Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 007, 40 pages      arXiv:2106.09345      https://doi.org/10.3842/SIGMA.2022.007

Scaling Limits of Planar Symplectic Ensembles

Gernot Akemann a, Sung-Soo Byun b and Nam-Gyu Kang b
a) Faculty of Physics, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
b) School of Mathematics, Korea Institute for Advanced Study, Seoul, 02455, Republic of Korea

Received June 23, 2021, in final form January 19, 2022; Published online January 25, 2022

Abstract
We consider various asymptotic scaling limits $N\to\infty$ for the $2N$ complex eigenvalues of non-Hermitian random matrices in the symmetry class of the symplectic Ginibre ensemble. These are known to be integrable, forming Pfaffian point processes, and we obtain limiting expressions for the corresponding kernel for different potentials. The first part is devoted to the symplectic Ginibre ensemble with the Gaussian potential. We obtain the asymptotic at the edge of the spectrum in the vicinity of the real line. The unifying form of the kernel allows us to make contact with the bulk scaling along the real line and with the edge scaling away from the real line, where we recover the known determinantal process of the complex Ginibre ensemble. Part two covers ensembles of Mittag-Leffler type with a singularity at the origin. For potentials $Q(\zeta)=|\zeta|^{2\lambda}-(2c/N)\log|\zeta|$, with $\lambda>0$ and $c>-1$, the limiting kernel obeys a linear differential equation of fractional order $1/\lambda$ at the origin. For integer $m=1/\lambda$ it can be solved in terms of Mittag-Leffler functions. In the last part, we derive Ward's equation for planar symplectic ensembles for a general class of potentials. It serves as a tool to investigate the Gaussian and singular Mittag-Leffler universality class. This allows us to determine the functional form of all possible limiting kernels (if they exist) that are translation invariant, up to their integration domain.

Key words: symplectic random matrix ensemble; Pfaffian point process; Mittag-Leffler functions; Ward's equation; translation invariant kernel.

pdf (3118 kb)   tex (3194 kb)  

References

  1. Adler M., Forrester P.J., Nagao T., van Moerbeke P., Classical skew orthogonal polynomials and random matrices, J. Statist. Phys. 99 (2000), 141-170, arXiv:solv-int/9907001.
  2. Akemann G., The complex Laguerre symplectic ensemble of non-Hermitian matrices, Nuclear Phys. B 730 (2005), 253-299, arXiv:hep-th/0507156.
  3. Akemann G., Basile F., Massive partition functions and complex eigenvalue correlations in matrix models with symplectic symmetry, Nuclear Phys. B 766 (2007), 150-177, arXiv:math-ph/0606060.
  4. Akemann G., Bittner E., Unquenched complex Dirac spectra at nonzero chemical potential: two-color QCD lattice data versus matrix model, Phys. Rev. Lett. 96 (2006), 222002, 4 pages, arXiv:hep-lat/0603004.
  5. Akemann G., Byun S.-S., Kang N.-G., A non-Hermitian generalisation of the Marchenko-Pastur distribution: from the circular law to multi-criticality, Ann. Henri Poincaré 22 (2021), 1035-1068, arXiv:2004.07626.
  6. Akemann G., Ebke M., Parra I., Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels, Comm. Math. Phys. 389 (2022), 621-659, arXiv:2103.12114.
  7. Akemann G., Kieburg M., Mielke A., Prosen T., Universal signature from integrability to chaos in dissipative open quantum systems, Phys. Rev. Lett. 123 (2019), 254101, 6 pages, arXiv:1910.03520.
  8. Akemann G., Phillips M.J., The interpolating Airy kernels for the $\beta=1$ and $\beta=4$ elliptic Ginibre ensembles, J. Stat. Phys. 155 (2014), 421-465, arXiv:1308.3418.
  9. Ameur Y., Repulsion in low temperature $\beta$-ensembles, Comm. Math. Phys. 359 (2018), 1079-1089, arXiv:1701.04796.
  10. Ameur Y., Byun S.-S., Almost-Hermitian random matrices and bandlimited point processes, arXiv:2101.03832.
  11. Ameur Y., Hedenmalm H., Makarov N., Fluctuations of eigenvalues of random normal matrices, Duke Math. J. 159 (2011), 31-81, arXiv:0807.0375.
  12. Ameur Y., Hedenmalm H., Makarov N., Random normal matrices and Ward identities, Ann. Probab. 43 (2015), 1157-1201, arXiv:1109.5941.
  13. Ameur Y., Kang N.-G., Makarov N., Rescaling Ward identities in the random normal matrix model, Constr. Approx. 50 (2019), 63-127, arXiv:1410.4132.
  14. Ameur Y., Kang N.-G., Makarov N., Wennman A., Scaling limits of random normal matrix processes at singular boundary points, J. Funct. Anal. 278 (2020), 108340, 46 pages, arXiv:1510.08723.
  15. Ameur Y., Kang N.-G., Seo S.-M., The random normal matrix model: insertion of a point charge, Potential Anal., to appear, arXiv:1804.08587.
  16. Balogh F., Grava T., Merzi D., Orthogonal polynomials for a class of measures with discrete rotational symmetries in the complex plane, Constr. Approx. 46 (2017), 109-169, arXiv:1509.05331.
  17. Benaych-Georges F., Chapon F., Random right eigenvalues of Gaussian quaternionic matrices, Random Matrices Theory Appl. 1 (2012), 1150009, 18 pages, arXiv:1104.4455.
  18. Bertola M., Elias Rebelo J.G., Grava T., Painlevé IV critical asymptotics for orthogonal polynomials in the complex plane, SIGMA 14 (2018), 091, 34 pages, arXiv:1802.01153.
  19. Bertola M., Eynard B., Harnad J., Duality, biorthogonal polynomials and multi-matrix models, Comm. Math. Phys. 229 (2002), 73-120, arXiv:nlin.SI/0108049.
  20. Borodin A., Sinclair C.D., The Ginibre ensemble of real random matrices and its scaling limits, Comm. Math. Phys. 291 (2009), 177-224, arXiv:0805.2986.
  21. Byun S.-S., Ebke M., Universal scaling limits of the symplectic elliptic Ginibre ensemble, arXiv:2108.05541.
  22. Byun S.-S., Ebke M., Seo S.-M., Wronskian structures of planar symplectic ensembles, arXiv:2110.12196.
  23. Byun S.-S., Lee S.-Y., Yang M., Lemniscate ensembles with spectral singularity, arXiv:2107.07221.
  24. Cardoso G., Stéphan J.-M., Abanov A.G., The boundary density profile of a Coulomb droplet. Freezing at the edge, J. Phys. A: Math. Theor. 54 (2021), 015002, 24 pages, arXiv:2009.02359.
  25. Chau L.-L., Zaboronsky O., On the structure of correlation functions in the normal matrix model, Comm. Math. Phys. 196 (1998), 203-247.
  26. Dahlhaus J.P., Béri B., Beenakker C.W.J., Random-matrix theory of thermal conduction in superconducting quantum dots, Phys. Rev. B 82 (2010), 014536, 7 pages, arXiv:1004.2438.
  27. Dubach G., Symmetries of the quaternionic Ginibre ensemble, Random Matrices Theory Appl. 10 (2021), 2150013, 19 pages, arXiv:1811.03724.
  28. Fischmann J., Bruzda W., Khoruzhenko B.A., Sommers H.-J., Życzkowski K., Induced Ginibre ensemble of random matrices and quantum operations, J. Phys. A: Math. Theor. 45 (2012), 075203, 31 pages, arXiv:1107.5019.
  29. Forrester P.J., Analogies between random matrix ensembles and the one-component plasma in two-dimensions, Nuclear Phys. B 904 (2016), 253-281, arXiv:1511.02946.
  30. Forrester P.J., Honner G., Exact statistical properties of the zeros of complex random polynomials, J. Phys. A: Math. Gen. 32 (1999), 2961-2981, arXiv:cond-mat/9812388.
  31. Ginibre J., Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys. 6 (1965), 440-449.
  32. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014.
  33. Hedenmalm H., Wennman A., Planar orthogogonal polynomials and boundary universality in the random normal matrix model, Acta Math. 227 (2021), 309-406, arXiv:1710.06493.
  34. Ipsen J.R., Products of independent quaternion Ginibre matrices and their correlation functions, J. Phys. A: Math. Theor. 46 (2013), 265201, 16 pages, arXiv:1301.3343.
  35. Kanzieper E., Eigenvalue correlations in non-Hermitean symplectic random matrices, J. Phys. A: Math. Gen. 35 (2002), 6631-6644, arXiv:cond-mat/0109287.
  36. Kanzieper E., Exact replica treatment of non-Hermitean complex random matrices, in Frontiers in Field Theory, Editor O. Kovras, Nova Science Publishers, New York, 2005, 23-51, arXiv:cond-mat/0109287.
  37. Khoruzhenko B.A., Lysychkin S., Truncations of random symplectic unitary matrices, arXiv:2111.02381.
  38. Khoruzhenko B.A., Lysychkin S., Scaling limits of eigenvalue statistics in the quaternion-real Ginibre ensemble, in preparation.
  39. Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006.
  40. Kolesnikov A.V., Efetov K.B., Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices, Waves Random Media 9 (1999), 71-82, arXiv:cond-mat/9809173.
  41. Lee S.-Y., Riser R., Fine asymptotic behavior for eigenvalues of random normal matrices: ellipse case, J. Math. Phys. 57 (2016), 023302, 29 pages, arXiv:1501.02781.
  42. Lee S.-Y., Yang M., Discontinuity in the asymptotic behavior of planar orthogonal polynomials under a perturbation of the Gaussian weight, Comm. Math. Phys. 355 (2017), 303-338, arXiv:1607.02821.
  43. Lysychkin S., Complex eigenvalues of high dimensional quaternion random matrices, Ph.D. Thesis, Queen Mary University of London, UK, 2021.
  44. Mehta M.L., Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991.
  45. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.
  46. Rider B., A limit theorem at the edge of a non-Hermitian random matrix ensemble, J. Phys. A: Math. Gen. 36 (2003), 3401-3409.
  47. Serfaty S., Microscopic description of Log and Coulomb gases, in Random Matrices, IAS/Park City Math. Ser., Vol. 26, Amer. Math. Soc., Providence, RI, 2019, 341-387, arXiv:1709.04089.
  48. Widom H., On the relation between orthogonal, symplectic and unitary matrix ensembles, J. Statist. Phys. 94 (1999), 347-363, arXiv:solv-int/9804005.
  49. Życzkowski K., Sommers H.-J., Truncations of random unitary matrices, J. Phys. A: Math. Gen. 33 (2000), 2045-2057, arXiv:chao-dyn/9910032.

Previous article  Next article  Contents of Volume 18 (2022)