Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 018, 81 pages      arXiv:1911.11040      https://doi.org/10.3842/SIGMA.2022.018

Algebras of Non-Local Screenings and Diagonal Nichols Algebras

Ilaria Flandoli and Simon D. Lentner
Department of Mathematics, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

Received November 02, 2020, in final form February 14, 2022; Published online March 11, 2022

Abstract
In a vertex algebra setting, we consider non-local screening operators associated to the basis of any non-integral lattice. We have previously shown that, under certain restrictions, these screening operators satisfy the relations of a quantum shuffle algebra or Nichols algebra associated to a diagonal braiding, which encodes the non-locality and non-integrality. In the present article, we take all finite-dimensional diagonal Nichols algebras, as classified by Heckenberger, and find all lattice realizations of the braiding that are compatible with reflections. Usually, the realizations are unique or come as one- or two-parameter families. Examples include realizations of Lie superalgebras. We then study the associated algebra of screenings with improved methods. Typically, for positive definite lattices we obtain the Nichols algebra, such as the positive part of the quantum group, and for negative definite lattices we obtain a certain extension of the Nichols algebra generalizing the infinite quantum group with a large center.

Key words: Nichols algebras; quantum groups, screening operators; conformal field theory.

pdf (1160 kb)   tex (236 kb)  

References

  1. Adamović D., Milas A., On the triplet vertex algebra $\mathcal W(p)$, Adv. Math. 217 (2008), 2664-2699, arXiv:0707.1857.
  2. Adamović D., Milas A., $C_2$-cofinite $\mathcal W$-algebras and their logarithmic representations, in Conformal Field Theories and Tensor Categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, 249-270, arXiv:1212.6771.
  3. Andruskiewitsch N., Angiono I., On finite dimensional Nichols algebras of diagonal type, Bull. Math. Sci. 7 (2017), 353-573, arXiv:1707.08387.
  4. Andruskiewitsch N., Angiono I., Bagio D., Examples of pointed color Hopf algebras, J. Algebra Appl. 13 (2014), 1350098, 28 pages, arXiv:1212.0514.
  5. Andruskiewitsch N., Angiono I., Rossi Bertone F., Lie algebras arising from Nichols algebras of diagonal type, arXiv:1911.06586.
  6. Andruskiewitsch N., Angiono I., Yamane H., On pointed Hopf superalgebras, in New Developments in Lie Theory and Its Applications, Contemp. Math., Vol. 544, Amer. Math. Soc., Providence, RI, 2011, 123-140, arXiv:1009.5148.
  7. Andruskiewitsch N., Heckenberger I., Schneider H.-J., The Nichols algebra of a semisimple Yetter-Drinfeld module, Amer. J. Math. 132 (2010), 1493-1547, arXiv:0803.2430.
  8. Andruskiewitsch N., Schneider H.-J., On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. 171 (2010), 375-417, arXiv:math.QA/0502157.
  9. Angiono I., On Nichols algebras of diagonal type, J. Reine Angew. Math. 683 (2013), 189-251, arXiv:1104.0268.
  10. Angiono I., Distinguished pre-Nichols algebras, Transform. Groups 21 (2016), 1-33, arXiv:1405.6681.
  11. Arakawa T., Representation theory of $\mathcal W$-algebras, Invent. Math. 169 (2007), 219-320, arXiv:math.QA/0506056.
  12. Auger J., Creutzig T., Kanade S., Rupert M., Characterizing braided tensor categories associated to logarithmic vertex operator algebras, arXiv:2104.13262.
  13. Barvels A., Lentner S., Schweigert C., Partially dualized Hopf algebras have equivalent Yetter-Drinfel'd modules, J. Algebra 430 (2015), 303-342, arXiv:1402.2214.
  14. Creutzig T., Gainutdinov A.M., Runkel I., A quasi-Hopf algebra for the triplet vertex operator algebra, Commun. Contemp. Math. 22 (2020), 1950024, 71 pages, arXiv:1712.07260.
  15. Cuntz M., Crystallographic arrangements: Weyl groupoids and simplicial arrangements, Bull. Lond. Math. Soc. 43 (2011), 734-744, arXiv:1006.1997.
  16. Cuntz M., Heckenberger I., Finite Weyl groupoids of rank three, Trans. Amer. Math. Soc. 364 (2012), 1369-1393, arXiv:0912.0212.
  17. Cuntz M., Heckenberger I., Finite Weyl groupoids, J. Reine Angew. Math. 702 (2015), 77-108, arXiv:1008.5291.
  18. Dong C., Lepowsky J., Generalized vertex algebras and relative vertex operators, Progress in Mathematics, Vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993.
  19. Dotsenko V.S., Fateev V.A., Conformal algebra and multipoint correlation functions in $2$D statistical models, Nuclear Phys. B 240 (1984), 312-348.
  20. Feigin B.L., Fuchs D.B., Verma modules over the Virasoro algebra, in Topology (Leningrad, 1982), Lecture Notes in Math., Vol. 1060, Springer, Berlin, 1984, 230-245.
  21. Feigin B.L., Tipunin I.Yu., Logarithmic CFTs connected with simple Lie algebras, arXiv:1002.5047.
  22. Felder G., BRST approach to minimal models, Nuclear Phys. B 317 (1989), 215-236.
  23. Flandoli I., Lentner S., Logarithmic conformal field theories of type $B_n$, $\ell=4$ and symplectic fermions, J. Math. Phys. 59 (2018), 071701, 35 pages, arXiv:1706.07994.
  24. Frappat L., Sciarrino A., Sorba P., Dictionary on Lie superalgebras, arXiv:hep-th/9607161.
  25. Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, 2nd ed., Mathematical Surveys and Monographs, Vol. 88, Amer. Math. Soc., Providence, RI, 2004.
  26. Gaberdiel M.R., Runkel I., Wood S., Fusion rules and boundary conditions in the $c=0$ triplet model, J. Phys. A: Math. Theor. 42 (2009), 325403, 43 pages, arXiv:0905.0916.
  27. Gainutdinov A.M., Lentner S., Ohrmann T., Modularization of small quantum groups, arXiv:1809.02116.
  28. Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu., Feigin B.L., Kazhdan-Lusztig correspondence for the representation category of the triplet $W$-algebra in logarithmic CFT, Theoret. and Math. Phys. 148 (2006), 1210-1235, arXiv:math.QA/0512621.
  29. Gaitsgory D., A conjectural extension of the Kazhdan-Lusztig equivalence, Publ. Res. Inst. Math. Sci. 57 (2021), 1227-1376, arXiv:1810.09054.
  30. Gannon T., Negron C., Quantum ${\rm SL}(2)$ and logarithmic vertex operator algebras at $(p,1)$-central charge, arXiv:2104.12821.
  31. Garcia G.A., Gavarini F., Multiparameter quantum groups at roots of unity, arXiv:1708.05760.
  32. Heckenberger I., Weyl equivalence for rank 2 Nichols algebras of diagonal type, Ann. Univ. Ferrara 51 (2005), 281-289, arXiv:math.QA/0411621.
  33. Heckenberger I., Classification of arithmetic root systems of rank 3, in Proceedings of the XVIth Latin American Algebra Colloquium (Spanish), Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2007, 227-252, arXiv:math.QA/0509145.
  34. Heckenberger I., Classification of arithmetic root systems, Adv. Math. 220 (2009), 59-124, arXiv:math.QA/0605795.
  35. Heckenberger I., Lusztig isomorphisms for Drinfel'd doubles of bosonizations of Nichols algebras of diagonal type, J. Algebra 323 (2010), 2130-2182, arXiv:0710.4521.
  36. Heckenberger I., Schneider H.-J., Root systems and Weyl groupoids for Nichols algebras, Proc. Lond. Math. Soc. 101 (2010), 623-654, arXiv:0807.0691.
  37. Heckenberger I., Schneider H.-J., Yetter-Drinfeld modules over bosonizations of dually paired Hopf algebras, Adv. Math. 244 (2013), 354-394, arXiv:1111.4673.
  38. Heckenberger I., Schneider H.-J., Hopf algebras and root systems, Mathematical Surveys and Monographs, Vol. 247, Amer. Math. Soc., Providence, RI, 2020.
  39. Heckenberger I., Yamane H., A generalization of Coxeter groups, root systems, and Matsumoto's theorem, Math. Z. 259 (2008), 255-276, arXiv:math.QA/0610823.
  40. Helbig M., On the lifting of Nichols algebras, Comm. Algebra 40 (2012), 3317-3351, arXiv:1003.5882.
  41. Huang Y.-Z., Lepowsky J., Zhang L., A logarithmic generalization of tensor product theory for modules for a vertex operator algebra, Internat. J. Math. 17 (2006), 975-1012, arXiv:math.QA/0311235.
  42. Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, arXiv:1012.4193.
  43. Kac V.G., Lie superalgebras, Adv. Math. 26 (1977), 8-96.
  44. Kac V.G., Vertex algebras for beginners, 2nd ed., University Lecture Series, Vol. 10, Amer. Math. Soc., Providence, RI, 1998.
  45. Kadell K.W.J., The Selberg-Jack symmetric functions, Adv. Math. 130 (1997), 33-102.
  46. Khoroshkin S.M., Tolstoy V.N., Universal $R$-matrix for quantized (super)algebras, Comm. Math. Phys. 141 (1991), 599-617.
  47. Lentner S., New large-rank Nichols algebras over nonabelian groups with commutator subgroup $\mathbb{Z}_2$, J. Algebra 419 (2014), 1-33, arXiv:1306.5684.
  48. Lentner S., The unrolled quantum group inside Lusztig's quantum group of divided powers, Lett. Math. Phys. 109 (2019), 1665-1682, arXiv:1702.05164.
  49. Lentner S., Quantum groups and Nichols algebras acting on conformal field theories, Adv. Math. 378 (2021), 107517, 71 pages, arXiv:1702.06431.
  50. Lusztig G., Introduction to quantum groups, Progress in Mathematics, Vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993.
  51. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  52. Mukhin E., Varchenko A., Remarks on critical points of phase functions and norms of Bethe vectors, in Arrangements - Tokyo 1998, Adv. Stud. Pure Math., Vol. 27, Kinokuniya, Tokyo, 2000, 239-246, arXiv:math.RT/9810087.
  53. Nagatomo K., Tsuchiya A., The triplet vertex operator algebra $W(p)$ and the restricted quantum group $\overline U_q(\mathfrak{sl}_2)$ at $q={\rm e}^{\frac{\pi {\rm i}}{p}}$, in Exploring new structures and natural constructions in mathematical physics, Adv. Stud. Pure Math., Vol. 61, Math. Soc. Japan, Tokyo, 2011, 1-49, arXiv:0902.4607.
  54. Negron C., Log-modular quantum groups at even roots of unity and the quantum Frobenius I, Comm. Math. Phys. 382 (2021), 773-814, arXiv:1812.02277.
  55. Rosso M., Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399-416.
  56. Selberg A., Remarks on a multiple integral, Norsk Mat. Tidsskr. 26 (1944), 71-78.
  57. Semikhatov A.M., Virasoro central charges for Nichols algebras, in Conformal field theories and tensor categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, 67-92, arXiv:1109.1767.
  58. Semikhatov A.M., Tipunin I.Yu., Logarithmic $\widehat{\mathfrak{sl}}(2)$ CFT models from Nichols algebras: I, J. Phys. A: Math. Theor. 46 (2013), 494011, 53 pages, arXiv:1301.2235.
  59. Serganova V., On generalizations of root systems, Comm. Algebra 24 (1996), 4281-4299.
  60. Tarasov V., Varchenko A., Selberg-type integrals associated with $\mathfrak{sl}_3$, Lett. Math. Phys. 65 (2003), 173-185, arXiv:math.QA/0302148.
  61. Tsuchiya A., Wood S., The tensor structure on the representation category of the $\mathcal W_p$ triplet algebra, J. Phys. A: Math. Theor. 46 (2013), 445203, 40 pages, arXiv:1201.0419.
  62. Warnaar S.O., A Selberg integral for the Lie algebra $A_n$, Acta Math. 203 (2009), 269-304, arXiv:0708.1193.
  63. Woronowicz S.L., Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170.
  64. Yamane H., Representations of a $\mathbb Z/3\mathbb Z$-quantum group, Publ. Res. Inst. Math. Sci. 43 (2007), 75-93.

Previous article  Next article  Contents of Volume 18 (2022)