Q)
0 ∇Q(−β), P(Q)

1 ∇Qβ = 0.

The two nontrivial flows correspond to the two lower commuting flows of the KdV hierarchy.
We see this by looking at the u0 (= q1 = Q1) component of the flows.

In the q space, the flows P(q)
0 ∇qh

(q) and P(q)
0 ∇q

(
−1

2f
(q)
)
give

q1th =
∂h(q)

∂p1
= q2 = q1x, q1tf =

∂

∂p1

(
−1

2f
(q)
)
= −p1 − 4q1q2 = q1xxx + 6q1q1x. (3.16a)

In the Q space, the flows P(Q)
1 ∇Qh

(Q) and P(Q)
1 ∇Q

(
−f (Q)

)
give

Q1th =
∂h(Q)

∂P1
= P1 = Q1x, Q1tf = −∂f

(Q)

∂P1
= −Q2P2 =

(
Q1xx + 3Q2

1

)
x
. (3.16b)

3.3 The Lax representation

As we previously said, to obtain a Lax representation for stationary flows, we use the zero
curvature representation, given in (2.2a) and (2.2c), with Utn = 0. When written in terms of
the coordinates on the stationary manifold, the characteristic equation, det

(
zI − L(n)

)
= 0, is

λ-dependent, giving the same integrals as derived from the fluxes Fij .

3.3.1 The t1 flow

In this case our matrices are

U =

(
0 1

λ− u0 0

)
, V (1) =

1

2

(
−u0x 4λ+ 2u0

4λ2 − 2λu0 − 2u20 − u0xx u0x

)
. (3.17)

Using the coordinates of (3.4), we define

L(1) = −2V (1) =

(
p1 −2(2λ+ q1)

α− q21 + 2λq1 − 4λ2 −p1

)
⇒ z2 − 2h(q) + 4αλ− 16λ3 = 0,

where α and h(q) are constants of the motion. The Lax representation of the equation generated
by h(q) is

L(1)
x =

{
L(1), h(q)

}
=
[
U,L(1)

]
,

using the canonical Poisson bracket, acting componentwise on the matrix.
Using the coordinates of (3.5b), we have

L(1) = V (1) =


N∑
1

QiPi 2λ−Q2

N∑
1

(
P 2
i +

2βi
Q2

i

)
+ λ

(
2λ+Q2

)
−

N∑
1

QiPi
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⇒ z2 − 4λh(Q)+ 2Φ(Q)− 4λ3 = 0, (3.18a)

where Q2 =
∑N

i=1Q
2
i , with h(Q) and Φ(Q) as given in (3.5b) and (3.6b). The Lax equations

generated by h(Q) and Φ(Q) are

L(1)
x =

{
L(1), h(Q)

}
=
[
U,L(1)

]
,

{
L(1),Φ(Q)

}
= 0. (3.18b)

In fact,
{
L(1), hij

}
= 0, for each of the functions hij of (3.6a).

When N = 1, the function Φ(Q) is replaced by β.

Remark 3.4 (rotationally symmetric case). Similar equations hold for the case (3.5c), with∑N
1

βi

Q2
i
replaced by β

Q2 and the integral Φ(Q) by the rotational Casimir.

3.3.2 The t2 flow

In this case our principal matrix is proportional to V (2), which is to be written in terms of
appropriate coordinates.

Using the coordinates from (3.10), we define

L(2) = −8V (2) =

(
4λq2 − p1 − 4q1q2 −2

(
8λ2 + 4λq1 + p2 + 3q21

)
a21 p1 + 4q1q2 − 4λq2

)
,

where a21 = α− 2q1p2 − 4q31 + q22 + 2λ
(
p2 + q21

)
+ 8q1λ

2 − 16λ3. The characteristic equation is

z2 − 256λ5 + 16αλ2 + 8λh(q) − f (q) = 0,

with h(q) and f (q) given by (3.10) and (3.15b). We have

L(2)
x =

{
L(2), h(q)

}
=
[
U,L(2)

]
, L

(2)
t1

=
{
L(2), f (q)

}
=
[
L(1), L(2)

]
,

with

U =

(
0 1

λ− q1 0

)
, L(1) =

(
2q2 −4(2λ+ q1)

2
(
p2 + 2q21 + 2λq1 − 4λ2

)
−2q2

)
,

where L(1) is derived from V (1) of (3.17).
Using the coordinates of (3.12b), we define

L(2) = 8V (2) =


N∑
2

QiPi − 4λP1 16λ2 + 8λQ1 −Q2

a21 4λP1 −
N∑
2

QiPi

 , (3.19a)

where

Q2 =
N∑
2

Q2
i , a21 = 16λ3 − 8Q1λ

2 + λ

(
4Q2

1 +
N∑
2

Q2
i

)
+

N∑
2

(
P 2
i +

2βi
Q2

i

)
.

The characteristic equation is

z2 = 256λ5 + 32h(Q)λ2 − 8f (Q)λ− 2Φ(Q), (3.19b)

where f (Q) and Φ(Q) are given in (3.12c). We have

L(2)
x =

{
L(2), h(Q)

}
=
[
U,L(2)

]
, L

(2)
t1

=
{
L(2), f (Q)

}
=
[
L(1), L(2)

]
,{

L(2), hij
}
= 0, (3.19c)

for 2 ≤ i < j ≤ N , and where

U =

(
0 1

λ−Q1 0

)
, L(1) =

(
P1 −2(2λ+Q1)

−4λ2 + 2λQ1 − 1
2

(
2Q2

1 +Q2
)

−P1

)
. (3.19d)
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4 DWW stationary flows

We can follow the approach of Section 3 in the context of the DWW hierarchy. We have three
representations of utn , given by (2.5b), with a stationary flow being the reduction to a finite-
dimensional space with utn = 0. The “time” variable for this flow is x. In the KdV case the
Casimir of B0 was just H0, which gave us the α term in (3.1), whilst, for the DWW operator B0,
we have two Casimirs, H0, H1. The DWW operator B1 has one CasimirH0, corresponding to the
first order part, but we also have the squared eigenfunctions for J0. We leave the operator B2 to
a later discussion of the Miura maps in Section 5, so now consider the two operators B0 and B1:

1. Using B0, we have

B0δuHn+2 = 0 ⇒ δu(Hn+2 − α0H0 − 4α1H1) = 0, (4.1a)

giving the Lagrangian

Ln+2 = Hn+2 − α0u1 − α1

(
4u0 + u21

)
. (4.1b)

Again, we use the (generalised) Legendre transformation to find canonical coordinates (qi, pi)
and the Hamiltonian function.

2. Using B1, we have

δu0Hn+1 =
1

2
φ2, δu1Hn+1 = −α

⇒ Ln+1 = Hn+1 + αu1 +
1

2
φ2
x −

1

2
u0φ

2 − β

φ2
. (4.2)

Again, the extensions (3.3b) and (3.3e) can be introduced here.

4.1 The t1 flow

We build 3 different Hamiltonians.

The Lagrangian (4.1b), using 8H3 and labelling −L3 as L, gives

L =
1

2
u21x −

5

8
u41 + α0u1 + α1u

2
1 + u0

(
4α1 − 3u21

)
− 2u20. (4.3a)

This Lagrangian is degenerate, but δu0L = 0 gives u0 = α1 − 3
4u

2
1, after which

L =
1

2
u21x +

1

2
u41 − 2α1u

2
1 + α0u1 + 2α2

1

⇒ h(q) =
1

2
p21 −

1

2
q41 + 2α1q

2
1 − α0q1. (4.3b)

The fluxes (2.5e) give

F10 = 2α1, F11 =
1

2
α0, F12 = −1

4
h(q) +

1

2
α2
1. (4.3c)

The Lagrangian (4.2), using −H2 in the first multicomponent version of (4.2) (see (3.3b)),
we find

L̃ =
N∑
i=1

(
1

2
φ2
ix −

1

2
u0φ

2
i −

βi
φ2
i

)
+ αu1 −

1

8
u1
(
4u0 + u21

)
. (4.4a)
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This is also degenerate, but δu0L̃ = 0 and δu1L̃ = 0 give u1 = −
∑
φ2
i and u0 = 2α− 3

4

(∑
φ2
i

)2
,

after which

L̃ =
N∑
i=1

(
1

2
φ2
ix − αφ2

i −
βi
φ2
i

)
+

1

8

(
N∑
i=1

φ2
i

)3

. (4.4b)

Defining Qi = φi, Pi = φix, we obtain the Hamiltonian

h(Q) =
1

2

N∑
i=1

(
P 2
i + 2αQ2

i +
2βi
Q2

i

)
− 1

8

(
N∑
i=1

Q2
i

)3

. (4.4c)

The fluxes (2.5e) give (compare with (3.6b))

F10 = 4α, F11 = −2h(Q), F12 − 2α2 = Φ(Q) =
1

2

∑
1≤i<j≤N

hij +

N∑
i=1

βi. (4.4d)

Since hij are a deformation of the (squares of) angular momenta, it is straightforward to build
an involutive set of integrals, so (4.4c) defines a superintegrable system (for N ≥ 3).

When N = 1, F12 = 2α2 + β. When N = 2, we have 2 integrals h(Q), h12. When N = 3, we
have 4 integrals h(Q), hij , with h

(Q), h12 and Φ(Q) in involution. This and the Hamiltonian (3.5b)
(for N = 3) are particular cases of the first potential in Table II of [11].

Remark 4.1 (rotationally invariant case). The extension (3.3e) gives a similar result, with

h(Q) =
1

2

N∑
i=1

(
P 2
i + 2αQ2

i

)
− 1

8

(
N∑
i=1

Q2
i

)3

+
β

Q2
, (4.5)

where Q2 =
∑N

i=1Q
2
i . The integrals hij are just replaced by the rotation algebra.

4.1.1 Bi-Hamiltonian formulation when N = 1

Here we have

h(Q) =
1

2
P 2
1 − 1

8
Q6

1 + αQ2
1 +

β

Q2
1

. (4.6)

The Hamiltonian formulations (4.3b) and (4.6) give coordinates q = (q1, p1, α0, α1) and Q =
(Q1, P1, β, α), respectively. From the definitions of the canonical coordinates, we have

q1 = −Q2
1, p1 = −2Q1P1, α0 = −4h(Q), α1 = 2α.

Following the same procedure as Section 3.1.1, we introduce a degenerate extension of the canon-
ical Poisson tensor in the 4D space with coordinates q and then define

(∂Q
∂q

)
P(q)
0

(∂Q
∂q

)T
= 1

4P
(Q)
0 ,

giving

P(q)
0 =


0 1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

 and P(Q)
0 =


0 1

Q2
1

a13 0

− 1
Q2

1
0 a23 0

−a13 −a23 0 0
0 0 0 0

 ,
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where (a13, a23, 0, 0)
T = −P (Q)

1 ∇Qh
(Q) and P(Q)

1 is the compatible (degenerate) canonical Pois-
son tensor on the Q space, which in turn leads to

( ∂q
∂Q

)
P(Q)
1

( ∂q
∂Q

)T
= −4P(q)

1 , giving

P(Q)
1 =


0 1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

 and P(q)
1 =


0 q1 b13 0

−q1 0 b23 0
−b13 −b23 0 0

0 0 0 0

 ,

where (b13, b23, 0, 0)
T = P

(q)
0 ∇qh

(q).
We use the three independent fluxes from (2.5e) to build the bi-Hamiltonian ladders:

F10 = 2α1 = 4α, F11 =
1

2
α0 = −2h(Q), F12 = −1

4
h(q) +

1

2
α2
1 = 2α2 + β,

which satisfy P(q)
1 ∇qα1 = P(q)

0 ∇qα1 = P(Q)
1 ∇Qα = P(Q)

0 ∇Qα = 0 and

P(q)
0 ∇qα0 = 0, qth = P(q)

1 ∇qα0 = P(q)
0 ∇qh

(q), P(q)
1 ∇qh

(q) = 0,

P(Q)
0 ∇Qh

(Q) = 0, Qth = P(Q)
1 ∇Qh

(Q) = P(Q)
0 ∇Q(−β), P(Q)

1 ∇Qβ = 0.

Remark 4.2 (the parameters α and α1). At this stage it looks like we should consider α1

and α as constants rather than dynamical variables. However, we will see in Section 5 that they
generate nontrivial flows with respect to a third Poisson bracket.

4.2 The t2 flow

We build 3 different Hamiltonians.
The Lagrangian (4.1b), using 2H4 and labelling L4 as L, gives

L =
1

64

(
u1
(
4u0 + u21

)(
12u0 + 7u21

)
− 4u1x(4u0x + 5u1u1x)

)
− α0u1 − α1

(
4u0 + u21

)
. (4.7a)

The standard Legendre transformation gives

u0 = q1, u1 = q2, u0x = 2(5q2p1 − 2p2), u1x = −4p1,

giving the Hamiltonian

h(q) = 5q2p
2
1 − 4p1p2 −

q2
64

(
4q1 + q22

)(
12q1 + 7q22

)
+ α0q2 + α1

(
4q1 + q22

)
. (4.7b)

The fluxes (2.5e) give

F20 = 8α1, F21 = 2α0, F22 = h(q), (4.7c)

F23 − 8α2
1 = f (q) =

1

256

(
4q1 + 3q22

)(
64(α0 − 2α1q2) +64p21 − 16q21 + 5q42

)
− 2(p2 − q2p1)

2.

The Lagrangian (4.2), using −8H3 in the first multicomponent version of (4.2) (see (3.3b)),
we find

L̃ =
N−1∑
i=1

(
1

2
φ2
ix −

1

2
u0φ

2
i −

βi+1

φ2
i

)
+ αu1 +

1

2
u21x −

1

8

(
4u0 + u21

)(
4u0 + 5u21

)
.

This is degenerate in u0, but δu0L̃ = 0 gives u0 = −3
4u

2
1 − 1

8

∑N−1
1 φ2

i , after which

L̃ =
1

2

(
u21x +

N−1∑
i=1

(
φ2
ix −

2βi+1

φ2
i

))
+ αu1 +

1

32

16u41 + 12u21

N−1∑
i=1

φ2
i +

(
N−1∑
i=1

φ2
i

)2
 .
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Defining u1 = Q1, u1x = P1 and φi = Qi+1, φix = Pi+1, i = 1, . . . , N − 1, we obtain the
Hamiltonian

h(Q) =
1

2

N∑
i=1

P 2
i − αQ1 +

N∑
i=2

βi
Q2

i

− 1

32

16Q4
1 + 12Q2

1

N∑
i=2

Q2
i +

(
N∑
i=2

Q2
i

)2
 . (4.8a)

The fluxes (2.5e) give

F20 =
1

2
α, F21 = −1

4
h(Q), 64F23 − 2α2 = Φ(Q) =

1

2

∑
2≤i<j≤N

hij +
N∑
i=2

βi, (4.8b)

16F22 = f (Q) = P1

N∑
i

QiPi − 2Q1h
(Q) − 1

2
α
(
4Q2

1 +Q2
)
− 1

16
Q1

(
4Q2

1 +Q2
)(
4Q2

1 + 3Q2
)
,

where Q2 =
∑N

2 Q2
i and hij are defined by (3.6a), with 2 ≤ i < j ≤ N . In fact, hij are

themselves first integrals. Since hij are a deformation of the (squares of) angular momenta, it is
straightforward to build an involutive set of integrals, so (4.8a) defines a superintegrable system
(for N ≥ 4).

When N = 2, F23 = 1
64

(
2α2 + β

)
, so there are just the two integrals, h(Q) and f (Q). This is

the case which was found in the classifications of [14, 19]. We show that this particular case is
tri-Hamiltonian in Section 5 (see Remark 5.3). In fact, this Hamiltonian and the Hénon–Heiles
one (3.13) belong to an infinite family, which are separable in parabolic coordinates (see, for
example, [18, equation (2.2.41)]). Other members of the classifications of [14, 19] can similarly
be derived as stationary flows associated with 4th order scalar Lax operators [4].

When N = 3, we have h(Q), f (Q) and Φ(Q) in involution. It appears in the classification
of [10, case 4 of Table 1] and is further generalised in [13] and in Section 6 of this paper.

When N = 4, we have h(Q), f (Q), h23 and Φ(Q) in involution, with five independent integrals.

Remark 4.3 (rotationally invariant case). The extension (3.3e) gives a similar result, with

h(Q) =
1

2

N∑
i=1

P 2
i − αQ1 −

1

32

16Q4
1 + 12Q2

1

N∑
i=2

Q2
i +

(
N∑
i=2

Q2
i

)2
+

β

Q2
. (4.9)

The integrals hij are just replaced by the rotation algebra on the space Q2, . . . , QN .

4.2.1 Bi-Hamiltonian formulation when N = 2

Here we have

h(Q) =
1

2

(
P 2
1 + P 2

2

)
− αQ1 −

1

32

(
16Q4

1 + 12Q2
1Q

2
2 +Q4

2

)
+

β

Q2
2

. (4.10)

The Hamiltonian formulations (4.7b) and (4.10) give coordinates q = (qi, pi, α0, α1) and
Q = (Qi, Pi, β, α), respectively. From the definitions of the canonical coordinates, we have

q1 = −1

8

(
6Q2

1 +Q2
2

)
, q2 = Q1, p1 = −1

4
P1,

p2 =
1

16
(Q2P2 − 4Q1P1), α0 = −1

8
h(Q), α1 =

1

16
α.
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Following the same procedure as Section 3.1.1, we introduce a degenerate extension of the

canonical Poisson tensor in the 6D space with coordinates q and then use
(∂Q
∂q

)
P(q)
0

(∂Q
∂q

)T
=

16P(Q)
0 , giving

P(q)
0 =



0 0 1 0 0 0
0 0 0 1 0 0

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

P(Q)
0 =



0 0 0 1
Q2

a15 0

0 0 1
Q2

−2Q1

Q2
2

a25 0

0 − 1
Q2

0 P2

Q2
2

a35 0

− 1
Q2

2Q1

Q2
2

− P2

Q2
2

0 a45 0

−a15 −a25 −a35 −a45 0 0

0 0 0 0 0 0


, (4.11a)

where the column (a15, a25, a35, a45, 0, 0)
T = −P(Q)

1 ∇Qf
(Q), where P

(Q)
1 is the compatible (de-

generate) canonical Poisson tensor on the Q space, which in turn leads to
( ∂q
∂Q

)
P(Q)
1

( ∂q
∂Q

)T
=

1
32P

(q)
1 :

P(Q)
1 =



0 0 1 0 0 0
0 0 0 1 0 0

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

P(q)
1 =



0 0 12q2 b14 b15 0

0 0 −8 −8q2 b25 0

−12q2 8 0 8p1 b35 0

−b14 8q2 −8p1 0 b45 0

−b15 −b25 −b35 −b45 0 0

0 0 0 0 0 0


, (4.11b)

where b14 = 4q1 + 15q22 and the column (b15, b25, b35, b45, 0, 0)
T = −4P(q)

0 ∇qh
(q).

We use the independent fluxes from (2.5e) to build the bi-Hamiltonian ladders:

F20 = 8α1 =
1

2
α, F21 = 2α0 = −1

4
h(Q),

F22 = h(q) =
1

16
f (Q), F23 = f (q) =

β

64
,

where f (q) is given by (4.7c) and f (Q) by (4.8b) (with N = 2). These satisfy

P(q)
1 ∇qα1 = P(q)

0 ∇qα1 = 0 and P(Q)
1 ∇Qα = P(Q)

0 ∇Qα = 0,

together with

P(q)
0 ∇qα0 = 0, qth = P(q)

1 ∇q

(
−1

4
α0

)
= P(q)

0 ∇qh
(q),
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qtf = P(q)
1 ∇q

(
−1

8
h(q)

)
= P

(q)
0 f (q), P(q)

1 ∇qf
(q) = 0,

P(Q)
0 ∇Qh

(Q) = 0, Qth = P(Q)
1 ∇Qh

(Q) = P(Q)
0 ∇Qf

(Q),

Qtf = P(Q)
1 ∇Qf

(Q) = P(Q)
0 ∇Q(−β), P(Q)

1 ∇Qβ = 0.

Remark 4.4. The first two components of the th and tf flows just reproduce the first two flows
of the DWW hierarchy, analogous to equations (3.16a) and (3.16b) for the stationary t2 flow of
the KdV hierarchy.

4.3 The Lax representation

Following the approach of Section 3.3, we obtain the Lax representations.

4.3.1 The t1 flow

In this case our matrices are

U =

(
0 1

λ2 − λu1 − u0 0

)
, V (1) =

(
−1

2u1x 2λ+ u1
a21

1
2u1x

)
. (4.12)

where a21 =
(
λ2 − λu1 − u0

)
(2λ + u1) − 1

2a12xx, given in terms of the component a12 of the

matrix V (1).
Using the coordinates of the Hamiltonian (4.3b), we define

L(1) = −2V (1) =

(
p1 −2(2λ+ q1)
a21 −p1

)
⇒ z2 − 2h(q) + 4α0λ+ 16α1λ

2 − 16λ4 = 0,

where a21 = α0 − 2α1q1 + 1
2q

3
1 + λ

(
4α1 − q21

)
+ 2λ2q1 − 4λ3. The Lax representation of the

equation generated by h(q) is

L(1)
x =

{
L(1), h(q)

}
=
[
U,L(1)

]
, with U =

(
0 1

λ2 − λq1 +
3
4q

2
1 − α1 0

)
.

Using the coordinates of (4.4c), we have

L(1) = V (1) =


N∑
1

QiPi 2λ−Q2

a21 −
N∑
1

QiPi


⇒ z2 + 2Φ(Q) − 4λh(Q) + 8αλ2 − 4λ4 = 0, (4.13a)

where

a21 =

N∑
1

(
P 2
i +

2βi
Q2

i

)
+

1

2
λ
(
Q4 − 8α

)
+ λ2Q2 + 2λ3, Q2 =

N∑
1

Q2
i , Q4 =

(
Q2
)2
,

with Φ(Q) as given in (4.4d). The Lax equations generated by h(Q) and Φ(Q) are

L(1)
x =

{
L(1), h(Q)

}
=
[
U,L(1)

]
,{

L(1),Φ(Q)
}
= 0, with U =

(
0 1

λ2 + λQ2 + 3
4Q

4 − 2α 0

)
. (4.13b)

In fact,
{
L(1), hij

}
= 0, for each of the functions hij of (3.6a).

Remark 4.5 (rotationally symmetric case). Similar equations hold for the case (4.5).
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4.3.2 The t2 flow

In this case our matrices are U (the same as (4.12)) and

V (2) =

(
−1

2λu1x −
1
4(2u0x + 3u1u1x) 2λ2 + λu1 + u0 +

3
4u

2
1

a21
1
2λu1x +

1
4(2u0x + 3u1u1x)

)
,

where

a21 =

(
2λ2 + λu1 + u0 +

3

4
u21

)(
λ2 − λu1 − u0

)
− 1

2
a12xx.

Using the coordinates of the Hamiltonian (4.7b), we define

L(2) =
1

2
V (2) =

(
λp1 + p2 − q2p1 λ2 + 1

2q2λ+ 1
8

(
4q1 + 3q22

)
a21 q2p1 − p2 − λp1

)
,

where

a21 = λ4 − 1

2
q2λ

3 − 1

8

(
4q1 + q22

)
λ2 +

1

4

(
q32 + 2q1q2 − 16α1

)
λ− α0

+ 2α1q2 +
1

4
q21 −

5

64
q42 − p21.

The characteristic equation of L(2) is

z2 +
1

2
f (q) +

1

2
h(q)λ+ α0λ

2 + 4α1λ
3 − λ6 = 0,

where f (q) is given by (4.7c).
The Lax representation of the equations generated by h(q) and f (q) are

L(2)
x =

{
L(2), h(q)

}
=
[
U,L(2)

]
, L

(2)
t1

=
{
L(2), f (q)

}
=
[
L(1), L(2)

]
,

where U and L(1) = 1
2V

(1) (see (4.12)) are given by

U =

(
0 1

λ2 − q2λ− q1 0

)
, L(1) =

(
p1 λ+ 1

2q2
a21 −p1

)
,

with

a21 = λ3 − 1

2
q2λ

2 − 1

2

(
2q1 + q22

)
λ+

1

8

(
5q32 + 8q1q2 − 32α1

)
.

Using the coordinates of (4.8a), we have

L(2) = 8V (2) =


N∑
2

QiPi − 4λP1 16λ2 + 8λQ1 −
N∑
2

Q2
i

a21 4λP1 −
N∑
2

QiPi

 , (4.14a)

where

a21 =
N∑
2

(
P 2
i +

2βi
Q2

i

)
− λ

(
4α+Q1

(
2Q2

1 +
N∑
2

Q2
i

))
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+ λ2

(
4Q2

1 +

N∑
2

Q2
i

)
− 8Q1λ

3 + 16λ4.

The characteristic equation of L(2) is

z2 + 2Φ(Q) + 8f (Q)λ− 32h(Q)λ2 + 64αλ3 − 256λ6 = 0, (4.14b)

where Φ(Q) and f (Q) are given in (4.8b).
The Lax equations generated by h(Q), f (Q) and hij (not just the combination Φ(Q)) are

L(2)
x =

{
L(2), h(Q)

}
=
[
U,L(2)

]
, L

(2)
t1

=
{
L(2), f (Q)

}
=
[
L(1), L(2)

]
,{

L(2), hij
}
= 0, (4.14c)

where L(1) = −2V (1) (see (4.12)), written in the coordinates of (4.8a), and U are given by

L(1) =

(
P1 −4λ− 2Q1

a21 −P1

)
, U =

(
0 1

λ2 − λQ1 +
1
8

(
6Q2

1 +
∑N

2 Q2
i

)
0

)
, (4.14d)

with

a21 = α+
1

2
Q1

N∑
1

Q2
i −

1

2
λ

(
2Q2

1 +
N∑
2

Q2
i

)
+ 2Q1λ

2 − 4λ3.

Remark 4.6 (rotationally symmetric case). Similar equations hold for the case (4.9).

5 The DWW stationary flows in tri-Hamiltonian form

We now use the Miura maps of Section 2.2.1 to construct a tri-Hamiltonian formulation of the
stationary flows corresponding to (2.5b) and (2.7). In this way, Figure 1 is extended to an

array of 9 Poisson matrices P(m)
k , k,m = 0, 1, 2. The 3 Poisson matrices P(k)

k can be directly
constructed in canonical form, giving us coordinates (qi, pi), (Qi, Pi) and

(
Q̄i, P̄i

)
, for k = 0, 1, 2

respectively. Written in terms of these coordinates, the Miura maps then allow us to build the
remaining 6 Poisson matrices.

1. The case Bu
0 , has already been considered in Section 4, giving the Lagrangian (4.1b), which

we now write as

Lu
n+2 = Hu

n+2 − α0u1 − α1

(
4u0 + u21

)
. (5.1)

The (generalised) Legendre transformation defines canonical coordinates (qi, pi), the Pois-

son matrix P(0)
0 ≡ P(q)

0 and the Hamiltonian function h(q).

2. Using Bw
1 , we have

Bw
1 δwH

w
n+1 = 0 ⇒ δw

(
Hw

n+1 − β0w0 − β1w1

)
= 0

⇒ Lw
n+1 = Hw

n+1 − β0w0 − β1w1. (5.2)

The (generalised) Legendre transformation defines canonical coordinates (Qi, Pi), the Pois-

son matrix P(1)
1 ≡ P(Q)

1 and the Hamiltonian function h(Q).

3. Using Bv
2 , we have

Bv
2δvH

v
n = 0 ⇒ δv (H

v
n − γ0v0 − γ1v1) = 0 ⇒ Lv

n = Hv
n − γ0v0 − γ1v1. (5.3)

The (generalised) Legendre transformation defines canonical coordinates
(
Q̄i, P̄i

)
, the Pois-

son matrix P(2)
2 ≡ P(Q̄)

2 and the Hamiltonian function h(Q̄).
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5.1 The t1 flow

We now derive the explicit formulae for the case n = 1.
The u space, with (5.1): We previously derived this as (4.3b), giving

h(q) =
1

2
p21 −

1

2
q41 + 2α1q

2
1 − α0q1, (5.4)

where u0 = α1 − 3
4u

2
1, u1 = q1, u1x = p1.

The w space, with (5.2): Using −Hw
2 , we have

Lw
2 =

1

2
w1

(
w0x + w2

0

)
− 1

8
w3
1 − β0w0 − β1w1. (5.5a)

This is degenerate and reduces to w0 = w1x+2β0

2w1
. Removing an exact derivative and an overall

numerical factor, we find

Lw
2 =

(w1x + 2β0)
2

2w1
+

1

2
w1

(
w2
1 + 8β1

)
, (5.5b)

corresponding to the Hamiltonian

h(Q) =
1

2
Q1P

2
1 − 2β0P1 −

1

2
Q1

(
8β1 +Q2

1

)
. (5.5c)

The v space, with (5.3): Using Hv
1 , we have

Lv
1 = −v0x − v20 +

1

4

(
2v0v1 + v1x

)2 − γ0v0 − γ1v1. (5.6a)

This is degenerate and reduces to v0 = γ0−v1v1x
2(v21−1)

. Removing an exact derivative and an overall

numerical factor, we find

Lv
1 =

1

2(1− v21)

(
v21x − 2γ0v1v1x − 4γ1v1

(
1− v21

)
+ γ20

)
, (5.6b)

corresponding to the Hamiltonian

h(Q̄) =
1

2

(
1− Q̄2

1

)
P̄ 2
1 + γ0Q̄1P̄1 + 2γ1Q̄1. (5.6c)

5.1.1 The Miura maps in these coordinates

We consider the two steps induced by w 7→ u and v 7→ w. We again extend each space to
include the parameters as dynamical variables, which we define as q = (q1, p1, α0, α1), Q =
(Q1, P1, β0, β1), Q̄ =

(
Q̄1, P̄1, γ0, γ1

)
.

The relation of q to Q: q1 = Q1, p1 = Q1P1 − 2β0. The constraints on u0 and w0, together
with u0 = −w0x −w2

0, gives α1 = −2β1. The formula α0 = u1xx − 2u31 + 4α1u1 gives α0 = h(Q).
In summary

q1 = Q1, p1 = Q1P1 − 2β0, α0 = h(Q), α1 = −2β1 ⇒ h(q) = 2β20 .

The relation of Q to Q̄: Q1 = −P̄1, P1 = Q̄1P̄1 − γ0. The “x derivative” of the first gives{
Q1, h

(Q)
}
=
{
−P̄1, h

(Q̄)
}
, which implies β0 = −γ1. The formula β1 =

4β0P1−Q1(P 2
1+3Q2

1)+2Q1xx

8Q1

gives β1 = −1
4h

(Q̄) + 1
8γ

2
0 . In summary

Q1 = −P̄1, P1 = Q̄1P̄1 − γ0, β0 = −γ1, β1 = −1

4
h(Q̄) +

1

8
γ20

⇒ h(Q) = −2γ0γ1.
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5.1.2 The array of Poisson brackets

We constructed the 3 canonical representations (5.4), (5.5c) and (5.6c), respectively on spaces
q, Q and Q̄. The canonical brackets are then extended to include the parameters as Casimirs:

P(q)
0 = P(Q)

1 = P(Q̄)
2 =


0 1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

 .

Following the same procedure as Section 4.1.1, we construct the other 6 Poisson brackets.

From P
(q)
0 , we obtain

P(Q)
0 =

1

4β0


0 2P1 a13 0

−2P1 0 a23 0
−a13 −a23 0 0

0 0 0 0

 ,

P(Q̄)
0 =

1

4γ21


0 γ0Q̄1P̄1 − 2γ1Q̄1 − γ20 −γ0b13 γ1b13

γ20 + 2γ1Q̄1 − γ0Q̄1P̄1 0 −γ0b23 γ1b23
γ0b13 γ0b23 0 0
−γ1b13 −γ1b23 0 0

 ,

where (a13, a23, 0, 0)
T = P(Q)

1 ∇Qh
(Q) and (b13, b23, 0, 0)

T = P(Q̄)
2 ∇Q̄h

(Q̄).

From P
(Q)
1 , we obtain

P(q)
1 =


0 q1 a13 0

−q1 0 a23 0
−a13 −a23 0 0

0 0 0 0

 , P(Q̄)
1 =

1

2γ1


0 Q̄1P̄1 − γ0 b13 0

γ0 − Q̄1P̄1 0 b23 0
−b13 −b23 0 0

0 0 0 0

 ,

where (a13, a23, 0, 0)
T = P(q)

0 ∇qh
(q) and (b13, b23, 0, 0)

T = −P(Q̄)
2 ∇Q̄h

(Q̄).

From P
(Q̄)
2 , we obtain

P(Q)
2 =


0 −Q1 0 a14

Q1 0 0 a24
0 0 0 0

−a14 −a24 0 0

 , P(q)
2 =


0 −q21 0 b14

q21 0 0 b24

0 0 0 0
−b14 −b24 0 0

 ,

where (a14, a24, 0, 0)
T = −1

4P
(Q)
1 ∇Qh

(Q) and (b14, b24, 0, 0)
T = 1

2P
(q)
0 ∇qh

(q).
Each of these has 2 Casimirs and the t1 = th flow in each space has a tri-Hamiltonian

representation.
In the q space, we have

qth = P(q)
2 ∇q(2α1) = P(q)

1 ∇qα0 = P(q)
0 ∇qh

(q),

P(q)
2 ∇qα0 = P(q)

2 ∇qh
(q) = P(q)

1 ∇qh
(q) = P(q)

1 ∇qα1 = P(q)
0 ∇qα1 = P(q)

0 ∇qα0 = 0.

In the Q space, we have

Qth = P(Q)
2 ∇Q(−4β1) = P(Q)

1 ∇Qh
(Q) = P(Q)

0 ∇Q

(
2β20
)
,

P(Q)
2 ∇Qh

(Q) = P(Q)
2 ∇Qβ0 = P(Q)

1 ∇Qβ0 = P(Q)
1 ∇Qβ1 = P(Q)

0 ∇Qβ1 = P(Q)
0 ∇Qh

(Q) = 0.



24 A.P. Fordy and Q. Huang

In the Q̄ space, we have

Q̄th = P(Q̄)
2 ∇Q̄

(
h(Q̄) − 1

2
γ20

)
= P(Q̄)

1 ∇Q̄(−2γ0γ1) = P(Q̄)
0 ∇Q̄

(
2γ21
)
,

P(Q̄)
2 ∇Q̄γ0 = P(Q̄)

2 ∇Q̄γ1 = P(Q̄)
1 ∇Q̄γ1 = P(Q̄)

1 ∇Q̄

(
h(Q̄) − 1

2
γ20

)
= P(Q̄)

0 ∇Q̄

(
h(Q̄) − 1

2
γ20

)
= P(Q̄)

0 ∇Q̄(γ0γ1) = 0.

Remark 5.1 (relation of (5.5c) to (4.6)). The canonical transformation

Q1 =
1

2
Q̃2

1, P1 =
Q̃1P̃1 +

√
−2β

Q̃2
1

, with α = −4β1, β = −8β20 ,

gives h(Q) = 1
2h

(Q̃), where h(Q̃) = 1
2 P̃

2
1 − 1

8Q̃
6
1 + αQ̃2

1 +
β

Q̃2
1

, which is just (4.6) with relabelled

variables.
This transformation is real when β < 0.

Under this transformation, P(Q)
i are transformed to P(Q̃)

i , with P(Q̃)
1 = P(Q)

1 and

P(Q̃)
0 = 2


0 1

Q̃2
1

a13 0

− 1
Q̃2

1

0 a23 0

−a13 −a23 0 0
0 0 0 0

 , P(Q̃)
2 =

1

2


0 −Q̃2

1 0 b14

Q̃2
1 0 0 b24

0 0 0 0
−b14 −b24 0 0

 ,

where (a13, a23, 0, 0)
T = −P(Q̃)

1 ∇Q̃h
(Q̃) and (b14, b24, 0, 0)

T = P(Q̃)
1 ∇Q̃h

(Q̃), thus rendering the

flow of h(Q̃) as tri-Hamiltonian

Q̃th = P(Q̃)
2 ∇Q̃(2α) = P(Q̃)

1 ∇Q̃h
(Q̃) = P(Q̃)

0 ∇Q̃

(
−1

2
β

)
.

This system also has the Lax matrix (4.13a), with N = 1.

5.2 The t2 flow

We now derive the explicit formulae for the case n = 2.
The u space, with (5.1): We previously derived this as (4.7b), giving

h(q) = 5q2p
2
1 − 4p1p2 −

q2
64

(
4q1 + q22

)(
12q1 + 7q22

)
+ α0q2 + α1

(
4q1 + q22

)
, (5.7a)

where u0 = q1, u1 = q2, u0x = 2(5q2p1 − 2p2), u1x = −4p1. In (4.7c), we also gave the first
integral

f (q) =
1

256

(
4q1 + 3q22

)(
64(α0 − 2α1q2) + 64p21 − 16q21 + 5q42

)
− 2(p2 − q2p1)

2. (5.7b)

The w space, with (5.2): Using 2Hw
3 , we have

Lw
2 =

1

2
w2
0x −

1

8
w2
1x −

3

4
w2
1w0x +

1

2
w4
0 −

3

4
w2
0w

2
1 +

5

32
w4
1 − β0w0 − β1w1. (5.8a)

Defining Q1 = w0, Q2 = w1, P1 = w0x − 3
4w

2
1, P2 = −1

4w1x, we obtain the Hamiltonian

h(Q) =
1

2
P 2
1 − 2P 2

2 +
3

4
Q2

2P1 −
1

2
Q4

1 +
3

4
Q2

1Q
2
2 +

1

8
Q4

2 + β0Q1 + β1Q2. (5.8b)
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Remark 5.2 (first integral). Rather than calculating fluxes of the modified PDEs, we derive
the first integral f (Q) (also f (Q̄) below) directly through the Miura maps in the stationary
coordinates, later in our calculations.

The v space, with (5.3): Using 2Hv
2 , we have

Lv
2 = −1

4
v31x −

3

2
v0v1v

2
1x + v0xv1x − 3v20v

2
1v1x + 2v30v1

(
1− v21

)
− γ0v0 − γ1v1. (5.9a)

Defining Q̄1 = v0, Q̄2 = v1, P̄1 = v1x, P̄2 = −3
4v

2
1x − 3v0v1v1x + v0x − 3v20v

2
1, we obtain the

Hamiltonian

h(Q̄) =
1

4
P̄ 3
1 + P̄1P̄2 +

3

2
Q̄1Q̄2P̄

2
1 + 3Q̄2

1Q̄
2
2P̄1 + 2Q̄3

1Q̄2

(
Q̄2

2 − 1
)
+ γ0Q̄1 + γ1Q̄2. (5.9b)

5.2.1 The Miura maps in these coordinates

We consider the two steps induced by w 7→ u and v 7→ w. We again extend each space to
include the parameters as dynamical variables, which we define as q = (q1, q2, p1, p2, α0, α1),
Q = (Q1, Q2, P1, P2, β0, β1), Q̄ =

(
Q̄1, Q̄2, P̄1, P̄2, γ0, γ1

)
.

The relation of q to Q: found by using the Miura map and the definitions of q and Q.
Formulae for α0, α1 are derived from the equations of motion implied by h(q). In summary

q1 = −P1 −Q2
1 −

3

4
Q2

2, q2 = Q2, p1 = P2, p2 =
1

2
Q1

(
P1 +Q2

1

)
+Q2P2 −

1

4
β0,

α1 =
1

4
β1, α0 =

1

2
h(Q), h(q) = −1

2
f (Q), f (q) = −1

8
β20 ,

where

f (Q) =
1

4

(
P1 +Q2

1

)(
8β1 + 16Q1P2 + 4Q2P1 +

(
8Q2

1 +Q2
2

)
Q2

)
− β0(2P2 +Q1Q2),

satisfying
{
h(Q), f (Q)

}
= 0.

The relation of Q to Q̄: found by using the Miura map and the definitions of Q and Q̄.
Formulae for β0, β1 are derived from the equations of motion implied by h(Q). In summary

Q1 =Q̄1, Q2 = −P̄1 − 2Q̄1Q̄2,

P1 = P̄2, P2 =
1

2

(
Q̄1P̄1 + Q̄2P̄2

)
+

3

2
Q̄2

1Q̄2 −
1

4
γ0,

β0 = γ1, β1 =
1

2
h(Q̄), h(Q) =

1

4
f (Q̄) − 1

8
γ20 , f (Q) =

1

2
γ0γ1,

where

f (Q̄) =
(
P̄2 + Q̄2

1

)(
P̄1

(
P̄1 + 4Q̄1Q̄2

)
− 2
(
P̄2 − Q̄2

1

)(
Q̄2

2 − 1
))

+ 2γ0Q̄2

(
P̄2 + Q̄2

1

)
− 2γ1

(
Q̄2P̄1 + 2Q̄1

(
Q̄2

2 − 1
))
,

satisfying
{
h(Q̄), f (Q̄)

}
= 0.

5.2.2 The array of Poisson brackets

We constructed the 3 canonical representations (5.7a), (5.8b) and (5.9b), respectively on spaces
q, Q and Q̄. The canonical brackets are then extended to include the parameters αi, βi, γi as
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Casimirs:

P(q)
0 = P(Q)

1 = P(Q̄)
2 =



0 0 1 0 0 0
0 0 0 1 0 0

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Following the same procedure as Section 5.1.2, we construct the other 6 Poisson brackets.

From P
(q)
0 , we obtain

P(Q)
0 =

1

4β0



0 −16Q1 8(2P2 +Q1Q2) 4P1+8Q2
1+3Q2

2 a15 0
16Q1 0 −32Q2

1 0 a25 0
−8(2P2 +Q1Q2) 32Q2

1 0 a34 a35 0
−
(
4P1+8Q2

1+3Q2
2

)
0 −a34 0 a45 0

−a15 −a25 −a35 −a45 0 0
0 0 0 0 0 0

 ,

P(Q̄)
0 =

1

γ21



0 b12 b13 γ1
(
2Q̄2

(
P̄2 + Q̄2

1

)
− γ0

)
b15 b16

−b12 0 b23 b24 b25 b26
−b13 −b23 0 b34 b35 b36

γ1
(
γ0 − 2Q̄2

(
P̄2 + Q̄2

1

))
−b24 −b34 0 b45 b46

−b15 −b25 −b35 −b45 0 0
−b16 −b26 −b36 −b46 0 0

 ,

where a34 = −2
(
2β0 +Q1

(
4P1 + 8Q2

1 + 3Q2
2

))
, (a15, a25, a35, a45, 0, 0)

T = 8P(Q)
1 ∇Qf

(Q) and

b12 = γ0
(
P̄1 + 2Q̄1Q̄2

)
− 2γ1Q̄

2
2, b13 = 2Q̄1

(
2γ1
(
Q̄2

2 + 1
)
− γ0

(
P̄1 + 2Q̄1Q̄2

))
,

b23 = 2
(
γ0(P̄1 + 2Q̄1Q̄2

)
Q̄2 − 2γ1Q̄2

(
Q̄2

2 − 1
)
− 2γ0Q̄1

)
,

b24 = 2γ0
(
P̄1 + Q̄1Q̄2

)
Q̄1 − 2γ1

(
P̄1 + 4Q̄1Q̄2

)
Q̄2 − 2γ0Q̄2P̄2 + 4γ1Q̄1 + γ20 ,

b34 = 2
(
2γ1Q̄1Q̄2

(
P̄1 + 3Q̄1Q̄2

)
− 2γ0

(
P̄1 + Q̄1Q̄2

)
Q̄2

1 +
(
γ0Q̄1 − γ1Q̄2

)(
2Q̄2P̄2 − γ0

))
,

(b15, b25, b35, b45, 0, 0)
T = P(Q̄)

2 ∇Q̄

(
γ0f

(Q̄) − 4γ1h
(Q̄)
)
,

(b16, b26, b36, b46, 0, 0)
T = −P(Q̄)

2 ∇Q̄

(
γ1f

(Q̄)
)
.

From P
(Q)
1 , we obtain

( ∂q
∂Q

)
P(Q)
1

( ∂q
∂Q

)T
= −1

8P
(q)
1 , of (4.11b), and

P(Q̄)
1 =

1

γ1



0 −
(
P̄1 + 2Q̄1Q̄2

)
2Q̄1

(
P̄1 + 2Q̄1Q̄2

)
γ1 a15 0

P̄1 + 2Q̄1Q̄2 0 a23 a24 a25 0
−2Q̄1

(
P̄1 + 2Q̄1Q̄2

)
−a23 0 a34 a35 0

−γ1 −a24 −a34 0 a45 0
−a15 −a25 −a35 −a45 0 0

0 0 0 0 0 0

 ,

where

a23 = 2
(
2Q̄1 − Q̄2P̄1 − 2Q̄1Q̄

2
2

)
, a24 = 2

(
Q̄2P̄2 − Q̄1P̄1 − Q̄2

1Q̄2

)
− γ0,

a34 = 2
(
2Q̄2

1

(
P̄1 + Q̄1Q̄2

)
− 2Q̄1Q̄2P̄2 + γ0Q̄1 − γ1Q̄2

)
,

(a15, a25, a35, a45, 0, 0)
T = −P(Q̄)

2 ∇Q̄f
(Q̄).
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From P
(Q̄)
2 , we obtain

(∂Q
∂Q̄

)
P(Q̄)
2

(∂Q
∂Q̄

)T
= 1

2P
(Q)
2 and

( ∂q
∂Q

)
P(Q)
2

( ∂q
∂Q

)T
= 1

4P
(q)
2 :

P(Q)
2 =



0 −2 0 Q1 0 a16

2 0 −4Q1 −Q2 0 a26
0 4Q1 0 −(P1 + 3Q2

1) 0 a36
−Q1 Q2 P1 + 3Q2

1 0 0 a46
0 0 0 0 0 0

−a16 −a26 −a36 −a46 0 0


,

P(q)
2 =



0 0 3q22 − 4q1
1
2q2(4q1 + 15q22) b15 b16

0 0 −4q2 −4q1 − 7q22 b25 b26
4q1 − 3q22 4q2 0 4q2p1 b35 b36

−1
2q2(4q1 + 15q22) 4q1 + 7q22 −4q2p1 0 b45 b46

−b15 −b25 −b35 −b45 0 0
−b16 −b26 −b36 −b46 0 0

 ,

where

(a16, . . . , 0)
T = P(Q)

1 ∇Qh
(Q), (b15, . . . , 0)

T = 4P(q)
0 ∇qf

(q),

(b16, . . . , 0)
T = P(q)

0 ∇qh
(q).

Each of these has 2 Casimirs and the flows in each space have tri-Hamiltonian representations.
In the q space, we have

qth = P(q)
2 ∇qα1 = P(q)

1 ∇q

(
−1

4
α0

)
= P(q)

0 ∇qh
(q),

qtf = P(q)
2 ∇q

(
1

4
α0

)
= P(q)

1 ∇q

(
−1

8
h(q)

)
= P(q)

0 ∇qf
(q),

P(q)
2 ∇qh

(q) = P(q)
2 ∇qf

(q) = P(q)
1 ∇qf

(q) = P(q)
1 ∇qα1 = P(q)

0 ∇qα1 = P(q)
0 ∇qα0 = 0.

In the Q space, we have

Qth = P(Q)
2 ∇Qβ1 = P(Q)

1 ∇Qh
(Q) = P(Q)

0 ∇Q

(
−1

2
f (Q)

)
,

Qtf = P(Q)
2 ∇Q(−h(Q)) = P(Q)

1 ∇Qf
(Q) = P(Q)

0 ∇Q

(
1

4
β20

)
,

P(Q)
2 ∇Qf

(Q) = P(Q)
2 ∇Qβ0 = P(Q)

1 ∇Qβ0 = P(Q)
1 ∇Qβ1 = P(Q)

0 ∇Qβ1 = P(Q)
0 ∇Qh

(Q) = 0.

In the Q̄ space, we have

Q̄th = P(Q̄)
2 ∇Q̄h

(Q̄) = P(Q̄)
1 ∇Q̄

(
1

4
f (Q̄) − 1

8
γ20

)
= P(Q̄)

0 ∇Q̄

(
−1

4
γ0γ1

)
,

Q̄tf = P(Q̄)
2 ∇Q̄f

(Q̄) = P(Q̄)
1 ∇Q̄ (−γ0γ1) = P(Q̄)

0 ∇Q̄

(
−1

2
γ21

)
,

P(Q̄)
2 ∇Q̄γ0 = P(Q̄)

2 ∇Q̄γ1 = P(Q̄)
1 ∇Q̄γ1 = P(Q̄)

1 ∇Q̄h
(Q̄)

= P(Q̄)
0 ∇Q̄h

(Q̄) = P(Q̄)
0 ∇Q̄

(
f (Q̄) − 1

2
γ20

)
= 0.

Remark 5.3 (relation of (5.8b) to (4.10)). The canonical transformation

Q1 =
2

2
3

(√
−2β − Q̃2P̃2

)
Q̃2

2

, Q2 = 2
2
3 Q̃1,
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P1 =
Q̃2

2

2
5
3

− 2
4
3

(√
−2β − Q̃2P̃2

)2
Q̃4

2

, P2 =
P̃1

2
2
3

, (5.10a)

with α = β1, β = −1
2β

2
0 , gives h

(Q) = −2
2
3h(Q̃), f (Q) = −2

1
3 f (Q̃), where

h(Q̃) =
1

2

(
P̃ 2
1 + P̃ 2

2

)
− αQ̃1 −

1

32

(
16Q̃4

1 + 12Q̃2
1Q̃

2
2 + Q̃4

2

)
+

β

Q̃2
2

, (5.10b)

f (Q̃) = P̃1(Q̃1P̃1 + Q̃2P̃2)− 2Q̃1h
(Q̃) − α

2

(
4Q̃2

1 + Q̃2
2

)
− 1

16
Q̃1

(
4Q̃2

1 + Q̃2
2

)(
4Q̃2

1 + 3Q̃2
2

)
, (5.10c)

which are just (4.10) and (4.8b) (for N = 2), with relabelled variables Q̃ =
(
Q̃i, P̃i, β, α

)
.

This transformation is real when β < 0.

Under this transformation, P(Q)
i are transformed to P(Q̃)

i , with P(Q̃)
1 = P(Q)

1 and (up to
overall numerical factors)

P(Q̃)
0 =



0 0 0 1
Q̃2

a15 0

0 0 1
Q̃2

−2Q̃1

Q̃2
2

a25 0

0 − 1
Q̃2

0 P̃2

Q̃2
2

a35 0

− 1
Q̃2

2Q̃1

Q̃2
2

− P̃2

Q̃2
2

0 a45 0

−a15 −a25 −a35 −a45 0 0

0 0 0 0 0 0


,

P(Q̃)
2 =



0 0 2Q̃1 Q̃2 0 b16

0 0 Q̃2 0 0 b26

−2Q̃1 −Q̃2 0 P̃2 0 b36

−Q̃2 0 −P̃2 0 0 b46

0 0 0 0 0 0

−b16 −b26 −b36 −b46 0 0


, (5.10d)

where (a15, a25, a35, a45, 0, 0)
T = −P(Q̃)

1 ∇Q̃f
(Q̃) and (b16, b26, b36, b46, 0, 0)

T = 2P(Q̃)
1 ∇Q̃h

(Q̃), thus
rendering the flow of (5.10b) as tri-Hamiltonian:

Q̃th = P(Q̃)
2 ∇Q̃

(
1

2
α

)
= P(Q̃)

1 ∇Q̃h
(Q̃) = P(Q̃)

0 ∇Q̃f
(Q̃). (5.10e)

This system also has the Lax matrix (4.14a), with N = 2.

6 Generalisations: coupling with the Calogero–Moser model

Several of our Lax pairs can be generalised (when N = 3) to incorporate an arbitrary function
in the Hamiltonian, which allows us to relate the system to the rational Calogero–Moser model,
following an approach described in [13].

In Section 6.1, we present generalisations of the Garnier and Hénon–Heiles systems, as well
as the Hamiltonian (4.8a), with quartic potential, but others, such as (4.4c), can be similarly

generalised. For each case we give three functions, h(B), f (B) and h
(B)
23 , which are in involution,

along with Lax matrices.
The connection to the Calogero–Moser model is explained in Section 6.2.
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6.1 Generalisations in (Qi, Pi) coordinates

6.1.1 Generalised Garnier system

In Section 3.1, we derived two versions of the multicomponent Garnier system, given by (3.5b)
and (3.5c). For brevity, we just give the generalisation of the second of these:

h(B) =
1

2

(
P 2
1 + P 2

2 + P 2
3

)
+ k
(
Q2

1 +Q2
2 +Q2

3

)2
+

β

Q2
1 +Q2

2 +Q2
3

+
1

Q2
2

B

(
Q3

Q2

)
,

f (B) = (Q1P2 −Q2P1)
2 + (Q2P3 −Q3P2)

2 + (Q3P1 −Q1P3)
2 + 2

Q2
1 +Q2

2 +Q2
3

Q2
2

B

(
Q3

Q2

)
,

h
(B)
23 = (Q2P3 −Q3P2)

2 + 2

(
Q2

2 +Q2
3

)
Q2

2

B

(
Q3

Q2

)
,

where B
(Q3

Q2

)
is an arbitrary function. When k = −1

4 and B
(Q3

Q2

)
= 0, these reduce to (3.5c)

and elements of the rotation algebra.
The Lax matrix (3.18a), with N = 3 and

∑ 2βi

Q2
i
replaced by 2β

Q2 , can similarly be generalised:

L(1) =

(
Q1P1 +Q2P2 +Q3P3 2λ−Q2

1 −Q2
2 −Q2

3

a21 −(Q1P1 +Q2P2 +Q3P3)

)
⇒ z2 + 16kλ3 − 4h(B)λ+ f (B) + 2β = 0,

where

a21 = −4kλ
(
2λ+Q2

1 +Q2
2 +Q2

3

)
+ P 2

1 + P 2
2 + P 2

3 +
2β

Q2
1 +Q2

2 +Q2
3

+
2

Q2
2

B

(
Q3

Q2

)
.

The Lax equations (3.18b) are unchanged, but U is deformed:

U =

(
0 1

−4k
(
λ+Q2

1 +Q2
2 +Q2

3

)
0

)
⇒

{
L
(1)
x =

{
L(1), h(B)

}
=
[
U,L(1)

]
,{

L(1), f (B)
}
=
{
L(1), h

(B)
23

}
= 0.

6.1.2 Generalised Hénon–Heiles system

The generalised Hénon–Heiles potential of (3.12b) was considered in [13, Section 3.5], for the
case N = 3, with some additional terms:

h(B) =
1

2

(
P 2
1 +P

2
2 +P

2
3

)
+
ω2

2

(
4Q2

1+Q
2
2+Q

2
3

)
+kQ1

(
2Q2

1+Q
2
2+Q

2
3

)
+

1

Q2
2

B

(
Q3

Q2

)
, (6.1a)

f (B) = P1(Q1P1 +Q2P2 +Q3P3)− 2Q1h
(B) + 2ω2Q1

(
2Q2

1 +Q2
2 +Q2

3

)
+
k

4

(
16Q4

1 + 12Q2
1

(
Q2

2 +Q2
3

)
+
(
Q2

2 +Q2
3

)2)
, (6.1b)

h
(B)
23 = (Q2P3 −Q3P2)

2 + 2

(
Q2

2 +Q2
3

)
Q2

2

B

(
Q3

Q2

)
, (6.1c)

where B
(
Q3

Q2

)
is an arbitrary function.

When B(z) = β2 +
β3

z2
, k = 1

2 , ω = 0, then h(B) reduces to h(Q) of (3.12b). We also have

that f (B) reduces to f (Q) and h
(B)
23 to h23 + 2(β2 + β3).

The Lax matrix (3.19a), with N = 3, can similarly be generalised:

L(2) =

(
Q2P2 +Q3P3 − 4λP1 16λ2 + 8λQ1 −Q2

2 −Q2
3

a21 4λP1 −Q2P2 −Q3P3

)
, (6.2a)



30 A.P. Fordy and Q. Huang

where

a21 = 2k
(
16λ3 − 8Q1λ

2+ λ
(
4Q2

1 +Q2
2 +Q2

3

))
+ 8ω2λ(Q1 − 2λ) + P 2

2 + P 2
3 +

2

Q2
2

B

(
Q3

Q2

)
,

and the characteristic equation is

z2 = 512kλ5 − 256ω2λ4 + 32h(B)λ2 − 8f (B)λ− h
(B)
23 . (6.2b)

The Lax equations are just the same as (3.19c):

L(2)
x =

{
L(2), h(B)

}
=
[
U,L(2)

]
, L

(2)
t1

=
{
L(2), f (B)

}
=
[
L(1), L(2)

]
,{

L(2), h
(B)
23

}
= 0, (6.2c)

but with deformed versions of U and L(1):

U =

(
0 1

2k(λ−Q1)− ω2 0

)
, L(1) =

(
P1 −2(2λ+Q1)
b21 −P1

)
, (6.2d)

where

b21 = k
(
−8λ2 + 4λQ1 −

(
2Q2

1 +Q2
2 +Q2

3

))
+ 2ω2(2λ−Q1).

6.1.3 Generalisation of the Hamiltonian (4.8a)

The potential of (4.8a) was labelled U4 in [13, Section 3.3], for the case N = 3. With some
additional terms, and writing β = 1

2ω
2, we have

h(B) =
1

2

(
P 2
1 + P 2

2 + P 2
3

)
− αQ1 +

ω2

2

(
4Q2

1 +Q2
2 +Q2

3

)
+ k
(
16Q4

1 + 12Q2
1

(
Q2

2 +Q2
3

)
+
(
Q2

2 +Q2
3

)2)
+

1

Q2
2

B

(
Q3

Q2

)
, (6.3a)

f (B) = P1(Q1P1 +Q2P2 +Q3P3)− 2Q1h
(B) − α

2

(
4Q2

1 +Q2
2 +Q2

3

)
+ 2ω2Q1

(
2Q2

1 +Q2
2 +Q2

3

)
+ 2kQ1

(
4Q2

1 + 3Q2
2 + 3Q2

3

)(
4Q2

1 +Q2
2 +Q2

3

)
, (6.3b)

h
(B)
23 = (Q2P3 −Q3P2)

2 + 2

(
Q2

2 +Q2
3

)
Q2

2

B

(
Q3

Q2

)
, (6.3c)

where B
(Q3

Q2

)
is an arbitrary function.

When B(z) = β2 +
β3

z2
, k = − 1

32 , ω = 0, then h(B) reduces to h(Q) of (4.8a). We also have

that f (B) reduces to f (Q) and h
(B)
23 to h23 + 2(β2 + β3).

The Lax matrix (4.14a), with N = 3, is similarly generalised:

L(2) =

(
Q2P2 +Q3P3 − 4λP1 16λ2 + 8λQ1 −

(
Q2

2 +Q2
3

)
a21 4λP1 − (Q2P2 +Q3P3)

)
,

where

a21 = P 2
2 + P 2

3 +
2

Q2
2

B

(
Q3

Q2

)
+ 4λ

(
2ω2(Q1 − 2λ)− α

)
− 32kλ

(
16λ3 − 8λ2Q1 + λ

(
4Q2

1 +Q2
2 +Q2

3

)
−Q1

(
2Q2

1 +Q2
2 +Q2

3

))
.
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The characteristic equation of L(2) is

z2 + 8192kλ6 + 256ω2λ4 + 64αλ3 − 32h(B)λ2 + 8f (B)λ+ h
(B)
23 = 0.

The Lax equations generated by h(B), f (B) and h
(B)
23 are the same as (4.14c):

L(2)
x =

{
L(2), h(B)

}
=
[
U,L(2)

]
, L

(2)
t1

=
{
L(2), f (B)

}
=
[
L(1), L(2)

]
,{

L(2), h
(B)
23

}
= 0,

where L(1) and U are deformations of (4.14d):

L(1) =

(
P1 −4λ− 2Q1

b21 −P1

)
, U =

(
0 1

−32k
(
λ2 − λQ1 +

1
8

(
6Q2

1 +Q2
2 +Q2

3

))
− ω2 0

)
,

with

b21 = α+ 2ω2(2λ−Q1)

− 32k
(
1
2Q1

(
Q2

1 +Q2
2 +Q2

3

)
− 1

2λ
(
2Q2

1 +Q2
2 +Q2

3

)
+ 2Q1λ

2 − 4λ3
)
.

Remark 6.1. The cases (6.1a) and (6.3a) belong to a family of Hamiltonians which are separable
in generalised parabolic coordinates [13].

6.2 Transformation to Calogero–Moser coordinates

The Hamiltonian h(B), with just the B term (for example, (6.1a) with k = ω = 0) is known
[9, 15] to have 4 integrals for general B, with an additional integral for the particular choice

B(z) = 9g2(1+z2)2

2(1−3z2)2
. This particular choice, with the (orthogonal) canonical transformation,

generated by

S =
1√
3
(q1 + q2 + q3)P1 +

1√
2
(q1 − q2)P2 +

1√
6
(q1 + q2 − 2q3)P3,

gives the rational Calogero–Moser potential:

1

Q2
2

B

(
Q3

Q2

)
= g2

(
1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)
.

In [13], we gave a large class of additional potentials which could be added to B and thus coupled
with the rational Calogero–Moser system, but had no Lax representations. In this paper, we see
that any system written in Section 6.1 gives rise to a coupling of the rational Calogero–Moser
system with a Lax representation. To illustrate this, we just present the Hénon–Heiles case.

6.2.1 Calogero–Moser system, coupled with the Hénon–Heiles potential

Since the formulae are more complicated in the Calogero–Moser coordinates, we introduce three
functions which give some simplifications:

τ = q1 + q2 + q3, ρ = q21 + q22 + q23, δ = (q1 − q2)
2 + (q1 − q3)

2 + (q2 − q3)
2.

Under this canonical transformation, the functions h(B), f (B), h
(B)
23 (of (6.1)) take the form

h(CM) =
1

2

(
p21 + p22 + p23

)
+ g2

(
1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)
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+
k

3
√
3
τ(6ρ− δ) +

ω2

2
(4ρ− δ),

f (CM) =
1√
3
(p1 + p2 + p3)(q1p1 + q2p2 + q3p3)−

2τ√
3
h(CM)

+
2

3
√
3
ω2τ(6ρ− δ) +

k

36

(
144ρ2 + 5δ2 − 60ρδ

)
,

h
(CM)
23 =

1

3
((q2 − q3)p1 + (q3 − q1)p2 + (q1 − q2)p3)

2

+
2

3
g2δ

(
1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)
.

The Lax matrices of Section 6.1.2 take the form

L(2) =

(
a11 a12
a21 −a11

)
, U =

(
0 1

2k
(
λ− 1√

3
τ
)
− ω2 0

)
,

L(1) =
1√
3

(
p1 + p2 + p3 −4

√
3λ− 2τ√

3b21 −(p1 + p2 + p3)

)
,

where

a11 = q1p1 + q2p2 + q3p3 −
1

3

(
τ + 4

√
3λ
)
(p1 + p2 + p3), a12 = 16λ2 +

8√
3
τλ− 1

3
δ,

a21 = 32k

(
λ3 − 1

2
√
3
τλ2 +

1

16
λ(4ρ− δ)

)
+

8ω2λ√
3

(
τ − 2

√
3λ
)

+
2

3

(
p21 + p22 + p23 − p1p2 − p1p3 − p2p3

)
+ 2g2

(
1

(q1 − q2)2
+

1

(q1 − q3)2
+

1

(q2 − q3)2

)
,

b21 =
2ω2

√
3

(
2
√
3λ− τ

)
− k

(
8λ2 − 4τ√

3
λ+

1

3
(6ρ− δ)

)
.

The characteristic equation of L(2) and the Lax equations are just the same as (6.2b) and (6.2c),
but written in terms of these coordinates. Setting k = 0, the system reduces to the resonant
harmonic oscillator case presented in [13, Section 4.2].

This Lax matrix is certainly not as elegant as the usual Calogero–Moser one [17], but it
does include the additional potentials. Furthermore, the Calogero–Moser system is known to

be superintegrable [21] and f (CM), h
(CM)
23 are related to his “additional” integrals, rather than

those generated by the usual Lax matrix.

7 Conclusions

In this paper we have reconsidered the relationship of integrable nonlinear evolution equations
and their stationary flows, which define finite-dimensional Hamiltonian systems (also integrable).

Multicomponent squared eigenfunction expansions gave us Hamiltonians with higher degrees
of freedom, such as (3.5c), (3.12b), (4.4c), (4.8a) and their rotationally symmetric versions.
Restricting the dimension allowed us to build Poisson maps, giving us bi-Hamiltonian repre-
sentations, by comparing the definitions of the corresponding canonical variables. The space
is extended to include some arbitrary parameters as dynamical variables and the Poisson maps
are non-canonical. For the DWW hierarchy, this was extended to a tri-Hamiltonian represen-
tation in Section 5. This used the DWW Miura maps, so (for each time-evolution) gave 3
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tri-Hamiltonian systems. In particular, we showed that the well known Hamiltonian (5.10b),
with quartic potential (see [14, 19]), is tri-Hamiltonian.

For each of these systems, we presented a 2 × 2 Lax representation, derived from the zero-
curvature representation of the corresponding coupled KdV equation. For the case of 3 degrees
of freedom, these Lax representations are further generalised in Section 6 to connect with the
results of [13], where we studied the class of Hamiltonians separable by generalised parabolic
coordinates. A large subclass of these have the arbitrary function B

(Q3

Q2

)
, introduced in Section 6.

This gave a way of deriving Lax pairs and first integrals for a coupling of the rational Calogero–
Moser model to many other potential functions, such as the Hénon–Heiles potential, given in
Section 6.2.1.

From their derivation, the Lax matrices of this paper inherit a polynomial λ-dependence,
with complicated coefficients. Clearly a larger matrix with linear λ-dependence (such as a defor-
mation of the usual Lax matrix of [17]) would be preferable. Currently these generalisations are
restricted to 3 degrees of freedom, related to the results of [13]. For higher degrees of freedom,
we would like generalisations with simple reductions to the 3 degrees of freedom case. These are
quite varied and not necessarily related to the Calogero–Moser model.

In this paper we only considered the casesM = 1 andM = 2 in (2.1a), mainly presenting de-
tails of the first two nontrivial stationary flows. The squared eigenfunction representations (3.3b)
and (4.2), corresponding to h(Q) of Sections 3 and 4, is the most interesting.

The t1 flow has the general structure

h(Q) =
1

2

N∑
i=1

(
P 2
i +

2βi
Q2

i

)
+ U

(
N∑
i=1

Q2
i

)
, (7.1a)

and has a universal set of integrals, given by (3.6a). For N = 3, this is the first case in Table 2
of [11]. For general N , this class of Hamiltonian (on a curved space background) has been
analysed in [5], where the same set of universal integrals was derived. The particular form of
the function U in (7.1a), derived in our construction, depends upon the value of M in (2.1a),
but universally possesses a Lax representation.

The t2 flow has the general structure

h(Q) =
1

2
P 2
1 +

1

2

N∑
i=2

(
P 2
i +

2βi
Q2

i

)
+ U

(
Q1,

N∑
i=2

Q2
i

)
, (7.1b)

which also has the universal set of integrals (3.6a), but for 2 ≤ i < j ≤ N , as well as the
integral f (Q). For N = 2 we just have the integral f (Q), but we see that the potential belongs to
the class separable in parabolic coordinates (see [18, equation (2.2.41)]). From our construction,
we have two additional features: M + 1 compatible Poisson brackets (for N = 2) and a Lax
representation (for all N).

The t2 flow is particularly interesting and leads to a number of important questions: Can we
extend the multi-Poisson formulation beyond N = 2? Even for N = 2, can the multi-Poisson
formulation be extended to the entire class of potentials separable in parabolic coordinates?
Can the Lax pair be similarly extended? Some insight into these questions may be obtained by
considering the case of (2.1a) with M = 3.
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