Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 004, 11 pages      arXiv:2010.15273

Ladder Operators and Hidden Algebras for Shape Invariant Nonseparable and Nondiagonalizable Modelswith Quadratic Complex Interaction. I. Two-Dimensional Model

Ian Marquette a and Christiane Quesne b
a) School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
b) Physique Nucléaire Théorique et Physique Mathématique,Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium

Received September 01, 2021, in final form January 03, 2022; Published online January 14, 2022

A shape invariant nonseparable and nondiagonalizable two-dimensional model with quadratic complex interaction, first studied by Cannata, Ioffe, and Nishnianidze, is re-examined with the purpose of exhibiting its hidden algebraic structure. The two operators $A^+$ and $A^-$, coming from the shape invariant supersymmetrical approach, where $A^+$ acts as a raising operator while $A^-$ annihilates all wavefunctions, are completed by introducing a novel pair of operators $B^+$ and $B^-$, where $B^-$ acts as the missing lowering operator. These four operators then serve as building blocks for constructing ${\mathfrak{gl}}(2)$ generators, acting within the set of associated functions belonging to the Jordan block corresponding to a given energy eigenvalue. This analysis is extended to the set of Jordan blocks by constructing two pairs of bosonic operators, finally yielding an ${\mathfrak{sp}}(4)$ algebra, as well as an ${\mathfrak{osp}}(1/4)$ superalgebra. Hence, the hidden algebraic structure of the model is very similar to that known for the two-dimensional real harmonic oscillator.

Key words: quantum mechanics; complex potentials; pseudo-Hermiticity; Lie algebras; Lie superalgebras.

pdf (355 kb)   tex (16 kb)  


  1. Bagchi B.K., Supersymmetry in quantum and classical mechanics, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 116, Chapman & Hall/CRC, Boca Raton, FL, 2001.
  2. Bardavelidze M.S., Cannata F., Ioffe M.V., Nishnianidze D.N., Three-dimensional shape invariant non-separable model with equidistant spectrum, J. Math. Phys. 54 (2013), 012107, 11 pages, arXiv:1212.4805.
  3. Bender C.M., Introduction to ${\mathcal{PT}}$-symmetric quantum theory, Contemp. Phys. 46 (2005), 277-292, arXiv:quant-ph/0501052.
  4. Bender C.M., Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), 947-1018, arXiv:hep-th/0703096.
  5. Bender C.M., Boettcher S., Real spectra in non-Hermitian Hamiltonians having ${\mathcal{PT}}$ symmetry, Phys. Rev. Lett. 80 (1998), 5243-5246, arXiv:physics/9712001.
  6. Bender C.M., Dunne G.V., Meisinger P.N., dSimdsek M., Quantum complex Hénon-Heiles potentials, Phys. Lett. A 281 (2001), 311-316, arXiv:quant-ph/0101095.
  7. Cannata F., Ioffe M.V., Nishnianidze D.N., New methods for the two-dimensional Schrödinger equation: SUSY-separation of variables and shape invariance, J. Phys. A: Math. Gen. 35 (2002), 1389-1404, arXiv:hep-th/0201080.
  8. Cannata F., Ioffe M.V., Nishnianidze D.N., Exactly solvable nonseparable and nondiagonalizable two-dimensional model with quadratic complex interaction, J. Math. Phys. 51 (2010), 022108, 14 pages, arXiv:0910.0590.
  9. Cooper F., Khare A., Sukhatme U., Supersymmetry and quantum mechanics, Phys. Rep. 251 (1995), 267-385, arXiv:hep-th/9405029.
  10. Fernández F.M., Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation, Ann. Physics 369 (2016), 168-176, arXiv:1509.04267.
  11. Fernández F.M., Garcia J., Non-Hermitian Hamiltonians with unitary and antiunitary symmetries, Ann. Physics 342 (2014), 195-204, arXiv:1309.0808.
  12. Frappat L., Sciarrino A., Sorba P., Dictionary on Lie superalgebras, arXiv:hep-th/9607161.
  13. Gendenshtein L.E., Derivation of exact spectra of the Schrödinger equation by means of supersymmetry, JETP Lett. 38 (1983), 356-359.
  14. Ioffe M.V., Cannata F., Nishnianidze D.N., Exactly solvable two-dimensional complex model with a real spectrum, Theoret. and Math. Phys. 148 (2006), 960-967, arXiv:hep-th/0512110.
  15. Junker G., Supersymmetric methods in quantum and statistical physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996.
  16. Moshinsky M., Smirnov Yu.F., The harmonic oscillator in modern physics, Harwood, Amsterdam, 1996.
  17. Mostafazadeh A., Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians, J. Math. Phys. 43 (2002), 6343-6352, arXiv:math-ph/0207009.
  18. Mostafazadeh A., Pseudo-Hermiticity versus $\mathcal{PT}$ symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43 (2002), 205-214, arXiv:math-ph/0107001.
  19. Mostafazadeh A., Erratum: Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians [J. Math. Phys. 43, 6343 (2002)], J. Math. Phys. 44 (2003), 943, arXiv:math-ph/0301030.
  20. Mostafazadeh A., Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 7 (2010), 1191-1306, arXiv:0810.5643.
  21. Nanayakkara A., Real eigenspectra in non-Hermitian multidimensional Hamiltonians, Phys. Lett. A 304 (2002), 67-72.
  22. Pauli W., On Dirac's new method of field quantization, Rev. Modern Phys. 15 (1943), 175-207.
  23. Scholtz F.G., Geyer H.B., Hahne F.J.W., Quasi-Hermitian operators in quantum mechanics and the variational principle, Ann. Physics 213 (1992), 74-101.

Previous article  Next article  Contents of Volume 18 (2022)