Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 013, 72 pages      arXiv:2108.09667      https://doi.org/10.3842/SIGMA.2023.013

Moduli Space of Factorized Ramified Connections and Generalized Isomonodromic Deformation

Michi-aki Inaba
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

Received January 21, 2022, in final form February 23, 2023; Published online March 22, 2023

Abstract
We introduce the notion of factorized ramified structure on a generic ramified irregular singular connection on a smooth projective curve. By using the deformation theory of connections with factorized ramified structure, we construct a canonical 2-form on the moduli space of ramified connections. Since the factorized ramified structure provides a duality on the tangent space of the moduli space, the 2-form becomes nondegenerate. We prove that the 2-form on the moduli space of ramified connections is ${\rm d}$-closed via constructing an unfolding of the moduli space. Based on the Stokes data, we introduce the notion of local generalized isomonodromic deformation for generic unramified irregular singular connections on a unit disk. Applying the Jimbo-Miwa-Ueno theory to generic unramified connections, the local generalized isomonodromic deformationis equivalent to the extendability of the family of connections to an integrable connection. We give the same statement for ramified connections. Based on this principle of Jimbo-Miwa-Ueno theory, we construct a global generalized isomonodromic deformation on the moduli space of generic ramified connections by constructing a horizontal lift of a universal family of connections. As a consequence of the global generalized isomonodromic deformation, we can lift the relative symplectic form on the moduli space to a total closed form, which is called a generalized isomonodromic 2-form.

Key words: moduli; ramified connection; isomonodromic deformation; symplectic structure.

pdf (898 kb)   tex (77 kb)  

References

  1. Babbitt D.G., Varadarajan V.S., Local moduli for meromorphic differential equations, Astérisque 169-170 (1989), 217 pages.
  2. Biquard O., Boalch P., Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004), 179-204, arXiv:math.DG/0111098.
  3. Biswas I., Heu V., Hurtubise J., Isomonodromic deformations of logarithmic connections and stability, Math. Ann. 366 (2016), 121-140, arXiv:1505.05327.
  4. Biswas I., Heu V., Hurtubise J., Isomonodromic deformations and very stable vector bundles of rank two, Comm. Math. Phys. 356 (2017), 627-640, arXiv:1703.07203.
  5. Boalch P., Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137-205, arXiv:2002.00052.
  6. Boalch P., Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. 179 (2014), 301-365, arXiv:1111.6228.
  7. Boalch P., Yamakawa D., Twisted wild character varieties, arXiv:1512.08091.
  8. Bremer C.L., Sage D.S., Isomonodromic deformations of connections with singularities of parahoric formal type, Comm. Math. Phys. 313 (2012), 175-208, arXiv:1010.2292.
  9. Bremer C.L., Sage D.S., Moduli spaces of irregular singular connections, Int. Math. Res. Not. 2013 (2013), 1800-1872, arXiv:1004.4411.
  10. Diarra K., Loray F., Normal forms for rank two linear irregular differential equations and moduli spaces, Period. Math. Hungar. 84 (2022), 303-320, arXiv:1907.07678.
  11. Inaba M.-a., Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence, J. Algebraic Geom. 22 (2013), 407-480, arXiv:math.AG/0602004.
  12. Inaba M.-a., Unfolding of the unramified irregular singular generalized isomonodromic deformation, Bull. Sci. Math. 157 (2019), 102795, 121 pages, arXiv:1903.08396.
  13. Inaba M.-a., Moduli space of irregular singular parabolic connections of generic ramified type on a smooth projective curve, Asian J. Math. 26 (2022), 1-36, arXiv:1606.02369.
  14. Inaba M.-a., Iwasaki K., Saito M.-H., Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. I, Publ. Res. Inst. Math. Sci. 42 (2006), 987-1089, arXiv:math.AG/0309342.
  15. Inaba M.-a., Saito M.-H., Moduli of unramified irregular singular parabolic connections on a smooth projective curve, Kyoto J. Math. 53 (2013), 433-482, arXiv:1203.0084.
  16. Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function, Phys. D 2 (1981), 306-352.
  17. Komyo A., Description of generalized isomonodromic deformations of rank two linear differential equationsusing apparent singularities, arXiv:2003.08045.
  18. Komyo A., Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections, J. Math. Soc. Japan 74 (2022), 473-519, arXiv:1611.03601.
  19. Krichever I., Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations, Mosc. Math. J. 2 (2002), 717-752, arXiv:hep-th/0112096.
  20. Malgrange B., Sur les déformations isomonodromiques. II. Singularités irrégulières, in Mathematics and Physics (Paris, 1979/1982), Progr. Math., Vol. 37, Birkhäuser Boston, Boston, MA, 1983, 427-438.
  21. Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque 340 (2011), x+607 pages, arXiv:0803.1344.
  22. Pantev T., Toën B., Moduli of flat connections on smooth varieties, Algebr. Geom. 9 (2022), 266-310, arXiv:1905.12124.
  23. Sibuya Y., Linear differential equations in the complex domain: problems of analytic continuation, Transl. Math. Monogr., Vol. 82, Amer. Math. Soc., Providence, RI, 1990.
  24. Simpson C.T., Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770.
  25. Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47-129.
  26. Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5-79.
  27. van der Put M., Saito M.-H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611-2667, arXiv:0902.1702.
  28. Wasow W., Asymptotic expansions for ordinary differential equations, Pure Appl. Math., Vol. 14, Interscience Publishers John Wiley & Sons, Inc., New York, 1965.

Previous article  Next article  Contents of Volume 19 (2023)