Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 064, 35 pages      arXiv:2202.07649

Mapping Class Group Representations Derived from Stated Skein Algebras

Julien Korinman
Department of Mathematics, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

Received March 09, 2022, in final form August 22, 2022; Published online August 26, 2022

We construct finite-dimensional projective representations of the mapping class groups of compact connected oriented surfaces having one boundary component using stated skein algebras.

Key words: mapping class groups; stated skein algebras; quantum moduli spaces; quantum Teichmüller spaces.

pdf (972 kb)   tex (339 kb)  


  1. Alekseev A.Yu., Grosse H., Schomerus V., Combinatorial quantization of the Hamiltonian Chern-Simons theory. I, Comm. Math. Phys. 172 (1995), 317-358, arXiv:hep-th/9403066.
  2. Alekseev A.Yu., Grosse H., Schomerus V., Combinatorial quantization of the Hamiltonian Chern-Simons theory. II, Comm. Math. Phys. 174 (1996), 561-604, arXiv:hep-th/9408097.
  3. Alekseev A.Yu., Kosmann-Schwarzbach Y., Meinrenken E., Quasi-Poisson manifolds, Canad. J. Math. 54 (2002), 3-29, arXiv:math.DG/0006168.
  4. Alekseev A.Yu., Malkin A.Z., Symplectic structures associated to Lie-Poisson groups, Comm. Math. Phys. 162 (1994), 147-173, arXiv:hep-th/9303038.
  5. Alekseev A.Yu., Malkin A.Z., Symplectic structure of the moduli space of flat connection on a Riemann surface, Comm. Math. Phys. 169 (1995), 99-119, arXiv:hep-th/9312004.
  6. Alekseev A.Y., Schomerus V., Representation theory of Chern-Simons observables, Duke Math. J. 85 (1996), 447-510, arXiv:q-alg/9503016.
  7. Ben-Zvi D., Brochier A., Jordan D., Integrating quantum groups over surfaces, J. Topol. 11 (2018), 874-917, arXiv:1501.04652.
  8. Ben-Zvi D., Brochier A., Jordan D., Quantum character varieties and braided module categories, Selecta Math. (N.S.) 24 (2018), 4711-4748, arXiv:1606.04769.
  9. Blanchet C., Costantino F., Geer N., Patureau-Mirand B., Non-semi-simple TQFTs, Reidemeister torsion and Kashaev's invariants, Adv. Math. 301 (2016), 1-78, arXiv:1404.7289.
  10. Bonahon F., Wong H., Quantum traces for representations of surface groups in ${\rm SL}_2(\mathbb C)$, Geom. Topol. 15 (2011), 1569-1615, arXiv:1003.5250.
  11. Bonahon F., Wong H., Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math. 204 (2016), 195-243, arXiv:1206.1638.
  12. Bonahon F., Wong H., The Witten-Reshetikhin-Turaev representation of the Kauffman bracket skein algebra, Proc. Amer. Math. Soc. 144 (2016), 2711-2724, arXiv:1309.0921.
  13. Bonahon F., Wong H., Representations of the Kauffman bracket skein algebra II: Punctured surfaces, Algebr. Geom. Topol. 17 (2017), 3399-3434, arXiv:1206.1639.
  14. Brown K.A., Goodearl K.R., Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002.
  15. Brown K.A., Gordon I., The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras, Math. Z. 238 (2001), 733-779, arXiv:math.RT/9911234.
  16. Brown K.A., Gordon I., Poisson orders, symplectic reflection algebras and representation theory, J. Reine Angew. Math. 559 (2003), 193-216, arXiv:math.RT/0201042.
  17. Brown K.A., Yakimov M.T., Azumaya loci and discriminant ideals of PI algebras, Adv. Math. 340 (2018), 1219-1255, arXiv:1702.04305.
  18. Buffenoir E., Roche P., Two-dimensional lattice gauge theory based on a quantum group, Comm. Math. Phys. 170 (1995), 669-698, arXiv:hep-th/9405126.
  19. Buffenoir E., Roche P., Link invariants and combinatorial quantization of Hamiltonian Chern-Simons theory, Comm. Math. Phys. 181 (1996), 331-365, arXiv:q-alg/9507001.
  20. Bullock D., A finite set of generators for the Kauffman bracket skein algebra, Math. Z. 231 (1999), 91-101.
  21. Bullock D., Frohman C., Kania-Bartoszyńska J., Topological interpretations of lattice gauge field theory, Comm. Math. Phys. 198 (1998), 47-81, arXiv:q-alg/9710003.
  22. Cooke J., Excision of skein categories and factorisation homology, arXiv:1910.02630.
  23. Costantino F., Lê T.T.Q., Stated skein algebras of surfaces, J. Eur. Math. Soc., to appear, arXiv:1907.11400.
  24. Costantino F., Martelli B., An analytic family of representations for the mapping class group of punctured surfaces, Geom. Topol. 18 (2014), 1485-1538, arXiv:1210.2666.
  25. De Concini C., Kac V.G., Representations of quantum groups at roots of $1$, in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math., Vol. 92, Birkhäuser Boston, Boston, MA, 1990, 471-506.
  26. De Concini C., Lyubashenko V., Quantum function algebra at roots of $1$, Adv. Math. 108 (1994), 205-262.
  27. De Concini C., Procesi C., Quantum groups, in $D$-Modules, Representation Theory, and Quantum Groups (Venice, 1992), Lecture Notes in Math., Vol. 1565, Springer, Berlin, 1993, 31-140.
  28. De Renzi M., Gainutdinov A.M., Geer N., Patureau-Mirand B., Runkel I., Commun. Contemp. Math., to appear, arXiv:2010.14852.
  29. Drinfel'd V.G., On constant quasiclassical solutions of the Yang-Baxter equations, Soviet Math. Dokl. 28 (1983), 667-671.
  30. Faitg M., Holonomy and (stated) skein algebras in combinatorial quantization, arXiv:2003.08992.
  31. Fock V.V., Rosly A.A., Poisson structure on moduli of flat connections on Riemann surfaces and the $r$-matrix, in Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 191, Amer. Math. Soc., Providence, RI, 1999, 67-86, arXiv:math.QA/9802054.
  32. Frohman C., Kania-Bartoszynska J., Lê T., Unicity for representations of the Kauffman bracket skein algebra, Invent. Math. 215 (2019), 609-650, arXiv:1707.09234.
  33. Frohman C., Kania-Bartoszynska J., Lê T., Dimension and trace of the Kauffman bracket skein algebra, Trans. Amer. Math. Soc. Ser. B 8 (2021), 510-547, arXiv:1902.02002.
  34. Ganev I., Jordan D., Safronov P., The quantum Frobenius for character varieties and multiplicative quiver varieties, arXiv:1901.11450.
  35. Gunningham S., Jordan D., Safronov P., The finiteness conjecture for skein modules, arXiv:1908.05233.
  36. Guruprasad K., Huebschmann J., Jeffrey L., Weinstein A., Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J. 89 (1997), 377-412, arXiv:dg-ga/9510006.
  37. Habiro K., A note on quantum fundamental groups and quantum representation varieties for $3$-manifolds, RIMS Kōkyūroku 1777 (2012), 21-30.
  38. Haïoun B., Relating stated skein algebras and internal skein algebras, SIGMA 18 (2022), 042, 39 pages, arXiv:2104.13848.
  39. Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York - Heidelberg, 1977.
  40. Higgins V., Triangular decomposition of ${\rm SL}_3$ skein algebras, arXiv:2008.09419.
  41. Hodges T.J., Levasseur T., Primitive ideals of ${\bf C}_q[{\rm SL}(3)]$, Comm. Math. Phys. 156 (1993), 581-605.
  42. Korinman J., Decomposition of some Witten-Reshetikhin-Turaev representations into irreducible factors, SIGMA 15 (2019), 011, 25 pages, arXiv:1406.4389.
  43. Korinman J., Triangular decomposition of character varieties, arXiv:1904.09022.
  44. Korinman J., Finite presentations for stated skein algebras and lattice gauge field theory, Algebr. Geom. Topol., to appear, arXiv:2012.03237.
  45. Korinman J., Stated skein algebras and their representations, arXiv:2105.09563.
  46. Korinman J., Stated skein algebras and their representations, RIMS Kōkyūroku 2191 (2021), 52-71.
  47. Korinman J., Unicity for representations of reduced stated skein algebras, Topology Appl. 293 (2021), 107570, 28 pages, arXiv:2001.00969.
  48. Korinman J., Murakami J., Relating quantum character varieties and skein modules, in preparation.
  49. Korinman J., Quesney A., Classical shadows of stated skein representations at odd roots of unity, arXiv:1905.03441.
  50. Korinman J., Quesney A., The quantum trace as a quantum non-abelianization map, J. Knot Theory Ramifications 31 (2022), 2250032, 49 pages, arXiv:1907.01177.
  51. Lê T.T.Q., Triangular decomposition of skein algebras, Quantum Topol. 9 (2018), 591-632, arXiv:1609.04987.
  52. Lê T.T.Q., Yu T., Stated skein modules of marked 3-manifolds/surfaces, a survey, Acta Math. Vietnam. 46 (2021), 265-287, arXiv:2005.14577.
  53. Lê T.T.Q., Yu T., Quantum traces and embeddings of stated skein algebras into quantum tori, Selecta Math. (N.S.) 28 (2022), 66, 48 pages, arXiv:2012.15272.
  54. Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
  55. Przytycki J.H., Sikora A.S., Skein algebras of surfaces, Trans. Amer. Math. Soc. 371 (2019), 1309-1332, arXiv:1602.07402.
  56. Reiner I., Maximal orders, London Mathematical Society Monographs New Series, Vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003.
  57. Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  58. Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter & Co., Berlin, 2010.

Previous article  Next article  Contents of Volume 18 (2022)