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Abstract. We treat the lattice sine-Gordon equation and two of its generalised symmetries
as a compatible system. Elimination of shifts from the two symmetries of the lattice sine-
Gordon equation yields an integrable NLS-type system. An auto-Bäcklund transformation
and a superposition formula for the NLS-type system is obtained by elimination of shifts
from the lattice sine-Gordon equation and its down-shifted version. We use the obtained
formulae to calculate a superposition of two and three elementary solutions.
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1 Introduction

Integrable differential-difference equations (D∆Es) with one continuous and one discrete vari-
able are known to be closely related with integrable partial differential equations (PDEs). In
particular, many integrable D∆Es may be interpreted as Bäcklund transformations of some
PDEs [11]. For example, the integrable Volterra-type equations

∂

∂x
ul = f(ul−1, ul, ul+1) (1.1)

are known to be related to the NLS-type PDEs [14] by means of elimination of shifts. More
precisely, if one considers (1.1) and its simplest generalised symmetry

∂

∂t
ul = g(ul−2, ul−1, ul, ul+1, ul+2), (1.2)

then elimination of ul−2, ul+1, ul+2 from the system of (1.1) and (1.2) yields a two component
system of the NLS-type on the quantities ul−1 and ul. A by-product of this calculation is an
invertible auto-transformation of the resulting system of PDEs generated by (1.1).

As far as construction of exact solutions is concerned, a more important class of transfor-
mations is auto-Bäcklund transformations with a spectral parameter which are usually non-
invertible. A direct calculation of such transformation is a tedious task. The knowledge of other
structures associated with integrability, e.g., a Lax pair or Painlevé structure, may significantly
speed up the search for such a transformation [16].

In [5] we showed that a system obtained by elimination of shifts from (1.1) and (1.2), where at
the same time equations (1.1) and (1.2) represent symmetries of a quad-equation, automatically
possesses an auto-Bäcklund transformation with spectral parameter. The method was illustrated
with using the lattice H1 equation [2] (lattice potential KdV equation) and a pair of its simplest
symmetries.
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In this paper we use the method of [5] to find an auto-Bäcklund transformation and the
superposition formula for solutions of the system

pt = −pxx + qxp
2
x − qx,

qt = qxx + pxq
2
x − px

(1.3)

using its connection with the lattice sine-Gordon equation and the Volterra-type equations.
System (1.3) is reminiscent of the well known derivatives NLS system, yet it belongs to

a different cluster of NLS-type systems labelled as (d) in [12]. All systems in the cluster are
related by transformations that preserve local conservation laws. Therefore, having a procedure
for generating solutions for (1.3) allows one to generate solutions for other systems in the cluster
as well.

1.1 Symmetries of the lattice sine-Gordon equation

We consider the lattice sine-Gordon (lsG) equation

α(ul,mul+1,m+1 − ul+1,mul,m+1) + βul,mul+1,mul,m+1ul+1,m+1 = 1, (1.4)

where α and β are arbitrary parameters. It was first derived by Hirota in a slightly different form
by the method of dependent variable transformation [9]. The unknown function u is assumed to
depend on the three continuous variables t, x, and y as well as two discrete variables l and m.
The dependence on the continuous variables is determined through the generalised symmetries
of equation (1.4) while discrete variable l labels the components of the symmetries, and m counts
iterations of the auto-Bäcklund transformation.

Equation (1.4) degenerates into the lattice Liouville equation [10, 15]

α(ul,mul+1,m+1 − ul+1,mul,m+1) = 1 (1.5)

when β = 0. This connection turns out to be useful for the construction of symmetries of (1.4).
First, we point out that equation (1.5) is Darboux integrable. That is, it possesses integrals with
respect to both discrete variables. The integrals

wl,m =
ul,m

ul+1,m + ul−1,m

, w̄l,m =
ul,m

ul,m+1 + ul,m−1

, (1.6)

satisfy the relations

(Sm − 1)wl,m = 0, (Sl − 1)w̄l,m = 0,

on solutions of (1.5). Here Sl and Sm stand for the respective shift operators, e.g., Sl(wl,m) =
wl+1,m. These integrals can be easily derived from the determinantal structure of (1.5) (see,
e.g., [6]).

Then, the construction of the higher symmetries of (1.5) is rather algorithmic due to a method
presented in [3] which allows one to construct operators that map the integrals of a Darboux
integrable equation to its symmetries. Since the lattice Liouville equation is Darboux integrable,
the structure of its symmetries is determined by such operators, i.e., the symmetries can be cast
into either of the forms

∂xul,m = MF (w), ∂xul,m = M̄F (w̄), (1.7)

where w and w̄ are the integrals of (1.5) or constants. Skipping technical details, we present the
operators explicitly:

M = wl,m(ul−1,mSl − ul+1,m), M̄ = w̄l,m(ul,m−1Sm − ul,m+1).
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Since equation (1.5) is invariant with respect to the involution ul±i,m → ul∓i,m, there exists
another set of operators

M = wl,m

(
ul+1,mS

−1
l − ul−1,m

)
,

M̄ = w̄l,m

(
ul,m+1S

−1
m − ul,m−1

)
with the same property, that is M(F (w)) and M̄(F (w̄)) are the symmetries of (1.5). Obviously
all the statements regarding the integrals and symmetries of (1.4) and (1.5) involve two identical
parts: one involving variables ul+i,m and the other variables ul,m+i. Therefore, for convenience,
the second part will be omitted whenever it is not essential.

Equations (1.7) are too general to be all integrable. Nevertheless, for some choices of func-
tion F this is the case, in particular, when F is chosen such that (1.7) is also a symmetry of (1.4).
The simplest choice F = 1 delivers the equation

∂xul,m =
ul,m(ul−1,m − ul+1,m)

ul−1,m + ul+1,m

, (1.8)

which is the simplest generalised symmetry of (1.4). That is, on solutions of (1.4) and (1.8) the
relation

∂x (α(ul,mul+1,m+1 − ul+1,mul,m+1) + βul,mul+1,mul,m+1ul+1,m+1) = 0

is satisfied identically.
Further, the fact that (1.8) is a symmetry of (1.5) implies that on solutions of these equations

the derivative ∂x commutes with the shift Sl, which in turn, implies that ∂xwl,m can be expressed
in terms of wl,m itself and its shifts. Therefore the integral wl,m provides us with a Miura-type
transformation from equation (1.8) into the modified Volterra equation

∂xwl,m = 2w2
l,m(wl−1,m − wl+1,m). (1.9)

The complete classification of the Volterra-type equations can be found in [17]. As it is pointed
out in [4], the Volterra-type equations possess local master symmetries. For example, a master
symmetry of (1.9) is the equation

∂ywl,m = l∂xwl,m + w2
l,m(wl−1,m + wl+1,m). (1.10)

The commutator (∂y∂x−∂x∂y)wl,m, calculated on solutions of (1.9) and (1.10) gives the simplest
generalised symmetry of (1.9). The locality of master symmetries significantly simplifies their
construction. Moreover, it has been observed that for the Volterra-type equations the master
symmetries bear resemblance of the equation itself. The present case is no exception: a master
symmetry of (1.8) is given by ∂yul,m = l∂xul,m. Hence the simplest generalised symmetry of (1.8)
has the form

∂tul,m = (∂y∂x − ∂x∂y)ul,m,

which is explicitly given by the equation

∂tul,m =
4ul−1,mu

2
l,mul+1,m(ul+2,m − ul−2,m)

(ul−2,m + ul,m)(ul−1,m + ul+1,m)2(ul+2,m + ul,m)
. (1.11)

Both equations (1.8) and (1.11) are the symmetries of (1.4). So, the remainder of the paper
focusses on a system of equations comprising of (1.8), (1.11), and (1.4). We now assume that
β ̸= 0 hence by rescaling of the dependent variable we can set β = 1:

α(ul,mul+1,m+1 − ul+1,mul,m+1) + ul,mul+1,mul,m+1ul+1,m+1 = 1. (1.12)
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Remark 1.1. In the preceding calculations, we derived the symmetries (1.8) and (1.11) in a way
that highlights the connection with the lattice Liouville equation and its integrals. One could
employ different approaches, e.g., calculate them directly or extract from previously published
articles [7, 8]. Also, it is worth mentioning that the integrals (1.6) are related to the conserved
densities of equations (1.8) and (1.11), i.e., ∂x lnwl,m, ∂t lnwl,m ∈ Im(Sl−1), which is in parallel
with the continuous case. The connection between conserved densities and discrete Miura-type
transformations has been noted before, see, e.g., [1].

1.2 Connection with NLS-type systems

As we already mentioned, the compatibility of a Volterra-type equation with its generalised
symmetry yields an NLS-type system through elimination of shifts [14]. In the present case, if
we express the variables ul+1,m, ul+2,m, and ul−2,m from equation (1.8) to obtain

ul+1,m =
ul−1,m(ul,m − ∂xul,m)

ul,m + ∂xul,m

, ul+2,m =
ul,m(ul+1,m − ∂xul+1,m)

ul+1,m + ∂xul+1,m

,

ul−2,m =
ulm(ul−1,m + ∂xul−1,m)

ul−1,m − ∂xul−1,m

(1.13)

and substitute them into (1.11), we obtain a system of two equations on ul−1,m and ul,m. Note
that substitution of the expression for ul+1,m into the one for ul+2,m produces quite a cumbersome
formula. Nevertheless, the resulting system turns out to be quite compact:

∂tul−1,m = −∂2
xul−1,m +

(∂xul−1,m)
2

ul−1,m

(
∂xul,m

ul,m

+ 1

)
− ul−1,m∂xul,m

ul,m

,

∂tul,m = ∂2
xul,m +

(∂xul,m)
2

ul,m

(
∂xul−1,m

ul−1,m

− 1

)
− ul,m∂xul−1,m

ul−1,m

.

(1.14)

Since both pairs (ul−1,m, ul,m) and (ul,m, ul+1,m) satisfy the same system, then (1.14) admits an
auto-transformation given explicitly by

(ul−1,m, ul,m) →
(
ul,m,

ul−1,m(ul,m − ∂xul,m)

ul,m + ∂xul,m

)
.

System (1.14) takes a particularly simple form (1.3) in the variables

ul−1,m = ep, ul,m = eq.

As is the case with equations (1.8) and (1.11), the integral wl,m yields a Miura-type transfor-
mation between the respective NLS-type systems. More precisely, if we eliminate variables ul−2,m

and ul+1,m from the expressions for wl−1,m and wl,m by means of (1.13), we obtain

wl−1,m =
1

2

ul−1,m − ∂xul−1,m

ul,m

, wl,m =
1

2

ul,m + ∂xul,m

ul−1,m

. (1.15)

Substitution (1.15) transforms (1.14) into the combination of the derivative NLS system and its
translational symmetry:

∂twl−1,m = −∂2
xwl−1,m − 4∂x

(
w2

l−1,mwl,m

)
+ 2∂xwl−1,m,

∂twl,m = ∂2
xwl,m − 4∂x

(
w2

l,mwl−1,m

)
+ 2∂xwl,m.

Therefore, the auto-Bäcklund transformation and superposition formulae obtained in the fol-
lowing section can also be used to build solutions of the derivative NLS, but not the other way
around, as transformation (1.15) is not invertible. We will refer to system (1.14) as a modified
derivative NLS (mdNLS) system.
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2 Auto-Bäcklund transformation and superposition formula

Here we apply the method of [5] to derive exact solutions of (1.14). The idea of using (1.12) as
a superposition formula for solutions of (1.14) is based on the fact that the symmetries of (1.12)
only depend on shifts with respect to one of the variables. So, equation (1.12) possesses another
set of symmetries of the form (1.8) and (1.11) with the substitution ul+i,m → ul+i,m+1 applied.
Elimination of shifts in this system, again, produces a system of the form (1.14). The process
of constructing a solution consists of the following steps.

Starting with a seed solution (ul−1,m, ul,m), which often is a trivial solution, we would like to
calculate another solution, labelled as (ul−1,m+1, ul,m+1). Let us consider the down-shifted, with
respect to l, version of equation (1.12):

α(ul−1,mul,m+1 − ul,mul−1,m+1) + ul−1,mul,mul−1,m+1ul,m+1 = 1. (2.1)

Equations (1.12), (1.14), and (2.1) can be schematically depicted as

ul−1,m

ul−1,m+1 ul,m+1

ul,m ul+1,m

ul+1,m+1

lsG lsG

mdNLS mdNLS

mdNLS mdNLS

In this diagram the white vertices represent a seed solution, the grey vertices represent the quan-
tities that can be eliminated from the equations, and the black vertex represents the quantity
that needs to be calculated. In more detail, the rightmost vertices ul+1,m and ul+1,m+1 can be
eliminated from (1.12) by means of (1.13)1. This gives an expression containing the x-derivatives
of ul,m and ul,m+1. Further, expressing ul−1,m+1 from (2.1) and substituting in (1.12) we obtain
an equation on a single quantity ul,m+1 which determines the x-dynamics of the solution. The
resulting equation reads(

α2 − 1
)
∂xul,m+1 = −Al,m∂xul,m + αBl,m, (2.2)

where

Al,m =
(ul−1,mul,m+1 − α)(αul,m+1ul−1,m − 1)

ul,mul−1,m

, Bl,m =
u2l−1,mu

2
l,m+1 − 1

ul−1,m

.

The t-dependence of ul,m+1 is determined by eliminating the x-derivatives in the respective
mdNLS system by means of (2.2). This yields the following equation(

α2 − 1
)
∂tul,m+1 = −Al,m∂

2
xul,m +

Al,m(ul−1,m − ∂xul−1,m)(∂xul,m)
2

ul,mul−1,m

+
αBl,m∂xul,m∂xul−1,m

ul,mul−1,m

−
(
α2 + 1

)
ul,m+1∂xul−1,m

ul−1,m

+
α
(
α2 + 1

)
Cl,m∂xul,m(

α2 − 1
)
ul,m

− 4α2ul,m+1∂xul,m(
α2 − 1

)
ul,m

−
α
(
α2 + 1

)
α2 − 1

Bl,m, (2.3)

where

Cl,m =
1 + u2l−1,mu

2
l,m+1

ul−1,m

.
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Remark 2.1. The requirement of compatibility of (2.2) and (2.3) yields the relation

∂xul,m

ul,m

(ul−1,mAl,mPl,m − αBl,mQl,m) + αCl,mQl,m = 0,

where Pl,m and Ql,m are the differences between the left- and right-hand sides of the respective
equations in system (1.14). Thus, as expected, relations (2.2) and (2.3) are compatible modulo
system (1.14).

Once the solution (ul−1,m+1, ul,m+1) is found, we can proceed to construct more involved solu-
tions in a purely algebraic manner. This step is the standard step in generating the multi-soliton
solutions from an auto-Bäcklund transformation and commutative Bianchi diagram. Assuming
that transformations with parameters α1 and α2 commute, i.e., if we repeat the procedure of
the previous step twice: first with parameter α1 then α2, and second, with α2 then α1 – we
get the same result. This simple assumption yields a formula of superposition of solutions for
system (1.14). The Bianchi diagram adapted for this calculation is given below:

ul−1,m,n

ul−1,m+1,n ul,m+1,n

ul,m,n

ul,m,n+1ul−1,m,n+1

ul,m+1,n+1ul−1,m+1,n+1

α1 α2

α2 α1

Here we have slightly modified notation by introducing an additional discrete variable n which
counts auto-Bäcklund transformations with respect to parameter α2. The respective formula of
superposition is obtained by solving a system of four copies of (1.12):

α1(ul−1,m,nul,m+1,n − ul−1,m+1,nul,m,n) + ul−1,m+1,nul−1,m,nul,m,nul,m+1,n = 1,

α2(ul−1,m+1,nul,m+1,n+1 − ul−1,m+1,n+1ul,m+1,n) + ul−1,m+1,n+1ul−1,m+1,nul,m+1,nul,m+1,n+1 = 1,

α2(ul−1,m,nul,m,n+1 − ul−1,m,n+1ul,m,n) + ul−1,m,n+1ul−1,m,nul,m,nul,m,n+1 = 1,

α1(ul−1,m,n+1ul,m+1,n+1 − ul−1,m+1,n+1ul,m,n+1) + ul−1,m+1,n+1ul−1,m,n+1ul,m,n+1ul,m+1,n+1 = 1

for (ul−1,m+1,n+1, ul,m+1,n+1). Namely, it is given by

ul−1,m+1,n+1 =
α2
2 − α2

1 − ul−1,m,n

(
α2

(
1− α2

1

)
ul,m,n+1 − α1

(
1− α2

2

)
ul,m+1,n

)(
α2
2 − α2

1

)
ul,m,n+1ul−1,m,nul,m+1,n + α1

(
1− α2

2

)
ul,m,n+1 − α2

(
1− α2

1

)
ul,m+1,n

,

ul,m+1,n+1 =
ul,m,n(α1ul,m,n+1 − α2ul,m+1,n)

α1ul,m+1,n − α2ul,m,n+1

. (2.4)

The process of constructing solutions by means of the obtained auto-Bäcklund transformation
and superposition formula is summarised as follows.

Summary 2.2. Given a seed solution (ul−1,m, ul,m) of (1.14) we first solve a system of (2.2)
and (2.3) to determine the component ul,m+1. The other component ul−1,m+1, is calculated
algebraically from (2.1). Further, we set

(ul−1,m+1,n, ul,m+1,n) = (ul−1,m+1, ul,m+1)|α=α1 ,

(ul−1,m,n+1, ul,m,n+1) = (ul−1,m+1, ul,m+1)|α=α2

(2.5)

and substitute these expressions in the superposition formulae (2.4) to calculate the solution
(ul−1,m+1,n+1, ul,m+1,n+1).
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3 Examples

If we start with a constant solution

ul−1,m = ul,m = 1,

then equations (2.2) and (2.3) turn into the system

∂xul,m+1 =
α

α2 − 1

(
u2l,m+1 − 1

)
,

∂tul,m+1 = −
α
(
α2 + 1

)(
α2 − 1

)2 (u2l,m+1 − 1
)
,

whose solution ul,m+1 can be expressed in terms of the functions

ul,m+1 = f(α, β) =
f+(α, β)

f−(α, β)
, (3.1)

where

f±(α, β) = 1± β exp

(
2αx

α2 − 1
−

2α
(
α2 + 1

)
t(

α2 − 1
)2
)
.

The other component of the solution is found from (2.1) and given by

ul−1,m+1 =
1− αf(α, β)

f(α, β)− α
. (3.2)

Applying substitutions (2.5) to functions (3.1), (3.2), and then substituting the resulting ex-
pressions in (2.1) we obtain the solution

ul−1,m+1,n+1 =
α2
1 − α2

2 − α1

(
1− α2

2

)
f(α1, β1) + α2

(
1− α2

1

)
f(α2, β2)(

α2
1 − α2

2

)
f(α1, β1)f(α2, β2) + α2

(
1− α2

1

)
f(α1, β1)− α1

(
1− α2

2

)
f(α2, β2)

,

ul,m+1,n+1 =
α1f(α2, β2)− α2f(α1, β1)

α1f(α1, β1)− α2f(α2, β2)
. (3.3)

Note that the components ul−1,m and ul,m are not conserved densities of equation (1.14). There-
fore, a quantity of interest is the simplest conserved density given by the formula

ρ = (∂x lnul−1,m+1,n+1)(∂x lnul,m+1,n+1).

For real αi and imaginary βi, this quantity represents an interaction of two solitons: the profile
consists of two distinct solitons with one increasing in amplitude while overtaking the other and
then restoring its shape after the interaction. Solution (3.3) can be re-written in a more compact
form in terms of the skew-symmetric Levi-Chivita symbol εij :

ul−1,m+1,n+1 =
−2εijαi

(
αi +

(
α2
j − 1

)
fi
)

εij
(
α2
j − α2

i

)
fifj + 2

(
α2
i − 1

)
αjfi

,

ul,m+1,n+1 = −εijαjfi
εijαifi

,

where we assume summation over repeated indices and denote fm = f(αm, βm).
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As a concluding example we construct a three-soliton solution of equation (1.14). The re-
spective stack of Bianchi diagrams (Bianchi lattice) (see, e.g., [13]) is given by

ul−1,m,n

ul−1,m+1,n

ul,m+1,n

ul,m,n

ul,m,n+1ul−1,m,n+1

ul,m+1,n+1ul−1,m+1,n+1

α1

α1

α1

α2

α2 α3

α3

α3α2

α2

ul−1,m,n ul,m,n

ûl−1,m,n

ûl,m,n

ûl−1,m,n+1 ûl,m,n+1

ûl−1,m+1,n+1 ûl,m+1,n+1

Here the result of the application of a Bäcklund transformation with parameter α3 to the solution
(ul−1,m,n, ul,m,n) is denoted as (ûl−1,m,n, ûl,m,n). The diagram gives a three-soliton solution in
the form

ûl−1,m+1,n+1 =
εijkαi

(
αj

(
α2
i − α2

j

)(
α2
k − 1

)
fj −

(
α2
i − 1

)(
α2
k − α2

j

))
fi

εijkαk

((
α2
i − α2

j

)(
α2
k − 1

)
fj − αj

(
α2
i − 1

)(
α2
k − α2

j

))
fi
,

ûl,m+1,n+1 =
εijkαk

(
α2
i − α2

j

)
fifj

εijkαi

(
α2
j − α2

k

)
fi

,

where i, j, k = 1, . . . , 3.

Figure 1. Interaction of two solitons
(
α1 = 2, α2 = 3, β1 = β2 = 5

√
−1
)
.

As we previously pointed out, the term soliton solution applies to the conserved density

ρ = (∂x ln ûl−1,m+1,n+1)(∂x ln ûl,m+1,n+1)

rather than individual components ûl−1,m+1,n+1 and ln ûl,m+1,n+1. The graphs of −ρ for the values
of time t = −6.5, t = −0.5, and t = 3 are as follows
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Figure 2. Interaction of three solitons (α1 = 3/2, α2 = 2, α3 = 3, β1 = β2 = β3 = 7i).

4 Conclusion

In this article we have looked at implications of treating the lattice sine-Gordon equation and
two of its generalised symmetries as a compatible system. This viewpoint yields, almost auto-
matically, the auto-Bäcklund transformation and algebraic superposition formula for a modified
derivative NLS system. The efficacy of the formulae has been verified by constructing two and
three soliton solutions.
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