Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 105, 10 pages      arXiv:2109.05465      https://doi.org/10.3842/SIGMA.2021.105
Contribution to the Special Issue on Mathematics of Integrable Systems: Classical and Quantum in honor of Leon Takhtajan

A Sharp Lieb-Thirring Inequality for Functional Difference Operators

Ari Laptev a and Lukas Schimmer c
a) Department of Mathematics, Imperial College London, London SW7 2AZ, UK
b) Saint Petersburg State University, Saint Petersburg, Russia
c) Institut Mittag-Leffler, The Royal Swedish Academy of Sciences, 182 60 Djursholm, Sweden

Received September 12, 2021, in final form November 25, 2021; Published online December 06, 2021

Abstract
We prove sharp Lieb-Thirring type inequalities for the eigenvalues of a class of one-dimensional functional difference operators associated to mirror curves. We furthermore prove that the bottom of the essential spectrum of these operators is a resonance state.

Key words: Lieb-Thirring inequality; functional difference operator; semigroup property.

pdf (349 kb)   tex (16 kb)  

References

  1. Faddeev L.D., Takhtajan L.A., Liouville model on the lattice, in Field Theory, Quantum Gravity and Strings (Meudon/Paris, 1984/1985), Lecture Notes in Phys., Vol. 246, Springer, Berlin, 1986, 166-179.
  2. Frank R.L., Laptev A., Weidl T., Schrödinger operators: eigenvalues and Lieb-Thirring inequalities, in preparation.
  3. Gohberg I.C., Kreǐn M.G., Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, Amer. Math. Soc., Providence, R.I., 1969.
  4. Grassi A., Hatsuda Y., Mariño M., Topological strings from quantum mechanics, Ann. Henri Poincaré 17 (2016), 3177-3235, arXiv:1410.3382.
  5. Gu J., Klemm A., Mariño M., Reuter J., Exact solutions to quantum spectral curves by topological string theory, J. High Energy Phys. 2015 (2015), no. 10, 025, 69 pages, arXiv:1506.09176.
  6. Hundertmark D., Laptev A., Weidl T., New bounds on the Lieb-Thirring constants, Invent. Math. 140 (2000), 693-704, arXiv:math-ph/9906013.
  7. Hundertmark D., Lieb E.H., Thomas L.E., A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator, Adv. Theor. Math. Phys. 2 (1998), 719-731, arXiv:math-ph/9806012.
  8. Hundertmark D., Simon B., Lieb-Thirring inequalities for Jacobi matrices, J. Approx. Theory 118 (2002), 106-130, arXiv:math-ph/0112027.
  9. Kashaev R., The quantum dilogarithm and Dehn twists in quantum Teichmüller theory, in Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., Vol. 35, Kluwer Acad. Publ., Dordrecht, 2001, 211-221.
  10. Kashaev R., Mariño M., Operators from mirror curves and the quantum dilogarithm, Comm. Math. Phys. 346 (2016), 967-994, arXiv:1501.01014.
  11. Kashaev R., Mariño M., Zakany S., Matrix models from operators and topological strings, 2, Ann. Henri Poincaré 17 (2016), 2741-2781, arXiv:1505.02243.
  12. Laptev A., Loss M., Schimmer L., On a conjecture by Hundertmark and Simon, arXiv:2012.13793.
  13. Laptev A., Schimmer L., Takhtajan L.A., Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves, Geom. Funct. Anal. 26 (2016), 288-305, arXiv:1510.00045.
  14. Laptev A., Schimmer L., Takhtajan L.A., Weyl asymptotics for perturbed functional difference operators, J. Math. Phys. 60 (2019), 103505, 10 pages.
  15. Lieb E.H., Thirring W.E., Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, in Studies in Mathematical Physics, Princeton University Press, Princeton, 1976, 269-303.
  16. Takhtajan L.A., Trace formulas for the modified Mathieu equation, in Partial Differential Equations, Spectral Theory, and Mathematical Physics, Editors P. Exner, R. Frank, F. Gesztesy, H. Holden, T. Weidl, European Mathematical Society, Berlin, 2021, 427-443, arXiv:2103.00038.
  17. Takhtajan L.A., Faddeev L.D., The spectral theory of a functional-difference operator in conformal field theory, Izv. Math. 79 (2015), 388-410, arXiv:1408.0307.

Previous article  Next article  Contents of Volume 17 (2021)