Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 111, 29 pages      arXiv:2108.06190      https://doi.org/10.3842/SIGMA.2021.111
Contribution to the Special Issue on Mathematics of Integrable Systems: Classical and Quantum in honor of Leon Takhtajan

Boundary One-Point Function of the Rational Six-Vertex Model with Partial Domain Wall Boundary Conditions: Explicit Formulas and Scaling Properties

Mikhail D. Minin and Andrei G. Pronko
Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia

Received August 16, 2021, in final form December 18, 2021; Published online December 25, 2021

Abstract
We consider the six-vertex model with the rational weights on an $s\times N$ square lattice, $s\leq N$, with partial domain wall boundary conditions. We study the one-point function at the boundary where the free boundary conditions are imposed. For a finite lattice, it can be computed by the quantum inverse scattering method in terms of determinants. In the large $N$ limit, the result boils down to an explicit terminating series in the parameter of the weights. Using the saddle-point method for an equivalent integral representation, we show that as $s$ next tends to infinity, the one-point function demonstrates a step-wise behavior; at the vicinity of the step it scales as the error function. We also show that the asymptotic expansion of the one-point function can be computed from a second-order ordinary differential equation.

Key words: lattice models; domain wall boundary conditions; phase separation; correlation functions; Yang-Baxter algebra.

pdf (575 kb)   tex (40 kb)  

References

  1. Allison D., Reshetikhin N., Numerical study of the 6-vertex model with domain wall boundary conditions, Ann. Inst. Fourier (Grenoble) 55 (2005), 1847-1869, arXiv:cond-mat/0502314.
  2. Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982.
  3. Belov P., Reshetikhin N., The two-point correlation function in the six-vertex model, arXiv:2012.05182.
  4. Bleher P., Liechty K., Random matrices and the six-vertex model, CRM Monograph Series, Vol. 32, Amer. Math. Soc., Providence, RI, 2014.
  5. Bleher P., Liechty K., Six-vertex model with partial domain wall boundary conditions: ferroelectric phase, J. Math. Phys. 56 (2015), 023302, 28 pages, arXiv:1407.8483.
  6. Bogoliubov N.M., Pronko A.G., Zvonarev M.B., Boundary correlation functions of the six-vertex model, J. Phys. A: Math. Gen. 35 (2002), 5525-5541, arXiv:math-ph/0203025.
  7. Colomo F., Di Giulio G., Pronko A.G., Six-vertex model on a finite lattice: Integral representations for nonlocal correlation functions, Nuclear Phys. B 972 (2021), 115535, 42 pages, arXiv:2107.13358.
  8. Colomo F., Pronko A.G., The arctic curve of the domain-wall six-vertex model, J. Stat. Phys. 138 (2010), 662-700, arXiv:0907.1264.
  9. Colomo F., Pronko A.G., The limit shape of large alternating sign matrices, SIAM J. Discrete Math. 24 (2010), 1558-1571, arXiv:0803.2697.
  10. Colomo F., Pronko A.G., An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions, Theoret. and Math. Phys. 171 (2012), 641-654, arXiv:1111.4353.
  11. de Bruijn N.G., Asymptotic methods in analysis, Bibliotheca Mathematica, Vol. 4, North-Holland Publishing Co., Amsterdam, 1958.
  12. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions. Vol. I, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.
  13. Escobedo J., Gromov N., Sever A., Vieira P., Tailoring three-point functions and integrability, J. High Energy Phys. 2011 (2011), no. 9, 028, 50 pages, arXiv:1012.2475.
  14. Escobedo J., Gromov N., Sever A., Vieira P., Tailoring three-point functions and integrability II. Weak/strong coupling match, J. High Energy Phys. 2011 (2011), no. 9, 029, 35 pages, arXiv:1104.5501.
  15. Fedoryuk M.V., The saddle-point method, Nauka, Moscow, 1977.
  16. Foda O., $\mathcal N=4$ SYM structure constants as determinants, J. High Energy Phys. 2012 (2012), no. 3, 096, 29 pages, arXiv:1111.4663.
  17. Foda O., Wheeler M., Partial domain wall partition functions, J. High Energy Phys. 2012 (2012), no. 7, 186, 36 pages, arXiv:1205.4400.
  18. Gaudin M., La fonction d'onde de Bethe, textitCollection du Commissariat à l'Énergie Atomique: Série Scientifique., Masson, Paris, 1983.
  19. Gromov N., Sever A., Vieira P., Tailoring three-point functions and integrability III. Classical tunneling, J. High Energy Phys. 2012 (2012), no. 7, 044, 31 pages, arXiv:1111.2349.
  20. Gwa L.-H., Spohn H., Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys. Rev. Lett. 68 (1992), 725-728.
  21. Izergin A.G., Partition function of the six-vertex model in the finite volume, Sov. Phys. Dokl. 32 (1987), 878-879.
  22. Izergin A.G., Coker D.A., Korepin V.E., Determinant formula for the six-vertex model, J. Phys. A: Math. Gen. 25 (1992), 4315-4334.
  23. Izergin A.G., Korepin V.E., Reshetikhin N.Yu., Correlation functions in a one-dimensional Bose gas, J. Phys. A: Math. Gen. 20 (1987), 4799-4822.
  24. Jiang Y., Komatsu S., Kostov I., Serban D., The hexagon in the mirror: the three-point function in the SoV representation, J. Phys. A: Math. Theor. 49 (2016), 174007, 31 pages, arXiv:1506.09088.
  25. Kapitonov V.S., Pronko A.G., Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse, Zap. Nauchn. Semin. POMI 494 (2020), 168-218.
  26. Kitaev A.V., Pronko A.G., Emptiness formation probability of the six-vertex model and the sixth Painlevé equation, Comm. Math. Phys. 345 (2016), 305-354, arXiv:1505.00032.
  27. Kitanine N., Kozlowski K.K., Maillet J.M., Slavnov N.A., Terras V., Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions, J. Stat. Mech. Theory Exp. 2009 (2009), P04003, 66 pages, arXiv:0808.0227.
  28. Kitanine N., Maillet J.M., Slavnov N.A., Terras V., Spin-spin correlation functions of the $XXZ\text{-}{\frac{1}{2}}$ Heisenberg chain in a magnetic field, Nuclear Phys. B 641 (2002), 487-518, arXiv:hep-th/0201045.
  29. Korepin V.E., Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418.
  30. Korepin V.E., Bogoliubov N.M., Izergin A.G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993.
  31. Korepin V.E., Zinn-Justin P., Thermodynamic limit of the six-vertex model with domain wall boundary conditions, J. Phys. A: Math. Gen. 33 (2000), 7053-7066, arXiv:cond-mat/0004250.
  32. Kostov I., Classical limit of the three-point function of $N=4$ supersymmetric Yang-Mills theory from integrability, Phys. Rev. Lett. 108 (2012), 261604, 5 pages, arXiv:1203.6180.
  33. Kostov I., Three-point function of semiclassical states at weak coupling, J. Phys. A: Math. Theor. 45 (2012), 494018, 27 pages, arXiv:1205.4412.
  34. Kulish A.G., Sklyanin E.K., Solutions of the Yang-Baxter equation, J. Sov. Math. 19 (1982), 1596-1620.
  35. Kuperberg G., Another proof of the alternating-sign matrix conjecture, Int. Math. Res. Not. 1996 (1996), 139-150, arXiv:math.CO/9712207.
  36. Lyberg I., Korepin V., Ribeiro G.A.P., Viti J., Phase separation in the six-vertex model with a variety of boundary conditions, J. Math. Phys. 59 (2018), 053301, 15 pages, arXiv:1711.07905.
  37. Minin M.D., Pronko A.G., Boundary polarization of the rational six-vertex model on a semi-infinite lattice, J. Math. Sci. 257 (2021), 537-550.
  38. Pronko A.G., Pronko G.P., Off-shell Bethe states and the six-vertex model, J. Math. Sci. 242 (2019), 742-752.
  39. Syljuaasen O.F., Zvonarev M.B., Directed-loop Monte Carlo simulations of vertex models, Phys. Rev. E 70 (2004), 016118, 8 pages, arXiv:cond-mat/0401491.
  40. Takhtajan L.A., Faddeev L.D., The quantum method for the inverse problem and the Heisenberg $XYZ$ model, Russian Math. Surveys 34 (1979), no. 5, 11-68.
  41. Wheeler M., An Izergin-Korepin procedure for calculating scalar products in the six-vertex model, Nuclear Phys. B 852 (2011), 468-507, arXiv:1104.2113.
  42. Zeilberger D., Proof of the refined alternating sign matrix conjecture, New York J. Math. 2 (1996), 59-68, arXiv:math.CO/9606224.

Previous article  Next article  Contents of Volume 17 (2021)