Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 059, 23 pages      arXiv:2202.11611
Contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants in honor of Lothar Göttsche on the occasion of his 60th birthday

Node Polynomials for Curves on Surfaces

Steven Kleiman a and Ragni Piene b
a) Room 2-172, Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
b) Department of Mathematics, University of Oslo, PO Box 1053, Blindern, NO-0316 Oslo, Norway

Received February 24, 2022, in final form July 28, 2022; Published online August 02, 2022

We complete the proof of a theorem we announced and partly proved in [Math. Nachr. 271 (2004), 69-90, math.AG/0111299]. The theorem concerns a family of curves on a family of surfaces. It has two parts. The first was proved in that paper. It describes a natural cycle that enumerates the curves in the family with precisely $r$ ordinary nodes. The second part is proved here. It asserts that, for $r\le 8$, the class of this cycle is given by a computable universal polynomial in the pushdowns to the parameter space of products of the Chern classes of the family.

Key words: enumerative geometry; nodal curves; nodal polynomials; Bell polynomials; Enriques diagrams; Hilbert schemes.

pdf (525 kb)   tex (36 kb)  


  1. Altman A.B., Iarrobino A., Kleiman S.L., Irreducibility of the compactified Jacobian, in Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 1-12.
  2. Basu S., Mukherjee R., Counting curves in a linear system with up to eight singular points, arXiv:1909.00772.
  3. Bell E.T., Partition polynomials, Ann. of Math. 29 (1927/28), 38-46.
  4. Caporaso L., Enumerative geometry of plane curves, Notices Amer. Math. Soc. 67 (2020), 771-779.
  5. Das N., Mukherjee R., Counting planar curves in $\mathbb{P}^3$ with degenerate singularities, Bull. Sci. Math. 173 (2021), 103065, 64 pages, arXiv:2007.11933.
  6. Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.
  7. Esteves E., Gagné M., Kleiman S., Autoduality of the compactified Jacobian, J. London Math. Soc. 65 (2002), 591-610, arXiv:math.AG/9911071.
  8. Fulton W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 2, Springer-Verlag, Berlin, 1984.
  9. Göttsche L., A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196 (1998), 523-533, arXiv:alg-geom/9711012.
  10. Grothendieck A., Dieudonné J.A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 5-255.
  11. Grothendieck A., Dieudonné J.A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 5-333.
  12. Hartshorne R., Deformation theory, Graduate Texts in Mathematics, Vol. 257, Springer, New York, 2010.
  13. Kazarian M.E., Multisingularities, cobordisms, and enumerative geometry, Russian Math. Surveys 58 (2003), 665-724.
  14. Kleiman S., Intersection theory and enumerative geometry: a decade in review, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., Vol. 46, Amer. Math. Soc., Providence, RI, 1987, 321-370.
  15. Kleiman S., Piene R., Enumerating singular curves on surfaces, in Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., Vol. 241, Amer. Math. Soc., Providence, RI, 1999, 209-238, arXiv:math.AG/9903192.
  16. Kleiman S., Piene R., Node polynomials for families: methods and applications, Math. Nachr. 271 (2004), 69-90, arXiv:math.AG/0111299.
  17. Kleiman S., Piene R., Enriques diagrams, arbitrarily near points, and Hilbert schemes (with Appendix B by Ilya Tyomkin), Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011), 411-451, arXiv:0905.2169.
  18. Kool M., Shende V., Thomas R.P., A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011), 397-406, arXiv:1010.3211.
  19. Laarakker T., The Kleiman-Piene conjecture and node polynomials for plane curves in $\mathbb P^3$, Selecta Math. (N.S.) 24 (2018), 4917-4959, arXiv:1710.02085.
  20. Li J., Tzeng Y.-J., Universal polynomials for singular curves on surfaces, Compos. Math. 150 (2014), 1169-1182, arXiv:1203.3180.
  21. Mukherjee R., Paul A., Singh R.K., Enumeration of rational curves in a moving family of $\mathbb{P}^2$, Bull. Sci. Math. 150 (2019), 1-11, arXiv:1808.04237.
  22. Mukherjee R., Singh R.K., Rational cuspidal curves in a moving family of $\mathbb{P}^2$, Complex Manifolds 8 (2021), 125-137, arXiv:2005.10664.
  23. Rennemo J.V., Universal polynomials for tautological integrals on Hilbert schemes, Geom. Topol. 21 (2017), 253-314, arXiv:1205.1851.
  24. The Stacks Project Authors, Stacks Project, 2022,
  25. Thorup A., Rational equivalence theory on arbitrary Noetherian schemes, in Enumerative Geometry (Sitges, 1987), Lecture Notes in Math., Vol. 1436, Springer, Berlin, 1990, 256-297.
  26. Tzeng Y.-J., A proof of the Göttsche-Yau-Zaslow formula, J. Differential Geom. 90 (2012), 439-472, arXiv:1009.5371.
  27. Vainsencher I., Enumeration of $n$-fold tangent hyperplanes to a surface, J. Algebraic Geom. 4 (1995), 503-526, arXiv:alg-geom/9312012.

Previous article  Next article  Contents of Volume 18 (2022)