Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 056, 21 pages      arXiv:2201.03960

$q$-Middle Convolution and $q$-Painlevé Equation

Shoko Sasaki a, Shun Takagi a and Kouichi Takemura b
a) Department of Mathematics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
b) Department of Mathematics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

Received January 31, 2022, in final form July 08, 2022; Published online July 20, 2022

A $q$-deformation of the middle convolution was introduced by Sakai and Yamaguchi. We apply it to a linear $q$-difference equation associated with the $q$-Painlevé VI equation. Then we obtain integral transformations. We investigate the $q$-middle convolution in terms of the affine Weyl group symmetry of the $q$-Painlevé VI equation. We deduce an integral transformation on the $q$-Heun equation.

Key words: $q$-Painlevé equation; $q$-Heun equation; middle convolution; integral transformation.

pdf (443 kb)   tex (24 kb)  


  1. Aomoto K., On the 3 fundamental problems concerning $q$-basic hypergeometric functions ($q$-difference equations, asymptotic behaviours and connection problem), in Proceedinds of Fifth Oka Symposium (March 18-19, 2006, Nara), Oka Mathematical Institute, Japan, 2006, 16 pages (in Japanese), available at
  2. Arai Y., Takemura K., On $q$-middle convolution and $q$-hypergeometric equations, in preparation.
  3. Dettweiler M., Reiter S., An algorithm of Katz and its application to the inverse Galois problem, J. Symbolic Comput. 30 (2000), 761-798.
  4. Dettweiler M., Reiter S., Middle convolution of Fuchsian systems and the construction of rigid differential systems, J. Algebra 318 (2007), 1-24.
  5. Filipuk G., On the middle convolution and birational symmetries of the sixth Painlevé equation, Kumamoto J. Math. 19 (2006), 15-23.
  6. Jimbo M., Sakai H., A $q$-analog of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145-154, arXiv:chao-dyn/9507010.
  7. Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, J. Phys. A: Math. Theor. 50 (2017), 073001, 164 pages, arXiv:1509.08186.
  8. Katz N.M., Rigid local systems, Annals of Mathematics Studies, Vol. 139, Princeton University Press, Princeton, NJ, 1996.
  9. Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229.
  10. Sakai H., Yamaguchi M., Spectral types of linear $q$-difference equations and $q$-analog of middle convolution, Int. Math. Res. Not. 2017 (2017), 1975-2013, arXiv:1410.3674.
  11. Sasaki S., Takagi S., Takemura K., $q$-Heun equation and initial-value space of $q$-Painlevé equation, in Proceedings of the Conference FASnet21, to appear, arXiv:2110.13860.
  12. Takagi S., Application of $q$-middle convolution to $q$-sixth Painlevé equation, Master Thesis, Chuo University, 2021 (in Japanese).
  13. Takemura K., Integral representation of solutions to Fuchsian system and Heun's equation, J. Math. Anal. Appl. 342 (2008), 52-69, arXiv:0705.3358.
  14. Takemura K., Middle convolution and Heun's equation, SIGMA 5 (2009), 040, 22 pages, arXiv:0810.3112.
  15. Takemura K., Degenerations of Ruijsenaars-van Diejen operator and $q$-Painlevé equations, J. Integrable Syst. 2 (2017), xyx008, 27 pages, arXiv:1608.07265.
  16. Takemura K., On $q$-deformations of the Heun equation, SIGMA 14 (2018), 061, 16 pages, arXiv:1712.09564.

Previous article  Next article  Contents of Volume 18 (2022)