Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 026, 17 pages      arXiv:2203.16142

Cohomology of $\mathfrak{sl}_3$ and $\mathfrak{gl}_3$ with Coefficients in Simple Modules and Weyl Modules in Positive Characteristics

Sherali Sh. Ibraev
Korkyt Ata Kyzylorda University, Aiteke bie St., 29A, 120014, Kzylorda, Kazakhstan

Received August 12, 2021, in final form March 26, 2022; Published online March 30, 2022

We calculate the cohomology of $\mathfrak{sl}_3(k)$ over an algebraically closed field $k$ of characteristic $p>3$ with coefficients in simple modules and Weyl modules. We also give descriptions of the corresponding cohomology of $\mathfrak{gl}_3(k)$.

Key words: Lie algebra; simple module; cohomology.

pdf (383 kb)   tex (18 kb)  


  1. Andersen H.H., Jantzen J.C., Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487-525.
  2. Bouarroudj S., Grozman P., Lebedev A., Leites D., Derivations and central extensions of simple modular Lie algebras and superalgebras, arXiv:1307.1858.
  3. Bouarroudj S., Grozman P., Leites D., Deformations of symmetric simple modular Lie superalgebras, arXiv:0807.3054.
  4. Braden B., Restricted representations of classical Lie algebras of types $A_{2}$ and $B_{2}$, Bull. Amer. Math. Soc. 73 (1967), 482-486.
  5. Carter R.W., Lusztig G., On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193-242.
  6. Chebochko N.G., Deformations of classical Lie algebras with homogeneous root system in characteristic two. I, Sb. Math. 196 (2005), 1371-1402.
  7. Chevalley C., Eilenberg S., Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
  8. Cline E., Parshall B., Scott L., van der Kallen W., Rational and generic cohomology, Invent. Math. 39 (1977), 143-163.
  9. Dzhumadil'daev A.S., On the cohomology of modular Lie algebras, Math. USSR-Sb. 47 (1984), 127-143.
  10. Dzhumadil'daev A.S., Abelian extensions of modular Lie algebras, Algebra Logic 24 (1985), 1-7.
  11. Dzhumadil'daev A.S., Ibraev Sh.Sh., Nonsplit extensions of modular Lie algebras of rank 2, Homology Homotopy Appl. 4 (2002), 141-163.
  12. Farnsteiner R., Cohomology groups of reduced enveloping algebras, Math. Z. 206 (1991), 103-117.
  13. Franklin J., Homomorphisms between Verma modules in characteristic $p$, J. Algebra 112 (1988), 58-85.
  14. Friedlander E.M., Parshall B.J., Modular representation theory of Lie algebras, Amer. J. Math. 110 (1988), 1055-1093.
  15. Hazewinkel M., A duality theorem for the cohomology of Lie algebras, Math. USSR-Sb. 12 (1970), 638-644.
  16. Hochschild G., Cohomology of restricted Lie algebras, Amer. J. Math. 76 (1954), 555-580.
  17. Humphreys J.E., Modular representations of finite groups of Lie type, London Mathematical Society Lecture Note Series, Vol. 326, Cambridge University Press, Cambridge, 2006.
  18. Ibraev Sh.Sh., Turbayev B.T., Cohomology for the Lie algebra of type $A_2$ over a field of characteristic 2, Sib. Electron. Math. Rep. 18 (2021), 729-739.
  19. Ibrayeva A.A., Ibraev Sh.Sh., Yeshmurat G.K., Cohomology of simple modules for $\mathfrak{sl}_3(k)$ in characteristic $3$, Bull. Karaganda Univ. Math. Ser. (2021), no. 3, 36-43, arXiv:2108.13652.
  20. Jantzen J.C., Weyl modules for groups of Lie type, in Finite Simple Groups II, University of Durham, 1980, 291-300.
  21. Jantzen J.C., First cohomology groups for classical Lie algebras, in Representation Theory of Finite Groups and Finite-Dimensional Algebras (Bielefeld, 1991), Progr. Math., Vol. 95, Birkhäuser, Basel, 1991, 289-315.
  22. Jantzen J.C., Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 107, Amer. Math. Soc., Providence, RI, 2003.
  23. Permyakov D.S., Derivations of classical Lie algebras over a field of characteristic $2$, Vestnik Lobachevsky State Univ. Nizhni Novgorod Ser. Math. 1 (1978), 123-134, available at
  24. Rudakov A.N., Dimensions of certain irreducible representations of semisimple Lie algebras of classical type over fields of finite characteristic, Trudy Sem. Petrovsk. (1978), no. 3, 147-160.
  25. Shu B., Yao Y.-F., On cohomology of a class of nonclassical restricted simple Lie algebras, J. Algebra Appl. 16 (2017), 1750157, 13 pages.
  26. Sullivan J.B., The second Lie algebra cohomology group and Weyl modules, Pacific J. Math. 86 (1980), 321-326.

Previous article  Next article  Contents of Volume 18 (2022)