Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 031, 19 pages      arXiv:2201.13048
Contribution to the Special Issue on Twistors from Geometry to Physics in honour of Roger Penrose

Spinors in Five-Dimensional Contact Geometry

Michael Eastwood a and Timothy Moy b
a) School of Mathematical Sciences, University of Adelaide, SA 5005, Australia
b) Clare College, University of Cambridge, CB2 1TL, England, UK

Received January 31, 2022, in final form April 13, 2022; Published online April 16, 2022

We use classical (Penrose) two-component spinors to set up the differential geometry of two parabolic contact structures in five dimensions, namely $G_2$ contact geometry and Legendrean contact geometry. The key players in these two geometries are invariantly defined directional derivatives defined only in the contact directions. We explain how to define them and their usage in constructing basic invariants such as the harmonic curvature, the obstruction to being locally flat from the parabolic viewpoint. As an application, we calculate the invariant torsion of the $G_2$ contact structure on the configuration space of a flying saucer (always a five-dimensional contact manifold).

Key words: spinors; contact geometry; parabolic geometry.

pdf (442 kb)   tex (26 kb)  


  1. Baston R.J., Eastwood M.G., The Penrose transform: its interaction with representation theory, Dover Publications, Mineola, NY, 2016 (Reprint of the 1989 edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989).
  2. Bryant R.L., Two exotic holonomies in dimension four, path geometries, and twistor theory, in Complex Geometry and Lie Theory (Sundance, UT, 1989), Proc. Sympos. Pure Math., Vol. 53, Amer. Math. Soc., Providence, RI, 1991, 33-88.
  3. Čap A., Slovák J., Weyl structures for parabolic geometries, Math. Scand. 93 (2003), 53-90, arXiv:math.DG/0001166.
  4. Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, Vol. 154, Amer. Math. Soc., Providence, RI, 2009.
  5. Eastwood M., Gover A.R., Prolongation on contact manifolds, Indiana Univ. Math. J. 60 (2011), 1425-1486, arXiv:0910.5519.
  6. Eastwood M., Nurowski P., Aerobatics of flying saucers, Comm. Math. Phys. 375 (2020), 2335-2365, arXiv:1810.04852.
  7. Eastwood M., Nurowski P., Aerodynamics of flying saucers, Comm. Math. Phys. 375 (2020), 2367-2387, arXiv:1810.04855.
  8. Engel F., Sur un groupe simple á quatorze paramètres, C. R. Acad. Sci. Paris Sér. I Math. 116 (1893), 786-788.
  9. Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
  10. Landsberg J.M., Manivel L., Legendrian varieties, Asian J. Math. 11 (2007), 341-359, arXiv:math.AG/0407279.
  11. Moy T., Legendrean and $G_2$ contact structures, Master Thesis, University of Adelaide, 2021, available at
  12. Penrose R., Rindler W., Spinors and space-time, Vol. 1, Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984.
  13. Penrose R., Rindler W., Spinors and space-time, Vol. 2, Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1986.
  14. Rumin M., Un complexe de formes différentielles sur les variétés de contact, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 401-404.
  15. Sommers P., Space spinors, J. Math. Phys. 21 (1980), 2567-2571.

Previous article  Next article  Contents of Volume 18 (2022)