Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 074, 18 pages      arXiv:2210.04454

The Generalized Lipkin-Meshkov-Glick Model and the Modified Algebraic Bethe Ansatz

Taras Skrypnyk
Bogolyubov Institute for Theoretical Physics, 14-b Metrolohichna Str., Kyiv, 03680, Ukraine

Received June 19, 2022, in final form September 16, 2022; Published online October 10, 2022

We show that the Lipkin-Meshkov-Glick $2N$-fermion model is a particular case of one-spin Gaudin-type model in an external magnetic field corresponding to a limiting case of non-skew-symmetric elliptic $r$-matrix and to an external magnetic field directed along one axis. We propose an exactly-solvable generalization of the Lipkin-Meshkov-Glick fermion model based on the Gaudin-type model corresponding to the same $r$-matrix but arbitrary external magnetic field. This model coincides with the quantization of the classical Zhukovsky-Volterra gyrostat. We diagonalize the corresponding quantum Hamiltonian by means of the modified algebraic Bethe ansatz. We explicitly solve the corresponding Bethe-type equations for the case of small fermion number $N=1,2$.

Key words: classical $r$-matrix; Gaudin-type model; algebraic Bethe ansatz.

pdf (431 kb)   tex (21 kb)  


  1. Avan J., Talon M., Rational and trigonometric constant nonantisymmetric $R$-matrices, Phys. Lett. B 241 (1990), 77-82.
  2. Babelon O., Viallet C.M., Hamiltonian structures and Lax equations, Phys. Lett. B 237 (1990), 411-416.
  3. Claeys P.W., De Baerdemacker S., Van Neck D., Read-Green resonances in a topological superconductor coupled to a bath, Phys. Rev. B 93 (2016), 220503, 5 pages, arXiv:1601.03990.
  4. Dimo C., Faribault A., Strong-coupling emergence of dark states in XX central spin models, Phys. Rev. B 105 (2022), arXiv:2112.09557.
  5. Faribault A., Tschirhart H., Common framework and quadratic Bethe equations for rational Gaudin magnets in arbitrarily oriented magnetic fields, SciPost Phys. 3 (2017), arXiv:1704.01873.
  6. Freidel L., Maillet J.M., Quadratic algebras and integrable systems, Phys. Lett. B 262 (1991), 278-284.
  7. Gaudin M., Diagonalisation d'une classe d'Hamiltoniens de spin, J. Physique 37 (1976), 1089-1098.
  8. Lerma S., Dukelsky J., The Lipkin-Meshkov-Glick model as a particular limit of the ${\rm SU}(1,1)$ Richardson-Gaudin integrable models, Nuclear Phys. B 870 (2013), 421-443, arXiv:1212.3238.
  9. Lerma S., Dukelsky J., The Lipkin-Meshkov-Glick model from the perspective of the ${\rm SU}(1,1)$ Richardson-Gaudin models, J. Phys. Conf. Ser. 492 (2014), 012013, 6 pages.
  10. Lipkin H.J., Meshkov N., Glick A.J., Validity of many-body approximation methods for a solvable model. I. Exact solutions and perturbation theory, Nuclear Phys. 62 (1965), 188-198.
  11. Lukyanenko I., Isaac P.S., Links J., An integrable case of the $p+{\rm i}p$ pairing Hamiltonian interacting with its environment, J. Phys. A 49 (2016), 084001, 22 pages, arXiv:1507.04068.
  12. Ortiz G., Somma R., Dukelsky J., Rombouts S., Exactly-solvable models derived from a generalized Gaudin algebra, Nuclear Phys. B 707 (2005), 421-457, arXiv:cond-mat/0407429.
  13. Pan F., Draayer J., Analytical solutions for the LMG model, Phys. Lett. B 451 (1999), 1-10.
  14. Romano R., Roca-Maza X., Colò G., Shen S., Extended Lipkin-Meshkov-Glick Hamiltonian, J. Phys. G 48 (2021), 05LT01, 9 pages, arXiv:2009.03593.
  15. Shen Y., Isaac P.S., Links J., Ground-state energy of a Richardson-Gaudin integrable BCS model, SciPost Phys. 2 (2020), 001, 16 pages arXiv:1912.05692.
  16. Sklyanin E., On the integrability of Landau-Lifshitz equation, Preprint LOMI E-3-79, 1979.
  17. Skrypnik T., New integrable Gaudin-type systems, classical $r$-matrices and quasigraded Lie algebras, Phys. Lett. A 334 (2005), 390-399, Erratum, Phys. Lett. A 347 (2005), 266-267.
  18. Skrypnyk T., Generalized quantum Gaudin spin chains, involutive automorphisms and ''twisted'' classical $r$-matrices, J. Math. Phys. 47 (2006), 033511, 10 pages.
  19. Skrypnyk T., Integrable quantum spin chains, non-skew symmetric $r$-matrices and quasigraded Lie algebras, J. Geom. Phys. 57 (2006), 53-67.
  20. Skrypnyk T., Generalized Gaudin systems in a magnetic field and non-skew-symmetric $r$-matrices, J. Phys. A 40 (2007), 13337-13352.
  21. Skrypnyk T., Quantum integrable systems, non-skew-symmetric $r$-matrices and algebraic Bethe ansatz, J. Math. Phys. 48 (2007), 023506, 14 pages.
  22. Skrypnyk T., Non-skew-symmetric classical $r$-matrices, algebraic Bethe ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems, J. Math. Phys. 50 (2009), 033504, 28 pages.
  23. Skrypnyk T., Generalized shift elements and classical $r$-matrices: construction and applications, J. Geom. Phys. 80 (2014), 71-87.
  24. Skrypnyk T., Reductions in finite-dimensional integrable systems and special points of classical $r$-matrices, J. Math. Phys. 57 (2016), 123504, 38 pages.
  25. Skrypnyk T., Classical $r$-matrices, ''elliptic'' BCS and Gaudin-type Hamiltonians and spectral problem, Nuclear Phys. B 941 (2019), 225-248.
  26. Skrypnyk T., Anisotropic BCS-Richardson model and algebraic Bethe ansatz, Nuclear Phys. B 975 (2022), 115679, 44 pages.
  27. Skrypnyk T., Manojlović N., Twisted rational $r$-matrices and algebraic Bethe ansatz: application to generalized Gaudin and Richardson models, Nuclear Phys. B 967 (2021), 115424, 29 pages.
  28. Volterra V., Sur la théorie des variations des latitudes, Acta Math. 22 (1899), 201-357.

Previous article  Next article  Contents of Volume 18 (2022)