Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 046, 30 pages      arXiv:1809.10659      https://doi.org/10.3842/SIGMA.2022.046
Contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants in honor of Lothar Göttsche on the occasion of his 60th birthday

Tropical Mirror Symmetry in Dimension One

Janko Böhm a, Christoph Goldner b and Hannah Markwig b
a) Fachbereich Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
b) Universität Tübingen, Fachbereich Mathematik, 72076 Tübingen, Germany

Received January 24, 2022, in final form June 17, 2022; Published online June 25, 2022

Abstract
We prove a tropical mirror symmetry theorem for descendant Gromov-Witten invariants of the elliptic curve, generalizing the tropical mirror symmetry theorem for Hurwitz numbers of the elliptic curve, Theorem 2.20 in [Böhm J., Bringmann K., Buchholz A., Markwig H., J. Reine Angew. Math. 732 (2017), 211-246, arXiv:1309.5893]. For the case of the elliptic curve, the tropical version of mirror symmetry holds on a fine level and easily implies the equality of the generating series of descendant Gromov-Witten invariants of the elliptic curve to Feynman integrals. To prove tropical mirror symmetry for elliptic curves, we investigate the bijection between graph covers and sets of monomials contributing to a coefficient in a Feynman integral. We also soup up the traditional approach in mathematical physics to mirror symmetry for the elliptic curve, involving operators on a Fock space, to give a proof of tropical mirror symmetry for Hurwitz numbers of the elliptic curve. In this way, we shed light on the intimate relation between the operator approach on a bosonic Fock space and the tropical approach.

Key words: mirror symmetry; elliptic curves; Feynman integral; tropical geometry; Hurwitz numbers; quasimodular forms; Fock space.

pdf (619 kb)   tex (86 kb)  

References

  1. Amini O., Baker M., Brugallé E., Rabinoff J., Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta, Res. Math. Sci. 2 (2015), 7, 67 pages, arXiv:1303.4812.
  2. Ardila F., Brugallé E., The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial, Int. Math. Res. Not. 2017 (2017), 614-641, arXiv:1412.4563.
  3. Behrend K., Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), 601-617, arXiv:alg-geom/9601011.
  4. Behrend K., Fantechi B., The intrinsic normal cone, Invent. Math. 128 (1997), 45-88, arXiv:alg-geom/9601010.
  5. Bertrand B., Brugallé E., Mikhalkin G., Tropical open Hurwitz numbers, Rend. Semin. Mat. Univ. Padova 125 (2011), 157-171, arXiv:1005.4628.
  6. Block F., Göttsche L., Fock spaces and refined Severi degrees, Int. Math. Res. Not. 2016 (2016), 6553-6580, arXiv:1409.4868.
  7. Blomme T., Floor diagrams and enumerative invariants of line bundles over an elliptic curve, arXiv:2112.05439.
  8. Blomme T., Tropical curves in abelian surfaces I: enumeration of curves passing through points, arXiv:2202.07250.
  9. Böhm J., Bringmann K., Buchholz A., Markwig H., Tropical mirror symmetry for elliptic curves, J. Reine Angew. Math. 732 (2017), 211-246, arXiv:1309.5893.
  10. Brugallé E., Mikhalkin G., Floor decompositions of tropical curves: the planar case, in Proceedings of Gökova Geometry-Topology Conference 2008, Gökova Geometry/Topology Conference (GGT), Gökova, 2009, 64-90, arXiv:0812.3354.
  11. Cavalieri R., Gross A., Markwig H., Tropical psi-classes, arXiv:2009.00586.
  12. Cavalieri R., Johnson P., Markwig H., Tropical Hurwitz numbers, J. Algebraic Combin. 32 (2010), 241-265, arXiv:0804.0579.
  13. Cavalieri R., Johnson P., Markwig H., Ranganathan D., A graphical interface for the Gromov-Witten theory of curves, in Algebraic Geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., Vol. 97, Amer. Math. Soc., Providence, RI, 2018, 139-167, arXiv:1604.07250.
  14. Cavalieri R., Johnson P., Markwig H., Ranganathan D., Counting curves on Hirzebruch surfaces: tropical geometry and the Fock space, Math. Proc. Cambridge Philos. Soc. 171 (2021), 165-205, arXiv:1706.05401.
  15. Dijkgraaf R., Mirror symmetry and elliptic curves, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., Vol. 129, Birkhäuser Boston, Boston, MA, 1995, 149-163.
  16. Eskin A., Okounkov A., Pillowcases and quasimodular forms, in Algebraic Geometry and Number Theory, Progr. Math., Vol. 253, Birkhäuser Boston, Boston, MA, 2006, 1-25, arXiv:math.DS/0505545.
  17. Eskin A., Okounkov A., Pandharipande R., The theta characteristic of a branched covering, Adv. Math. 217 (2008), 873-888, arXiv:math.AG/0312186.
  18. Fomin S., Mikhalkin G., Labeled floor diagrams for plane curves, J. Eur. Math. Soc. (JEMS) 12 (2010), 1453-1496, arXiv:0906.3828.
  19. Goujard E., Möller M., Counting Feynman-like graphs: quasimodularity and Siegel-Veech weight, J. Eur. Math. Soc. (JEMS) 22 (2020), 365-412, arXiv:1609.01658.
  20. Gross M., Mirror symmetry for $\mathbb P^2$ and tropical geometry, Adv. Math. 224 (2010), 169-245, arXiv:0903.1378.
  21. Gross M., Siebert B., Mirror symmetry via logarithmic degeneration data. I, J. Differential Geom. 72 (2006), 169-338, arXiv:math.AG/0309070.
  22. Gross M., Siebert B., Mirror symmetry via logarithmic degeneration data, II, J. Algebraic Geom. 19 (2010), 679-780, arXiv:0709.2290.
  23. Kac V.G., Raina A.K., Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, 2nd ed., Advanced Series in Mathematical Physics, Vol. 29, World Sci. Publ. Co., Inc., Teaneck, NJ, 2013.
  24. Kaneko M., Zagier D., A generalized Jacobi theta function and quasimodular forms, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., Vol. 129, Birkhäuser Boston, Boston, MA, 1995, 165-172.
  25. Kerber M., Markwig H., Counting tropical elliptic plane curves with fixed $j$-invariant, Comment. Math. Helv. 84 (2009), 387-427, arXiv:math.AG/0608472.
  26. Li S., Calabi-Yau geometry and higher genus mirror symmetry, Ph.D. Thesis, Harvard University, 2011.
  27. Li S., BCOV theory on the elliptic curve and higher genus mirror symmetry, arXiv:1112.4063.
  28. Li S., Vertex algebras and quantum master equation, arXiv:1612.01292.
  29. Mandel T., Ruddat H., Descendant log Gromov-Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc. 373 (2020), 1109-1152, arXiv:1612.02402.
  30. Markwig H., Rau J., Tropical descendant Gromov-Witten invariants, Manuscripta Math. 129 (2009), 293-335, arXiv:0809.1102.
  31. Mikhalkin G., Enumerative tropical algebraic geometry in $\mathbb{R}^2$, J. Amer. Math. Soc. 18 (2005), 313-377, arXiv:math.AG/0312530.
  32. Mikhalkin G., Moduli spaces of rational tropical curves, in Proceedings of Gökova Geometry-Topology Conference 2006, Gökova Geometry/Topology Conference (GGT), Gökova, 2007, 39-51, arXiv:0704.0839.
  33. Nishinou T., Siebert B., Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006), 1-51, arXiv:math.AG/0409060.
  34. Oberdieck G., Pixton A., Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math. 213 (2018), 507-587, arXiv:1706.10100.
  35. Oberdieck G., Pixton A., Gromov-Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations, Geom. Topol. 23 (2019), 1415-1489, arXiv:1709.01481.
  36. Okounkov A., Pandharipande R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006), 517-560, arXiv:math.AG/0204305.
  37. Overholser P., Descendent tropical mirror symmetry for $\mathbb{P}^2$, arXiv:1504.06138.
  38. Shadrin S., Spitz L., Zvonkine D., On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc. 86 (2012), 407-432, arXiv:1103.3120.
  39. Strominger A., Yau S.T., Zaslow E., Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), 243-259, arXiv:hep-th/9606040.
  40. Vakil R., The moduli space of curves and Gromov-Witten theory, in Enumerative invariants in algebraic geometry and string theory, Lecture Notes in Math., Vol. 1947, Springer, Berlin, 2008, 143-198, arXiv:math.AG/0602347.
  41. Wick G.C., The evaluation of the collision matrix, Phys. Rev. 80 (1950), 268-272.

Previous article  Next article  Contents of Volume 18 (2022)