Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 024, 20 pages      arXiv:2004.02971

Accessory Parameters for Four-Punctured Spheres

Gabriele Bogo
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany

Received August 24, 2021, in final form March 22, 2022; Published online March 28, 2022

We study the accessory parameter problem for four-punctured spheres from the point of view of modular forms. The value of the accessory parameter giving the uniformization is characterized as the unique zero of a system of equations. This gives an effective method to compute the uniformizing differential equation. As an application, we compute numerically and study the local expansion of the real-analytic function associating to a four-punctured sphere the value of its uniformizing parameter, and make some observations on its coefficients.

Key words: accessory parameters; Fuchsian uniformization; modular forms.

pdf (480 kb)   tex (47 kb)  


  1. Anselmo T., Nelson R., Carneiro da Cunha B., Crowdy D.G., Accessory parameters in conformal mapping: exploiting the isomonodromic tau function for Painlevé VI, Proc. A. 474 (2018), 20180080, 20 pages.
  2. Beardon A.F., The geometry of discrete groups, Graduate Texts in Mathematics, Vol. 91, Springer-Verlag, New York, 1983.
  3. Bers L., Quasiconformal mappings, with applications to differential equations, function theory and topology, Bull. Amer. Math. Soc. 83 (1977), 1083-1100.
  4. Bogo G., Modular forms, deformation of punctured spheres, and extensions of symmetric tensor representations, Math. Res. Lett., to appear, arXiv:2004.04716.
  5. Bouw I.I., Möller M., Differential equations associated with nonarithmetic Fuchsian groups, J. Lond. Math. Soc. 81 (2010), 65-90, arXiv:0710.5277.
  6. Bruinier J.H., van der Geer G., Harder G., Zagier D., The 1-2-3 of modular forms, Universitext, Springer-Verlag, Berlin, 2008.
  7. Chudnovsky D.V., Chudnovsky G.V., Transcendental methods and theta-functions, in Theta Functions - Bowdoin 1987, Part 2 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., Vol. 49, Amer. Math. Soc., Providence, RI, 1989, 167-232.
  8. de Saint-Gervais H.P., Uniformization of Riemann surfaces, Heritage of European Mathematics, European Mathematical Society (EMS), Zürich, 2016.
  9. Ford L.R., Automorphic functions, 2nd ed., Chelsea Publishing Co., New York, 1951.
  10. Goldman W.M., Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987), 297-326.
  11. Hempel J.A., On the uniformization of the $n$-punctured sphere, Bull. London Math. Soc. 20 (1988), 97-115.
  12. Hoffman J., Monodromy calculations for some differential equations, Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, 2013.
  13. Keen L., Rauch H.E., Vasquez A.T., Moduli of punctured tori and the accessory parameter of Lamé's equation, Trans. Amer. Math. Soc. 255 (1979), 201-230.
  14. Kra I., Accessory parameters for punctured spheres, Trans. Amer. Math. Soc. 313 (1989), 589-617.
  15. Miyake T., Modular forms, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1989.
  16. Nehari Z., On the accessory parameters of a Fuchsian differential equation, Amer. J. Math. 71 (1949), 24-39.
  17. Poincaré H., Sur les groupes des équations linéaires, Acta Math. 4 (1884), 201-312.
  18. Polyakov A.M., Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981), 207-210.
  19. Smirnov V., Sur les équations différentielles linéaires du second ordre et la théorie des fonctions automorphes, Bull. Sci. Math. 45 (1921), 93-120.
  20. Takhtajan L.A., Liouville theory: quantum geometry of Riemann surfaces, Modern Phys. Lett. A 8 (1993), 3529-3535, arXiv:hep-th/9308125.
  21. Thompson J.G., Algebraic numbers associated to certain punctured spheres, J. Algebra 104 (1986), 61-73.
  22. Zagier D., Integral solutions of Apéry-like recurrence equations, in Groups and Symmetries, CRM Proc. Lecture Notes, Vol. 47, Amer. Math. Soc., Providence, RI, 2009, 349-366.
  23. Zograf P.G., Takhtajan L.A., On Liouville equation, accessory parameters and the geometry of Teichmüller space for Riemann surfaces of genus $0$, Math. USSR-Sb. 60 (1988), 143-161.

Previous article  Next article  Contents of Volume 18 (2022)