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Abstract. We study differential forms on an algebraic compactification of a moduli space
of metric graphs. Canonical examples of such forms are obtained by pulling back invari-
ant differentials along a tropical Torelli map. The invariant differential forms in question
generate the stable real cohomology of the general linear group, as shown by Borel. By in-
tegrating such invariant forms over the space of metrics on a graph, we define canonical
period integrals associated to graphs, which we prove are always finite and take the form of
generalised Feynman integrals. Furthermore, canonical integrals can be used to detect the
non-vanishing of homology classes in the commutative graph complex. This theory leads to
insights about the structure of the cohomology of the commutative graph complex, and new
connections between graph complexes, motivic Galois groups and quantum field theory.
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1 Homology of the commutative graph complex

We consider the graph complex introduced by Kontsevich in [39], which he refers to as the odd,
commutative graph complex. It is denoted by GCN in [49], where N is any fixed even integer.
We review the definitions and some known results about its homology.

1.1 Definitions

Let G be a connected graph. Let VG, EG denote its set of vertices, and edges, and denote by

hG : the number of loops, or genus, of G,

eG � |EG| : the number of edges of G,

degN G � eG �NhG : which will be called the degree of G.

In the case N � 0 the degree coincides with the number of edges. In the case N � 2, the degree
is minus what is sometimes called the “superficial degree of divergence” in the physics literature.
An orientation of G is an element

η P
��eGZEG

��
.

If the edges of G are denoted by e1, . . . , en, where n � eG, then an orientation is equal to either
e1 ^ � � � ^ en or its negative. Thus an orientation is simply an ordering of the edges of G up to
the action of even permutations.

This paper is a contribution to the Special Issue on Algebraic Structures in Perturbative Quan-
tum Field Theory in honor of Dirk Kreimer for his 60th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Kreimer.html
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The notation G{γ will denote the graph obtained by contracting all the edges of a subgraph γ
of G (defined by a subset of the set of edges of G). It is defined by removing every edge of γ,
in any order, and identifying its endpoints. It is convenient to use a different notation for the
operation:

G{{γ �

#
G{γ if hγ � 0,

∅ if hγ ¡ 0.

In other words, the contraction G{{γ is the empty graph if γ contains a loop.
Let GCN denote the Q-vector space generated by pairs pG, ηq, where G is a connected graph

and η an orientation, such that: G has no tadpoles (edges bounding on a single vertex) and no
vertices of degree ¤ 2, modulo the equivalence relations

pG,�ηq � �pG, ηq,

pG, ηq � pG1, σpηqq, (1.1)

where σ is any isomorphism σ : G
�
Ñ G1. Denote the equivalence class of pG, ηq by rG, ηs. The

differential in GCN is defined by

drG, e1 ^ � � � ^ ens �
ņ

i�1

p�1qirG{{ei, e1 ^ � � � ^ pei ^ � � � ^ ens.

No tadpoles can arise in the right-hand side because graphs with double edges vanish in GCN

by (1.1). One checks that the differential is well-defined and satisfies d2 � 0. Furthermore, it
preserves the loop number h, and decreases the degree degN by 1.

Definition 1.1. The graph homology is defined to be the vector space:

HpGCN q �
ker d

Imd
.

It is graded by homological degree (denoted HnpGCN q), where n � degN G is the degree of G:

HpGCN q �
à
nPZ

HnpGCN q,

and also by the number of loops HnpGCN q �
À

h¥0HnpGCN q
phq. It is therefore bigraded.

The graph complexes GCN for all even N are mutually isomorphic, so modifying N merely
changes the grading by degree. In this paper, the grading by loops plays a secondary role, and
we work essentially with GC0 for the most part. However, for the purposes of the introduction
we will discuss the case of GC2 because it makes the comparison with results in the literature
more explicit and because the figures below take up considerably less space on the page.

1.2 Examples

Any graph admitting an automorphism which acts on its set of edges by an odd permutation
vanishes in GCN by (1.1). In particular, a graph which contains a doubled edge is zero. It follows
that any graph with the property that every edge is contained in a triangle is closed in the graph
complex, since contracting an edge of a triangle leads to a doubled edge.

Consider the wheel with n spokes depicted in Figure 1. Since every edge lies in a triangle,
drWns � 0 (here and henceforth, a choice of orientation will be implicit in the notation for
a graph and will be omitted). Since the even wheels W2k admit an odd automorphism, they
vanish in the graph complex. One knows (e.g., by [38]) that the odd wheel classes rW2n�1s are
non-zero in homology:

rW2n�1s P H0pGC2q

for all n ¥ 1. The graph W2n�1 has 2n� 1 loops, and 4n� 2 edges.
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Figure 1. The wheel with n spokes Wn.

1.3 Known results

Table 1 depicts computer calculations of graph homology for N � 2 in low degrees. At the time
of writing, little is known explicitly in homological degrees ¥ 1 beyond 11 loops.

Table 1. Dimensions of HnpGC2q at low loop order [3]. The (red) classes in H0pGC2q with 3, 5, 7, 9

loops are generated by the wheels W3, W5, W7, W9. Other classes in this diagram are presumably only

representable as linear combinations of graphs.

H8 0
H7 0 1
H6 0 0 0
H5 0 0 0 0
H4 0 0 0 0 0
H3 0 1 0 1 1 2
H2 0 0 0 0 0 0 0
H1 0 0 0 0 0 0 0 0
H0 0 1 0 1 0 1 1 1 1

hG 1 2 3 4 5 6 7 8 9 10

All trivalent (3-regular) graphs lie along the diagonal line eG � 3phG � 1q. All graphs above
this line (blue entries and above) satisfy eG ¥ 3hG � 2 and vanish in GC2 since they have
a 2-valent vertex.

One knows that:

1. The homology groups HnpGC2q vanish in negative degrees n   0 in loop degree ¥ 1 (shown
in [49] and interpreted geometrically in [26]).

2. Willwacher showed [49] that there is an isomorphism of coalgebras (see below for the
definition of the coalgebra structure on graph homology)

H0pGC2q � grt_, (1.2)

where grt denotes the Grothendieck–Teichmüller Lie algebra introduced by Drinfeld in [32].
It is explicitly defined by generators and relations [33], but little is known about its struc-
ture. A conjecture of Deligne, proved in [16], implies that it contains the graded Lie algebra
of the motivic Galois group of mixed Tate motives over the integers MT pZq:

Lpσ3, σ5, . . . q � Lie
�
Gmot

MT pZq
�

ãÝÑ grt. (1.3)
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The latter Lie algebra is isomorphic to the free graded Lie algebra Lpσ3, σ5, . . . q with one
generator σ2n�1 in every odd degree �p2n � 1q, for n ¥ 1. These generators are not
canonical for n ¥ 5, but are known to pair non-trivially with the wheel graphs W2n�1

via (1.2). Note that the isomorphism (1.2) is combinatorial – there is presently no known
geometric action of the motivic Lie algebra on graph homology.

From (2) one infers the existence of a graph homology class ξ3,5 P H0pGC2q at 8 loops, dual to
rσ3, σ5s; and a class ξ3,7 P H0pGC2q at 10 loops dual to rσ3, σ7s. In degree 11, an 11-loop class
ξ3,3,5 P H0pGC2q dual to rσ3, rσ3, σ5ss appears. It is only well-defined up to addition of a rational
multiple of rW11s.

Remark 1.2. Drinfeld asked the question of whether (1.3) is an isomorphism. The graded
Lie coalgebra dual to Lie

�
Gmot

MT pZq
�
is isomorphic to the Lie coalgebra of motivic multiple zeta

values modulo the motivic version of ζp2q and modulo products. The latter space carries many
additional structures, including a depth filtration and an intimate relation to modular forms.
These two additional structures are not presently understood on the level of graph homology,
to our knowledge.

1.4 Further structures

In addition to the differential d, we consider two more operations on graphs. They do not pre-
serve GCN , so in order to incorporate them, one must relax the definitions of the graph complex.
Instead of doing this, we observe that these operations will only appear via an integration for-
mula (2.10), in which all terms corresponding to graphs which lie outside GCN , i.e., which have
a vertex of degree ¤ 2 or a tadpole, automatically vanish by Proposition 6.20.

The first additional structure is a “second” differential which deletes edges:

δrG, e1 ^ � � � ^ ens �
ņ

i�1

p�1qi
�
Gzei, , e1 ^ � � � ^ pei ^ � � � ^ en

�
, (1.4)

where Gzei is the graph G with the same vertex set but with the edge ei deleted. One checks
again that δ is well-defined on graph isomorphism classes and satisfies δ2 � 0 and dδ � δd � 0.
It has degree N � 1. Note that deleting an edge can generate 2-valent vertices, and so δ does
not preserve the graph complex GCN . It does, however, preserve the complex GC¥2

N of graphs
with no vertices of degree ¤ 1, and it is observed in [38] that the graph complex GC¥2

0 has trivial
homology with respect to δ, since adjoining an edge in all possible ways defines a homology
inverse. Consequently, one shows that there exists an infinite family of non-trivial higher degree
classes in HnpGC2q, n ¡ 0, via a spectral sequence argument [38]. The existence of these classes
unfortunately uses (1.3) in an essential way.

The second additional structure is the Connes–Kreimer coproduct [27]:

∆G �
¸
γ�G

γ bG{γ, (1.5)

where γ ranges over core (1-particle irreducible, or bridgeless) subgraphs of G. It defines a coas-
sociative coproduct which is compatible with both differentials. However, once again it does not
preserve the graph complex – for example, G{γ may contain tadpoles, and if G has a bridge,
then G{γ may have a vertex of degree one. By antisymmetrizing the coproduct one obtains
a cobracket dual to the Connes–Kreimer Lie bracket [27], which is given by a signed sum of
all vertex insertions of one graph into another. See [37, Section 6.9] for another interpretation.
It nduces a Lie algebra structure on graph cohomology.

We shall provide a geometric interpretation of both (1.4) and (1.5) via the boundary structure
of a compactification of the space of metric graphs.
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1.5 Comments and questions

Recently Chan, Galatius and Payne proved in [26, Theorems 1 and 2] that for all g ¥ 2, the
highest non-zero weight-graded piece of the cohomology of Mg, the moduli space of curves of
genus g (which by Deligne [29] carries a canonical mixed Hodge structure) satisfies

grW6g�6H
4g�6�npMg;Qq

�
ÝÑ HnpGC2q

pgq. (1.6)

Using known results about the graph complex they deduced new information about the coho-
mology of Mg. The existence of the wheel class rW3s, for example, corresponds to the fact,
first proved by Looijenga [41], that H6pM3;Qq � Qp�6q, a pure Tate mixed Hodge structure of
weight 12.

Remark 1.3. The following puzzle was a principal motivation for this project. Simply put,
(1.2) and (1.3) suggest that the motivic Galois group Gmot

MT pZq, and hence its Lie algebra, should

act naturally on H0pGC2q. The point is that not every graded Lie algebra which is structurally
isomorphic to a free Lie algebra of the form Lpσ3, σ5, . . . q, is necessarily naturally motivic, i.e.,
admits a natural action by Lie

�
Gmot

MT pZq
�
.

If the motivic Galois group were to act naturally upon H0pGC2q, then by the Tannakian
formalism, the latter would be endowed with the structure of a mixed Tate motive over Z, and
hence we would expect the left-hand side of (1.6), or certainly the part which corresponds to
H0pGC2q, to correspond naturally to a mixed Tate motive over the integers. It would involve
non-trivial extensions of pure Tate objects, whose extension classes are detected by periods which
are multiple zeta values. However, the object on the left-hand side of (1.6) is by definition only
a pure motive: in fact, a direct sum of copies of Tate motives Qp3� 3gq.

For example, the very meaning of the element σ3 is that it corresponds (or rather, is dual)
to an extension class

0 ÝÑ Q ÝÑ E ÝÑ Qp�3q ÝÑ 0, (1.7)

where E is a mixed Tate motive. The non-triviality of this extension is detected by its period,
which is proportional to ζp3q. In this paper we shall naturally associate an extension of Tate
motives of the form (1.7) to the class rW3s whose period is indeed a multiple of ζp3q (in fact
60ζp3q) and conjecture that the same applies to all the odd wheel classes. It seems that, up
to Tate twisting, the left-hand side of (1.6) sees only one piece of the associated weight-graded
object grW E � Q`Qp�3q, which is split.

In the light of the previous remark, it may be reasonable to expect that the cohomology of
the graph complex in its entirety has the structure of a non-trivial mixed motive.

The previous discussion thus raises the following questions:

1. How should one interpret higher degree graph homology classes?

2. How is the graph complex related to mixed motives and periods?

In this paper we shall use the theory of invariant forms on locally symmetric spaces to define
(motivic) periods associated to graphs. This leads to a conjectural interpretation of infinitely
many higher degree classes in the graph complex.

2 Overview of contents

This section provides some commentary and background motivation for the main contents of
the paper. The reader may wish to return to the present section periodically while reading the
rest of the paper.
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The main thrust of this paper is to study differential forms on a geometric incarnation of the
graph complex. For this, we consider a certain moduli space of metric graphs, which is related
to both the moduli space of tropical curves [12] and Culler and Vogtmann’s Outer space [28],
and then go on to explain how to construct differential forms upon this space.

A possible point of confusion is the different use of the word “marking” in the literature,
which can refer to three different things. A “marked graph” commonly means a graph with
external half-edges, corresponding to the moduli space of curves with marked points. However,
we shall not consider any such graphs in this paper, and will therefore not use the term. In [12],
a “marking” refers to what we shall call a weighting on vertices; finally, in the context of Outer
space [28], “marking” refers to an ordered set of generators in the fundamental group of a graph,
which we shall call a “framing” in order to avoid conflict with the other notions.

2.1 Metric graphs

All graphs will be finite, and connected in the following discussion. A metric graph G is one in
which every edge e is assigned a length ℓe P R¡0. The lengths are normalised so that their total
sum

°
ePEG

ℓe equals 1. The metrics on G define an open Euclidean simplex of dimension eG�1

σG �

"
pℓeqe P REG

¡0 :
¸

ePEG

ℓe � 1

*
.

Let σG � REG
¥0 denote the closed simplex where all lengths are positive or zero. Contraction of

an edge e P EG corresponds to the natural inclusion

ι : σG{e ãÝÑ σG,

where σG{e is identified with the open face defined by ℓe � 0. An edge contraction is called
admissible if e has distinct end points and therefore G{e � G{{e.

The group of automorphisms AutpGq acts via permutation of the edges and vertices of G,
and acts by linear transformations on σG, and its closure σG.

2.2 Differential forms

A first definition of a smooth differential form of degree k and genus g is the data of a collection
tωGuG of differential forms

ωG : a smooth k-form on σG for every graph G with hG � g,

which are functorial and compatible with each other: in other words, π�ωG1 � ωG, where
by abuse of notation, π : σG Ñ σG1 denotes the linear isomorphism on cells induced by any
isomorphism π : G

�
Ñ G1; and for every admissible edge contraction of G, the form ωG extends

smoothly to the open face ιpσG{{eq � σG and its restriction satisfies

ι�ωG � ωG{{e p� ωG{eq.

It is important to note that the forms ωG all have the same degree, independent of G or g.
The differential is defined in the usual manner: dtωGuG � tdωGuG; as is the exterior product
tωuG^tηuG � tω^ηuG. This leads to a simple definition of a de Rham complex of smooth forms.
We briefly discuss geometric interpretations in the next section before turning to a definition of
algebraic differential forms.
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G

ℓ1

ℓ2
ℓ3ℓ2 ℓ3

ℓ1 ℓ2

ℓ1 ℓ3

ωGpℓ1, ℓ2, ℓ3q

ωG{{e1pℓ2, ℓ3q ωG{{e2pℓ1, ℓ3q

ωG{{e3pℓ1, ℓ2q

Figure 2. Left: The cell σG corresponding to a sunrise graph G with three edges. It is the open simplex

ℓ1 � ℓ2 � ℓ3 � 1 in R3
¡0. Each open facet ℓi � 0 of its closure is identified with σG{{ei , where G{{ei is the

graph obtained by contracting the edge ei. The corners, which arise from contracting loops, are omitted.

Right: A differential form ωG on σG which extends smoothly to the open facets ℓi � 0, restricted to

which, ωG coincides with ωG{{ei . The form ωG must be invariant under all permutations of ℓ1, ℓ2, ℓ3 since

AutpGq is isomorphic to the symmetric group on three letters.

2.3 Geometric digression

For the convenience of the interested reader, we relate the rather informal discussion above to
the moduli space of tropical curves, and Outer space. The following is not required for the rest
of the paper.

2.3.1 Moduli space of tropical curves

A weighted graph pG,wq is a graph G which has a weight function w : VG Ñ Z¥0 on its set
of vertices. A graph with no weightings will usually be regarded as the graph pG, 0q, where 0
denotes the zero weight function. The genus of a connected weighted graph is

g � hG �
¸
vPVG

wpvq.

The cell associated to a weighted, metric graph is the set

CpG,wq �
!
pℓeqe P REG

¡0

)
of all possible edge lengths. It does not depend on w. A tropical curve [12] is defined to be
a weighted metric graph pG,wq which is stable: in other words the degree (valency) of every
vertex of weight zero is ¥ 3, and every vertex of weight 1 has degree ¥ 1. The automorphism
group AutpG,wq is the subgroup of the full group of automorphisms AutpGq which preserves
the weight function. It acts linearly upon the cell CpG,wq and upon its closure CpG,wq � REG

¥0 .

A specialisation (contraction) of a tropical curve with respect to an edge e is the tropical
curve obtained by contracting e. If the edge e has two distinct endpoints of weights w1, w2, then
the new vertex obtained after contracting the edge e has weight w1 �w2; if the edge e is a loop
(or tadpole) with a single endpoint of weight w, then after contraction it leads to a vertex of
weight w � 1. The former contractions were considered admissible in the previous paragraphs;
the latter not.

The moduli space of tropical curves [12] of genus g is the topological space

M tr
g �

§
pG,wq

�
CpG,wq{AutpG,wq

�
{�
,
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where the disjoint union is over all stable weighted graphs of genus g. In this definition, the spaces
are endowed with the quotient topology, and � is the equivalence relation given by common
specialisations of weighted metric graphs. Alternatively, one may define M tr

g as a colimit [26],

by identifying the boundaries of each closed cell CpG,wq with the cells of their specialisations.
The simplices σG we considered above may be embedded in CpG, 0q, and may also be identified

with CpG, 0q{R¡0, where R¡0 acts by scalar multiplication on the edge lengths. In this manner,
consider the open subspace�

M tr
g

�
w�0

�M tr
g

defined to be the complement in M tr
g of the images of all cells CpG,wq (or their closures, it does

not matter) which involve a non-trivial weighting function w � 0, or equivalently, of graphs
pG,wq whose total weight wpGq �

°
vPVg

wpvq is positive.

A collection of smooth differential forms tωGu of degree k and genus g may thus be interpreted
as a differential k-form on the quotient of the locus

�
M tr

g

�
w�0

by R¡0.

2.3.2 Outer space

Outer space is constructed from connected metric graphs pG, ℓq which have no vertices of degree
¤ 2, and which are equipped with a homotopy equivalence from the “rose” graph Rg which has
one vertex and g edges:

f : Rg ÝÑ G,

where g � hG. Such a map f is called a “marking” in [28]; we shall call it a framing to avoid
confusion for the reasons mentioned earlier. The metric ℓ : EG Ñ R¡0 is normalised so that°

ePEG
ℓpeq � 1. The map f induces an isomorphism

f� : Zg � H1pRg;Zq
�
ÝÑ H1pG;Zq

and hence defines a basis of the homology group H1pG;Zq. An isomorphism of framed graphs
pG, fq � pG1, f 1q is an isomorphism π : G

�
Ñ G1 such that f 1 is homotopy equivalent to πf . The

contraction of an edge in pG, fq is the framed graph pG{e, f 1q, where f 1 is the composition of f
with the quotient GÑ G{e. It is admissible if e has distinct endpoints.

Outer space Og is defined [28] by gluing together simplices σpG,fq along the maps ι : σpG,fq{e ãÑ
σpG,fq for admissible edge contractions, modulo the action of isomorphisms of framed graphs.
Therefore the images of open cells in Og correspond to isomorphism classes of framed graphs
pG, fq. It is important to note that since only admissible edge contractions are allowed, the
closure of an open cell σG in Outer space is not necessarily compact (not all faces of σG are
admitted1). The group OutpFgq of outer automorphisms of the free group on g generators acts
properly on the space Og, and its quotient Og{OutpFgq is the quotient of

�
M tr

g

�
w�0

by R¡0.
A collection of smooth differential forms tωGuG of degree k and genus g may thus be inter-

preted as an OutpFgq-invariant differential form on Outer space Og, or viewed as a form on the
quotient of Outer space Og by OutpFgq. These interpretations are not to be taken too literally,
since Og is not even a manifold.

2.4 Algebraic differential forms

In order to provide a connection with the theory of periods and motives, we require a notion of
algebraic differential forms. Since neither the moduli space of tropical curves, nor Outer space,

1If one does admit all such faces, i.e., uses the closed simplices σpG,fq in place of σpG,fq, then one obtains the
simplicial closure O�

g , whose quotient O�
g {OutpFgq is isomorphic to the link of the vertex of M tr

g .
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is even remotely close to being an algebraic variety, this must be achieved by passing to an
algebraic model. In order to do this, the first step is to identify the simplex σG of Section 2.1
with the open real coordinate simplex in projective space

σG � PEG�1pRq.

The coordinates on the projective space will be denoted by αe for all e P EG. The inclusion of
faces ι : σG{{e ãÑ σG is induced by the inclusion of the coordinate hyperplane αe � 0:

ιe : PEG{{e�1 ÝÑ PEG�1, (2.1)

which is a morphism of algebraic varieties. Furthermore, every isomorphism π : G
�
Ñ G1 induces

an algebraic isomorphism of projective spaces π : PEG�1 �
Ñ PEG1�1 which permutes the set of

coordinate hyperplanes V pαeq � tαe � 0u for e P EG.
We can then define an algebraic differential form of degree k and genus g to be a collection

tωGuG of projectively-invariant meromorphic differential k-forms on the spaces PEG�1 for all G
with hG � g, which are smooth on σG, and which are

pcompatibleq : ι�eωG � ωG{{e for every admissible edge contraction, and

pequivariantq : π�ωG1 � ωG for every isomorphism π : G
�
Ñ G1. (2.2)

A projectively-invariant differential form is one which is homogeneous of degree zero and anni-
hilated by contraction with the Euler vector-field. A form ωG is allowed to have poles anywhere
away from the open real locus σG.

Now, if degpωGq � eG � 1 � dimσG, we would like to consider the integral

IGpωq �

»
σG

ωG.

It makes sense by projectivity of the form ωG. However, if the form ωG blows up in an uncon-
trolled manner along the boundary faces of the closure σG (see Figure 2) then there is nothing
to guarantee that the integral is finite.

2.5 Tropical Torelli map and invariant forms

In order to construct families of algebraic forms, consider the “tropical Torelli” map [2, 23, 25,
43], from the moduli space of tropical curves to the moduli space of tropical Abelian varieties:

M tr
g ÝÑ Atr

g . (2.3)

It associates, in particular, to a stable metric graph pG, 0q with zero weight function the class
of a graph Laplacian matrix ΛG. The space Atr

g � Ωrt{GLgpZq is the quotient of the space Ωrt

of positive semi-definite quadratic forms with rational null space by the general linear group.
The graph Laplacian matrix ΛG is a positive semi-definite symmetric g�g matrix whose entries
are linear combinations of edge lengths of G, and depends on a choice of basis of H1pG;Zq;
nevertheless, its class in Atr

g is well-defined.
A basic idea of this paper is to write down differential forms on the space of positive definite

symmetric matrices which are left and right invariant under the action of GLgpZq and pull-them
back along the tropical Torelli map (2.3). For all k ¥ 1, consider the forms

β4k�1
X � tr

��
X�1dX

�4k�1�
for any invertible symmetric matrix X, which were shown by Borel [8] to generate the stable
cohomology of the general linear group. Note that since they involve inverting X, they are
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smooth only on the sublocus given by positive definite symmetric matrices, and thus have
singularities along Atr

g at infinity.
Concretely, then, this means that to any connected graph G, we write down a graph Laplacian

matrix ΛG and define for all k ¥ 1,

ω4k�1
G � tr

��
Λ�1
G dΛG

�4k�1�
. (2.4)

It does not depend on the choices which go into defining ΛG, namely a choice of basis for
H1pG;Zq. The determinant ΨG � detΛG is the Kirchhoff graph polynomial.

Theorem 2.1. For all k ¥ 1, the ω4k�1
G are projective forms on PEG�1zXG, where XG �

V pΨGq is known as the graph hypersurface. They satisfy the compatiblity and equivariance
properties (2.2). They have the following shape:

ω4k�1
G �

NG

Ψk�1
G

, (2.5)

where NG is a polynomial in the parameters αe and their differentials dαe, with coefficients in Q.
The form ωG has a pole along XG of order at most k � 1.

Since the graph polynomial ΨG is positive on the simplex σG, the family tωGuG satisfies the
conditions required of an algebraic differential Section 2.7, and has many other properties. The
statement about the order of the poles is the content of Theorem 6.3 and is the result of many
cancellations between numerator and denominator in the definition.

Note that the ωG are defined for every g ¥ 1. A priori they may be viewed, for any such g,
as differential forms on the quotient of the open set pM tr

g qw�0 of 0-weighted graphs by R¡0 via
Section 2.3.1, but in some cases they extend to a strictly larger locus inside M tr

g .

2.6 Canonical algebra of differential forms

We define the canonical algebra of differential forms to be the exterior algebra on the forms (2.4)

Ω
can �

©�à
k¥1

Qω4k�1



.

It is a graded Hopf algebra for the coproduct ∆can

�
ω4k�1

�
� ω4k�1b 1� 1bω4k�1 with respect

to which the generators ω4k�1 are primitive. Given any form ω P Ωk
can of degree k, which we

call a canonical form, we obtain an integral

IGpωq �

»
σG

ωG (2.6)

for every graph G with k � 1 edges. One of our main results (Theorem 7.4) implies

Theorem 2.2. The integral IGpωq is always finite.

From the particular shape of the integrand (2.5), one deduces that the integral IGpωq is what
is known as a generalised Feynman integral (or “Feynman period”) in quantum field theory.
The previous theorem is in stark contrast with the usual situation for Feynman integrals, which
are often highly divergent.

Example 2.3. Let G � W3 be the wheel with three spokes, and let ω5 be the first non-trivial
canonical form (2.4). Then

IW3

�
ω5
�
� 60ζp3q

in accordance with Remark 1.3. Further examples are given in Section 10.
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The integrals (2.6) only depend on the isomorphism class of G in the graph complex GCN .
From this we deduce a pairing between the component of edge-degree k and the space of canonical
forms of degree k � 1:

I : pGCN qk bQ Ωk�1
can ÝÑ C.

This pairing can in principle be used to prove the non-vanishing of homology classes.

2.7 Bordification and blow-up

In order to prove the convergence of the integrals IGpωq one can construct an algebraic com-
pactification of the space of metric graphs, and use it to study the behaviour of the forms ωG

at infinity. This can be done by repeatedly blowing up intersections of coordinate hyperplanes
Lγ � V ptαe, e P Epγquq in projective space in increasing order of dimension, where γ ranges
over a specific family BG of subgraphs of G. This leads to a projective algebraic variety

πG : PG ÝÑ PEG�1. (2.7)

One way to do this is to perform blow-ups corresponding to all core2 subgraphs BG � Bcore
G [6],

another is to simply to blow up subspaces corresponding to all subgraphs. The required con-
ditions on BG are spelled out in [17, Section 5.1]. In either case, the exceptional divisor corre-
sponding to a subgraph γ P BG is canonically isomorphic to a product P γ � PG{γ , and gives
rise to a “face map”

ιγ : P γ � PG{γ ÝÑ PG. (2.8)

Note that the map ιe : P
G{{e Ñ PG coming from (2.1) may also be written in the form (2.8) in

the case when γ � e is a single edge (with distinct endpoints), since P e � SpecQ is a point.
Another interesting case is when γ � Gze, for then PG{γ also reduces to a point. In general, the
face maps (2.8) provide extra structure which relate metric graphs of different genera.

The closure rσG of the inverse image π�1
G pσGq inside PGpRq defines a compact polytope with

corners (or “Feynman polytope”), which is essentially the basic building block of the bordifi-
cation of Outer space constructed in [22]. Via (2.8) its faces are isomorphic to products of rσγ ,
where γ are minors of G. See Figure 3 for an illustration.

Now consider the pull-backs of canonical forms

rωG � π�GωG.

They are meromorphic differential forms on PG which may a priori have poles along exceptional
divisors. However, in Theorem 7.4 we show that this is not so: any primitive form satisfies

ι�γrω4k�1
G � rω4k�1

γ ^ 1� 1^ rω4k�1
G{γ . (2.9)

The corresponding formula for general ω P Ωcan is obtained by taking exterior products and is
expressible using the coalgebra structure on Ωcan.

Formula (2.9) implies that rω has no poles on the compactification rσG of the simplex σG, and
therefore that the following integral is finite

IGpωq �

»
σG

ωG �

»
rσG

rωG   8,

where G is any connected graph such that eG � degprωq � 1.

2A core graph, also called 1-particle irreducible, is one whose loop number decreases on cutting any edge, or
equivalently, which has no bridges.
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P2 PG

XG

σG

α3 � 0

α2 � 0α1 � 0

b 2

1

3

b

3
1

2

b
1

2
3

1 2

2 3 1 3
1
2

3

Figure 3. Left: The cell σG for the sunrise graph may be identified with the open coordinate simplex

tpα1 : α2 : α3q : αi ¡ 0u in projective space P2. The dotted circle indicates the graph hypersurface XG,

which meets its corners. Right: After blowing up the three corners α1 � α2 � 0, α1 � α3 � 0

and α2 � α3 � 0, we obtain a space PG Ñ P2, in which the total inverse image of the coordinate

hyperplanes form a hexagon (the strict transform of the graph hypersurface XG � V pΨGq is not shown).

The exceptional divisors are isomorphic to products P γ � PG{γ corresponding to a subgraph γ and the

quotient G{γ.

2.8 Stokes’ formula

Equation (2.9) is an extra property of canonical forms “at infinity” over and above the compati-
bility and equivariance properties (2.2). It can be exploited to prove relations between canonical
integrals for graphs with different loop numbers. For a canonical form ω P Ωk

can of degree k,
write its coproduct in Sweedler notation:

∆canω � ω b 1� 1b ω �
¸
i

ω1i b ω2i .

Then we prove that

0 �
¸

ePEG

»
σG{e

ωG{eloooooooomoooooooon
d

�
¸

ePEG

»
σGze

ωGzeloooooooomoooooooon
δ

�
¸
γ�G

¸
i

»
σγ

pω1iqγ

»
σG{γ

pω2i qG{γloooooooooooooooooomoooooooooooooooooon
∆1

, (2.10)

where the sum is over core subgraphs γ � G such that degω1i � eγ � 1. The terms in the
formula (2.10) reflect the structure of the boundary faces of the polytope rσG. After taking into
account the orientations on graphs which are consistent with the orientations of simplices σG,
the three braced terms in this expression can be interpreted as: the differential in the graph
complex d; the differential (1.4); and the reduced version of the Connes–Kreimer coproduct (1.5).

Thus, by extending the notation I appropriately, we may rewrite (2.10) equivalently as

0 � IdGpωq � IδGpωq � I∆1Gp∆
1
canpωqq,

where ∆1
can � ∆can � 1b id� idb 1 is the reduced coproduct associated to ∆can.

Remark 2.4. The formula (2.10) allows one in principle to detect homology classes. A simple
example is given in Corollary 8.8, which states that the conjectural non-vanishing of the canonical
integrals associated to wheels W2n�1 gives another proof of the fact that the classes rW2n�1s are
non-zero in H0pGC2q. Another situation in which non-vanishing of a canonical integral implies
non-vanishing of a homology class is given in Corollary 8.10.

2.9 Relation to motivic periods

The integrals considered above may be lifted to “motivic” periods. Concretely, define for any
ω P Ωk

can and any graph G with k � 1 edges, a motivic period, defined by an equivalence class

ImGpωq �
�
motG,

�rσG�, �rωG

��m
,
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where motG is a relative cohomology “motive” of G, which is defined using the geometry of the
blow up (2.7), and rωG � π�GωG. Applying the period homomorphism allows one to recover the
integral (2.6), IGpωq � per ImGpωq. We show that the formula (2.10) is motivic, i.e., holds for
the objects ImGpωq. In this manner, one can assign motivic periods to graphs, which provides
a connection between the homology of the graph complex and motivic Galois groups.

2.10 A conjecture for graph cohomology

The calculations of Section 10 lead us to expect, for every increasing sequence of integers

1 ¤ k1   k2   � � �   kr

the existence of an element X P GCN satisfying dX � δX � 0 such that

IX
�
ω4k1�1 ^ � � � ^ ω4kr�1

�
�

r¹
i�1

ζp2ki � 1q.

A similar statement should hold for motivic periods. By the types of argument outlined above,
this suggests the existence of (at least one) non-trivial graph homology class which pairs non-
trivially with every canonical form, and whose canonical integral is a product of odd zeta values.
Dually, this suggests the existence of a non-canonical injective map from Ω

can into the cohomol-
ogy of the graph complex. Since graph cohomology is a Lie algebra one is led to the following
conjecture.

Conjecture 2.5. There is a non-canonical injective map of graded Lie algebras from the free
Lie algebra on Ω

can into graph cohomology:

L pΩ
canq ÝÑ

à
nPZ

HnpGC2q (2.11)

such that its restriction to the Lie subalgebra generated by primitive elements maps to the Lie
subalgebra of cohomology in degre zero:

L
�à

k¥1

ω4k�1Q


ÝÑ H0pGC2q. (2.12)

All other elements map to higher degree cohomology
À

n¡0H
npGC2q. Furthermore, we expect

that the exterior product of m primitive forms ω4k�1 occurs in even cohomological degree if m
is odd, and odd cohomological degree if m is even.

The grading on the left-hand side of (2.11) is by the degree of differential forms; on the right,
it is by edge number only, so in fact the conjecture (2.11) is more naturally expressed using GC0

rather than GC2.

Information about the loop number (or equivalently, about the cohomological grading, if one
rephrases the conjecture in terms of the cohomology of GCN for some N � 0) is mostly lost in
this conjecture. It is possible that some of the information can be recovered by replacing these
gradings with a suitable filtration. Indeed, vanishing properties such as Proposition 4.5 places
some mild additional constraints on the loop order where canonical forms could occur in the
cohomology of the graph complex, which we omitted for simplicity.

Remark 2.6. The previous conjecture is slightly artificial because the natural integration pair-
ing (2.6) gives rise to irrational numbers and is thus not defined over Q, and because a canonical
form ω could conceivably pair with several closed elements X P GC2 representing independent
graph homology classes, and giving distinct periods. Indeed, we do not expect there to be
a canonical candidate for a map (2.11) since its restriction (2.12) would give rise to an injec-
tion (1.3) of the free Lie algebra on generators of every odd degree into the motivic Lie algebra,
which is a priori not canonical (it depends on a choice of basis of motivic multiple zeta values).
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In order to help with the visualisation of the conjecture, or rather its equivalent formulation
for GC2, Table 2 depicts the possible location of classes in low degrees. The table was generated
using the examples of Section 10, the argument of Section 8.4, and known results about graph
cohomology.

Note that the Lie algebra LpΩ
canq carries extra structures not obviously apparent on graph

cohomology: for example, the map
�
ω4k1�1, ω4k2�1

�
ÞÑ ω4k1�1 ^ ω4k2�1 and its generalisations

appear to be related to the differential in the spectral sequence of [38].

Table 2. A mostly conjectural picture to illustrate the alignment between conjecture (2.11) and the

known dimensions for graph cohomology groups. It is consistent with computations [50] for the Euler

characteristics of the graph complex.

H9 0

H8 0 0

H7 0 ω9^ω17 0

H6 0 0 0 ω5^ω9^ω13

H5 0 0 0 0 0

H4 0 0 0 0 0 0

H3 0 ω5^ω9 0 ω5^ω13 rω5, ω5^ω9s ω5^ω17

ω9^ω13
rω5, ω5^ω13s
rω9, ω5^ω9s

H2 0 0 0 0 0 0 0 0

H1 0 0 0 0 0 0 0 0 0

H0 0 ω5 0 ω9 0 ω13 rω5, ω9s ω17 rω5, ω13s
rω5, rω5, ω9ss

ω21

hG 2 3 4 5 6 7 8 9 10 11

2.11 Questions

An obvious question is whether (2.11) is an isomorphism. This is probably false since HpGCN q
is expected to be too large. There exists a formula for the Euler characteristic of the graph
complex [50] but its asymptotics are unknown to our knowledge. However, M. Borinsky has
recently informed us of a more compact formula [9] for the Euler characterstic which strongly
suggests super-exponential growth. This was anticipated in [39, Section 7.2] based on virtual
Euler characteristic computations (see also [11, 34]). Since the free Lie algebra L pΩ

canq grows
exponentially with respect to the degree, the cokernel of any map of the form (2.11) will be
huge.

One explanation for this fact could be the possible existence of more general families of
differential forms tωGuG of genus g which lie outside the canonical algebra Ωcan. A possible
source might be unstable classes in the cohomology of the general linear group GLgpZq which are
not expressible using invariant forms β4k�1

X . Another possible explanation is that the canonical
forms ω P Ωk

can could pair non-trivially with several different graph homology classes. Some
possible evidence in this direction is the fact that the classes of graph hypersurfaces in the
Grothendieck ring are of general type [4]. One knows, furthermore, that modular motives can
arise in the middle cohomology degree [19, 21], which is the case of relevance here. In such
cases, the Feynman residues are related to modular forms and are conjecturally not multiple
zeta values. By contrast, all presently known examples of canonical integrals (see Section 10)
are multiple zeta values, so it would be very interesting to know if canonical integrals differ or
not from Feynman residues in this regard. Section 9.5 discusses the possible relations between
Feynman residues, canonical integrals, and motivic Galois groups.



Invariant Differential Forms on Complexes of Graphs and Feynman Integrals 15

Although our constructions provide a connection between graph homology and motivic Galois
groups, it is not yet clear whether one can deduce a natural geometric action of the motivic
Galois group Gmot

MT pZq on H0pGC2q as (1.2) and (1.3) might suggest. The wheel graphs may be
a first step in this direction, since computations suggest their canonical motivic integrals are
proportional to motivic odd zeta values, which are dual to the generators σ2n�1 of the motivic
Lie algebra.

Finally, many of the constructions in this paper are valid more generally for certain classes of
regular matroids, which warrants further investigation. Indeed, linear combinations of matroids
whose edge contractions are graphs may provide a possible source, and explanation for, non-
trivial homology classes in GC2.

2.12 Related work

We draw the reader’s attention to the recent work of Berghoff and Kreimer [5] in which they
study properties of Feynman differential forms with respect to combinatorial operations on Outer
space. A key difference with the present paper is the fact that the forms they consider have
different degrees on the image of each cell. Nevertheless, it raises the interesting possibility of
constructing forms (in the sense defined here) on moduli spaces of graphs with external legs
whose denominator involves both the first and second Symanzik polynomials.

In a different direction, Kontsevich has suggested a possible relationship between the homol-
ogy of the graph complex with a “derived” Grothendieck–Teichmüller Lie algebra [40] defined
from the moduli spaces M0,n of curves of genus 0, but we do not know how it relates to the
constructions in this paper. The work of Alm [1] is possibly also related, in which he introduces
“Stokes relations” between multiple zeta values expressed as integrals over M0,n.

3 Graph polynomial and Laplacian matrix

We recall the definition of the graph polynomial and its relation to various definitions of Lapla-
cian and incidence matrices. We also discuss a generalisation to matroids.

3.1 Graph polynomial

Let G be a connected graph with hG loops. Choose an orientation of every edge of G. The
definitions to follow will ultimately not depend on this, or any other choices. There is an exact
sequence

0 ÝÑ H1pG;Zq HGÝÑ ZEG B
ÝÑ ZVG ÝÑ Z ÝÑ 0, (3.1)

where the boundary map B satisfies Bpeq � te�se for any oriented edge e whose source is se P VG

and whose target is te P VG. Denote the second map in (3.1) by

HG P Hom
�
H1pG;Zq,ZEG

�
.

Definition 3.1. Assign to every edge e in G a variable xe, and let Zrxes denote the polynomial
ring in the variables xe, for e P EG.

Define a symmetric bilinear form on the space of edges

ZEG � ZEG ÝÑ Zrxes,
xe, e1y � δe,e1xe,
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where δe,e1 denotes the Kronecker delta function. Via the map HG it induces a quadratic form
on H1pG;Zq, which can in turn be expressed as a linear map between H1pG;Zq and its dual.
Therefore let us denote by

DG : ZEG ÝÑ Hom
�
ZEG ,Zrxes

�
the linear map which satisfies DGpeq � xee

_, for all e P EG, where te
_u denotes the dual basis

to EG. Composing with HG defines a linear map:

ΛG � HT
GDGHG : H1pG;Zq ÝÑ Hom

�
H1pG;Zq,Zrxes

�
.

The determinant of a bilinear form over the integers is an intrinsic invariant, since, in any rep-
resentation as a symmetric matrix with respect to an integer basis, changing the basis multiplies
the determinant by an element in pZ�q2 � 1.

Definition 3.2. Define the graph polynomial to be

ΨG � detΛG P Zrxes.

The graph polynomial is also known as the first Symanzik polynomial, and was first discovered
by Kirchhoff. It plays a central role in quantum field theory, and its combinatorial properties
have been studied intensively. We shall argue that one should equally study combinatorial
properties of the whole graph Laplacian matrix, and its invariant differentials, defined in the
next section.

Theorem 3.3 (dual matrix tree theorem). The graph polynomial is equal to

ΨG �
¸
T�G

¹
eRT

xe,

where the sum is over all spanning trees T � G. Since a non-empty connected graph has a span-
ning tree, it follows that ΨG � 0.

If G is not connected but has connected components G1, . . . , Gn, then ΛG is the direct sum
of the ΛGi and one has ΨG �

±n
i�1ΨGi .

Example 3.4. If one chooses a basis of H1pG;Zq consisting of cycles c1, . . . , ch and if the edges
of G are labelled 1, . . . , N , then HG is represented by the edge-cycle incidence matrix of G:
the entry pHGqe,c corresponding to an edge e and cycle c is the number of times (counted with
orientations) that e appears in c.

Let G be the wheel with 3 spokes, with inner edges oriented outwards from the center and
outer edges oriented counter-clockwise. A basis for homology is given by the cycles consisting
of edges t1, 5, 6u, t2, 4, 6u, t3, 5, 4u:

1 3

2

5

6 4

With respect to these bases,

HT
G �

��1 0 0 0 1 �1
0 1 0 �1 0 1
0 0 1 1 �1 0

�.
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Therefore the graph Laplacian is respresented by the 3� 3 matrix

ΛG � HT
GDGHG �

��x1 � x5 � x6 �x6 �x5
�x6 x2 � x4 � x6 �x4
�x5 �x4 x3 � x4 � x5

�.

Its determinant is

ΨG � x1x2x3 � x1x2x4 � x1x2x5 � x1x3x4 � x1x3x6 � x1x4x5 � x1x4x6 � x1x5x6

� x2x3x5 � x2x3x6 � x2x4x5 � x2x4x6 � x2x5x6 � x3x4x5 � x3x4x6 � x3x5x6.

3.2 Dual Laplacian

It is more common to express the graph polynomial using the incidence matrix between edges
and vertices as opposed to between cycles and edges. The exact sequence (3.1) gives rise to
a sequence

0 ÝÑ H1pG;Zq ÝÑ ZE B
ÝÑ ImpBq ÝÑ 0. (3.2)

The inverse bilinear form D�1
G on

�
ZE
�_

� Hom
�
ZE ,Z

� �
taking values in Z

�
x�1
e

��
restricts to

a bilinear form on the dual ImpBq_ � HompImpBq,Zq which we denote by

LG � BD�1
G BT P Hom

�
ImpBq_, ImpBq bZ Z

�
x�1
e

��
.

The determinant detpLGq is well-defined and is related to the graph polynomial by Lemma 3.5
below. It is usual in the literature to compute LG as follows. Since the map ZVG Ñ Z in (3.1) is
given by the sum of all components, the choice of any vertex w P VG defines a splitting ZÑ ZVG

by sending 1 to the element p0, . . . , 0, 1, 0, . . . , 0q, where the non-zero entry lies in the component
indexed by w. Set V 1

G � VGztwu and hence ZVG � ZV 1
G ` Z. Since ImpBq � ZVG is given by

the subspace of vectors whose coordinates sum to zero, the projection ZVG Ñ ZV 1
G induces an

isomorphism

ImpBq � ZV 1
G ,

and hence (3.1) can be expressed as a short exact sequence

0 ÝÑ H1pG;Zq ÝÑ ZEG
εGÝÑ ZV 1

G ÝÑ 0, (3.3)

where εG is the composition of B with the projection ZVG Ñ ZV 1
G . With respect to the natural

bases, εG can be represented by the
�
V 1
G � EG

�
matrix

pεGqv,e �

$'&'%
1 if v � tpeq,

�1 if v � speq,

0 otherwise,

where speq, tpeq denote the source and targets of e. This is nothing other than the edge-vertex
incidence matrix ofG in which the row corresponding to the vertex w has been removed. Thus LG

is represented by the matrix

LG � εGD
�1
G εTG. (3.4)
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Lemma 3.5. There is a unique splitting of (3.3) over the field Qpxe, e P EGq, which is orthogonal
with respect to the bilinear form DG. There is a basis which is adapted to this splitting in which
the matrix DG is equal to

DG �

�
ΛG 0

0 L�1
G

�
.

It follows that detpΛGqdetpLGq
�1 �

±
ePEG

xe and hence

ΨG � detpLGq
¹
ePEG

xe.

Proof. Let K � Qpxe, e P EGq. Consider the short exact sequence:

0 ÝÑ H1pG;Kq
HGÝÑ KEG

εGÝÑ KV 1
G ÝÑ 0.

Let fG : KV 1
G Ñ KEG denote the unique splitting whose image is orthogonal to H1pG;Kq.

In other words, εGfG is the identity map on KV 1
G and the decomposition

pHG, fGq : H1pG;Kq `KV 1
G

�
ÝÑ KEG (3.5)

is orthogonal with respect to DG. The isomorphism DG : KEG �
�
KEG

�_
can be represented,

via (3.5), as a block diagonal matrix of the following form:

DG �

�
HT

GDGHG 0

0 fT
GDGfG



�

�
ΛG 0

0 fT
GDGfG



.

Since fGεG : KEG Ñ KV 1
G , viewed as an element in EndpKEGq, is the idempotent which projects

onto the second factor of (3.5), it follows that the composition fT
GDGfGεGD

�1
G εTG :

�
KV 1

G

�_
Ñ�

KV 1
G

�_
equals fT

Gε
T
G � pεGfGq

T , which is simply the identity. Therefore we can replace fT
GDGfG

in the previous matrix by
�
εGD

�1
G εTG

��1
� L�1

G . ■

Example 3.6. Let Kn be the complete graph with n vertices numbered 1, . . . , n. The pn�1q�
pn� 1q matrix LKn corresponding to removing the final vertex has entries pLKnqij � yij , where
for all 1 ¤ i   j ¤ n,

yij � yji � �x�1
e

whenever e is the edge between vertices i and j, and

yii �
¸

e meets i

x�1
e � �

¸
k�i

yik,

where the sum is over all edges e which meet vertex i. For n � 3,

LK3 �

�
�y12 � y13 y12

y21 �y21 � y23



.

A general LKn is equivalent to the generic symmetric matrix of rank n� 1.
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3.3 Matroids

The previous discussion can be extended to a certain class of matroids [48]. The main application
will be to exploit the fact that regular matroids, as opposed to graphs, are closed under the
operation of taking duals. This will be used to simplify several proofs, but is not essential to
the rest of the paper.

First of all, observe more generally that the definitions above are valid for any exact sequence
of finite-dimensional vector spaces over Q of the form

0 ÝÑ H ÝÑ QE ÝÑ V ÝÑ 0, (S)

where E is a finite set. One can define a Laplacian as before:

ΛS P Hom
�
H,H_ bQ Qrxe, e P Es

�
which defines a symmetric bilinear form on H. If one chooses a basis B of H, and denotes by H
the matrix of H Ñ QE in this basis, then the bilinear form Λ is represented by the matrix
ΛB � HTDH, where D is the diagonal matrix with entries xe in the row and column indexed
by e P E. Changing basis via a matrix P P GLpHq corresponds to the transformation

ΛB1 � P TΛBP (3.6)

from which it follows that ΨS � detpΛSq P Qrxe, e P Es is well-defined up to an element of pQ�q2.
Similarly, we can define a dual Laplacian

LS P Hom
�
V _, V bQ Q

�
x�1
e , e P E

��
associated to S, and its determinant is likewise well-defined up to an element of pQ�q2. By iden-
tifying QE with its dual, we can write the dual sequence

0 ÝÑ V _ ÝÑ QE ÝÑ H_ ÝÑ 0. (S_)

Lemma 3.7. We have

ΛS_ � i�LS ,

where i : Qrxe, e P Es Ñ Q
�
x�1
e , e P E

�
satisfies ipxeq � x�1

e . Therefore�
ΨS_pxeq

��1
ΨS

�
x�1
e

�¹
ePE

xe P pQ�q2.

Proof. The first part follows from the definitions and D�1 � i�D. The second part is a conse-
quence of Lemma 3.5. ■

In particular, we may write the statement of Lemma 3.5 in the form

D � ΛS ` i�Λ�1
S_ , (3.7)

where D denotes the bilinear form on QE considered above.

Remark 3.8. LetM be a regular matroid with edge set E. A choice of realisation of the matroid
defines a surjective map QE Ñ V , where V is a finite-dimensional vector space over Q. If H
denotes its kernel, we obtain a short exact sequence pMq 0 Ñ H Ñ QE Ñ V Ñ 0. When M is
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the matroid associated to a graph G, it is the exact sequence (3.2) tensored with Q. The matroid
polynomial is defined to be

ΨM �
¸
B

¹
eRB

xe,

where B ranges over the set of bases in M . A matroid version of the matrix tree theorem [31, 42]
states that ΨM is proportional to detpΛM q, up to a non-zero element in pQ�q2. It is well-known
that the dual matroid M_ to M can be represented by the exact sequence dual to pMq. Since
the coefficients of monomials in the matroid polynomial are 0 or 1, it follows from Lemma 3.7
that

ΨM_pxeq � ΨM

�
x�1
e

�¹
ePE

xe.

In particular, when G is a planar graph, and G_ a planar dual, one deduces the well-known
relationship ΨG_pxeq � ΨG

�
x�1
e

�±
ePE xe.

3.4 Graph matrix

A third way to express the graph polynomial as a matrix determinant arises naturally in the
context of Feynman integrals via the Schwinger trick. It is defined for an exact sequence pSq as
follows. Denote the map QE Ñ V by ε, its dual V _ Ñ

�
QE
�_

by εT , and consider the map

QE ` V _ ÝÑ
��
QE
�_

` V
�
bQ Qrxe, e P Es,

pf, vq ÞÑ
�
Df � εT pvq, εpfq

�
,

where D was defined earlier. It defines a bilinear form on QE`V _ taking values in Qrxe, e P Es,
whose restriction to the subspace V _ is identically zero.

In the case when the exact sequence pSq arises from a graph, we call the following square
matrix of rank pEG � VG � 1q � pEG � VG � 1q

MG �

�
DG �εTG
εG 0



a (choice of) graph matrix. Here, εG is a reduced incidence matrix, which, we recall, depends
on a choice of deleted vertex v (and choice of bases).

Lemma 3.9. We can write MG � LBU , where

L �

�
I 0

εGD
�1
G I

�
, B �

�
DG 0

0 LG



, U �

�
I �D�1

G εTG
0 I



and I are identity matrices of the appropriate rank. In particular, detpMGq � ΨG.

Proof. The decomposition MG � LBU is straightforward. We deduce that detpMGq �
detpLBUq � detpBq � detpDGqdetpLGq and apply Lemma 3.5. ■

3.5 Variants of graph polynomials

The following polynomials are instances of what we called “Dodgson polynomials” in [15].

Definition 3.10. Let us denote by

ΨI,J
G � detpMGpI, Jqq,

where MGpI, Jq denotes the minor of MG with rows I and columns J removed, where I, J are

subsets of EG such that |I| � |J |. We write Ψij
G instead of Ψ

tiu,tju
G .
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For general I, J , the polynomial ΨI,J
G depends on the choice of graph matrix MG by a possible

sign. Since MG is symmetric, Ψij
G � Ψji

G and can be expressed as sums over spanning forests
which include or avoid the edges i,j. In particular:

Ψii
G � ΨGzi �

B

Bxi
ΨG.

4 Maurer–Cartan differential forms and invariant traces

Let R �
À

n¥0R
n be a graded-commutative unitary differential graded algebra over Q whose

differential d : Rn Ñ Rn�1 has degree �1. In particular, for any homogeneous elements a, b one
has a.b � p�1qdegpaq degpbqb.a.

4.1 Definition of the invariant trace

Definition 4.1. For any invertible pk � kq matrix X P GLk

�
R0
�
, let

µX � X�1dX PMk�k

�
R1
�
.

For any n ¥ 0 consider the elements

βn
X � tr

��
X�1dX

�n�
P Rn.

Denote by Ik P GLk

�
R0
�
the identity matrix of rank k.

Lemma 4.2. The matrix µX satisfies the Maurer–Cartan equation

dµX � µXµX � 0.

From this it follows that d
�
µ2n
X

�
� 0 and d

�
µ2n�1
X

�
� �µ2n

X for all n ¥ 1.

Proof. Since X.X�1 � Ik we deduce that Xd
�
X�1

�
� dX.X�1 � 0. It follows that d

�
X�1

�
�

�X�1dX.X�1, and therefore dµX � d
�
X�1

�
dX � �µ2

X . Now

dµ2
X � dµX .µX � µXdµX � �µ3

X � µ3
X � 0.

From this it follows that all even powers µ2n
X �

�
µ2
X

�n
are closed under d, including the case

n � 0, since µ0
X is the identity. This in turn implies that for any n ¥ 1, we have d

�
µX .µ2n�2

X

�
�

dµX .µ2n�2
X � �µ2

Xµ2n�2
X � �µ2n

X as required. ■

The following properties of βn
X are well-known.

Lemma 4.3. The elements βX satisfy the following properties for all n ¥ 1:

piq βn
X � tr

��
dX.X�1

�n�
,

piiq βn
X�1 � p�1qnβn

X ,

piiiq βn
XT � p�1q

npn�1q
2 βn

X ,

pivq β2n
X � 0,

pvq dβ2n�1
X � 0,

pviq βn
X1`X2

� βn
X1
� βn

X2
.

The map X ÞÑ βn
X is invariant under left or right multiplication by any constant invertible

matrix A P GLk

�
R0
�
. In other words,

βn
X � βn

AX � βn
XA if dA � 0.
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Proof. Property piq follows from cyclicity of the trace. From this follows piiq since µX�1 �
�dX.X�1 via the computation in the proof of Lemma 4.2. To deduce piiiq, note that pµXq

T �

d
�
XT
��
XT
��1

. Therefore we check that:

βn
XT

piq
� tr

��
dXT .

�
XT
��1�n�

� tr
��
µT
X

�n�
.

Since transposition is an anti-homomorphism,
�
µn
X

�T
� p�1q

npn�1q
2

�
µT
X

�n
since µX has degree 1,

and the sign is that of the permutation which reverses the order of a sequence of n objects.
We therefore obtain

βn
XT � p�1q

npn�1q
2 tr

�
pµn

Xq
T
�
� p�1q

npn�1q
2 βn

X .

Property pivq uses the cyclicity of the trace and graded-commutativity:

tr
�
µ2n
X

�
� tr

�
µ2n�1
X µX

�
� tr

�
p�1q2n�1µXµ2n�1

X

�
� p�1q2n�1tr

�
µ2n
X

�
.

Property pvq follows from the fact that d
�
µ2n�1
X

�
� �µ2n�2

X by Lemma 4.2, which has vanishing
trace by pivq. Since the trace is linear it clearly commutes with the differential d. Property pviq
is immediate from the definitions, where X1 ` X2 is the block diagonal matrix with two non-
zero blocks X1, X2 on the diagonal. For the last statement, consider any two invertible matrices
A,B P GLk

�
R0
�
, which are constant, i.e., dA � dB � 0. We have

µn
AXB �

�
pAXBq�1AdX.B

�n
� pB�1

�
X�1dX

�
Bqn � B�1µn

XB,

from which it follows that βn
AXB � βn

X by the cyclic invariance of the trace. ■

The following lemma is a projective invariance property for β2n�1
X for n ¥ 1.

Lemma 4.4. Let λ P
�
R0
��

be invertible of degree zero. Then

β2n�1
λX � β2n�1

X for all n ¥ 1.

For n � 0 however, one has β1
λX � β1

X � kλ�1dλ, where k is the rank of X.

Proof. Writing λX � X.λIk, we have

µλX � λ�1µXλ� µλIk � µX � pλ�1dλqIk.

Taking the trace proves the last statement. Since pdλq2 � 0 and Ik is central, we deduce
that µ2m

λX � µ2m
X and µ2m�1

λX � µ2m�1
X � µ2m

X

�
λ�1dλ

�
for all m ¥ 0. Taking the trace gives

β2m�1
λX � β2m�1

X � tr
�
µ2m
X

�
λ�1dλ. One concludes using Lemma 4.3pivq. ■

The following proposition has important consequences.

Proposition 4.5. Let X be an invertible n� n matrix. Then

βm
X � 0 for all m ¥ 2n.

Proof. It suffices to prove the stronger statement:

µ2n
X � 0. (4.1)

For this, we adapt an argument due to Rosset [45], final paragraph. The matrix µ2
X has entries in

the commutative ring Reven �
À

n¥0R
2n, and therefore by a well-known result in linear algebra,�

µ2
X

�n
� 0 holds if tr

�
µ2m
X

�
� 0 for all m ¥ 1. The latter statement follows from Lemma 4.3pivq.

The linear algebra result referred to above follows from the Cayley–Hamilton theorem, namely,
that a matrix M over a commutative ring satisfies its characteristic polynomial equation, and
the fact that the coefficients in the characteristic polynomial can be expressed in terms of traces
of powers of M , which follows from Newton’s identities on symmetric functions. ■
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Remark 4.6. In order to connect more directly with the presentation in [45], note that the
entries of µ2n

X lie in the subspace
�2nR1 � R2n generated by exterior products of elements of

degree 1. Let teiu, where ei P R1, denote a Q-basis for the vector space generated by the entries
of µX . We may write µ2n

X as a finite sum

µ2n
X �

¸
I

µIeI ,

where for a set of indices I � ti1, . . . , i2nu, eI � ei1^� � �^ei2n , and where µI P Q. Equation (4.1)
is equivalent to µI � 0 for all I. Therefore (4.1) reduces to the case where R is the exterior
algebra on the Q-vector space with basis e1, . . . , e2n, and

µX �M1e1 � � � � �M2ne2n,

where Mi P Mn�npQq are n � n matrices with rational coefficients. The statement µ2n
X � 0 is

proven by Rosset in [45], final paragraph. It is equivalent to the Amitsur–Levitzki theorem for
the ring Q, which in this case states that¸

σPΣ2n

sgnpσqMσp1q � � �Mσp2nq � 0.

For historical background on invariant forms and their role in the development of Hopf alge-
bras, see Cartier’s survey paper [24, Section 2.1] and references therein.

4.2 Invariant classes

For any invertible matrix X with coefficients in R0, we obtain closed elements

β2n�1
X P R2n�1 for all n ¥ 0

and hence potentially non-trivial cohomology classes for all n ¥ 1:�
β2n�1
X

�
P H2n�1pRq.

If, however, X � XT is symmetric, then β4n�3
X vanishes for all n by property piiiq, and hence

only the following subset could possibly give rise to non-trivial classes:

β4n�1
X P R4n�1 for all n ¥ 0.

Since β1
X is not invariant under multiplication X ÞÑ λX in general (see Lemma 4.4), we obtain

a more restricted list of “projectively-invariant”classes:

β5
X , β9

X , β13
X , . . . .

Example 4.7. Consider the generic two-by-two matrix

X �

�
a1 a3
a4 a2



with coefficients in the field R0 � Qpa1, . . . , a4q, and set Rn � Ωn

R0{Q. Then

β1
X �

a1da2 � a2da1 � a3da4 � a4da3
a1a2 � a3a4

� d logpdetpXqq
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and β3
X is given by the expression

β3
X � 3

°4
i�1p�1q

iai da1 � � � xdai � � � da4
pa1a2 � a3a4q2

.

All higher β2n�1
X vanish for reasons of degree.

Now consider the generic three-by-three symmetric matrix:

X �

��a1 a4 a5
a4 a2 a6
a5 a6 a3

�
with coefficients in the field R0 � Qpa1, . . . , a6q, and let Rn � Ωn

R0{Q. Then

detpXq � a1a2a3 � a1a
2
6 � a2a

2
5 � a3a

2
4 � 2a4a5a6.

One has β1
X � d logpdetpXqq, β3

X � 0 and we verify that

β5
X � �10

°6
i�1p�1q

iai da1 � � � xdai � � � da6
pdetpXqq2

.

Once again, all higher elements β2n�1
X vanish. For larger matrices, the number of terms occurring

in an β2n�1
X grows rapidly.

In general, the forms β2n�1
X for n ¥ 1 define interesting cohomology classes on the complement

of hypersurfaces in projective space which are defined by the vanishing locus of detpXq. We shall
mostly be concerned with symmetric matrices.

4.3 Hopf algebra structure and stable cohomology of the general linear group

Let G � GLgpRq be the general linear group of rank g and let K ¤ G be a maximal compact
subgroup. The symmetric space X � KzG may be identified with the space of positive definite
real symmetric matrices of rank g. Each β4k�1 for k ¥ 1 defines a closed GLgpZq-invariant
differential form on X and hence a class in the cohomology of the orbifold X{GLgpZq:�

β4k�1
�
P H4k�1pX{GLgpZq;Rq � H4k�1pGLgpZq;Rq

which is compatible with the natural maps GLg Ñ GLg�1. Borel famously proved in [8] that
the invariant forms generate the stable real cohomology:

HpGLpZq;Rq � lim
Ð

HpGLgpZq;Rq,

which is consequently isomorphic to the graded exterior algebra on the classes β4k�1, for all
k ¥ 1. Taking the limits as m,nÑ8 of the map

pX1, X2q ÞÑ X1 `X2 : GLm �GLn Ñ GLm�n

induces a comultiplication on HpGLpZq;Rq. Since β4k�1
X1`X2

� β4k�1
X1

� β4k�1
X2

, it is induced by

the coproduct with respect to which the classes β4k�1 are primitive:

∆β4k�1 � β4k�1 b 1� 1b β4k�1. (4.2)

Borel deduced that the rank of the rational algebraic K-theory of the integers KipZq b Q for
i ¥ 2 is one if i � 1 mod 4, and 0 otherwise. Note that for every k ¥ 1, the Lie algebra
element σ2k�1 mentioned in the introduction, or rather its class modulo commutators, is dual
to a generator of K4k�1pZq bQ.
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5 Further properties of invariant forms

The following, somewhat technical, section proves some additional formulae for invariant
forms βn

X by using matrix factorisations of X.

5.1 Decomposition into block-matrix form

In order to obtain more precise information about the elements β2n�1
X , it is convenient to fix

a decomposition of X into block-matrix form. We shall either:

1. Let R be the ring of Kähler differentials Ω
R0{Q, where R0 � Qpaijq1¤i,j¤k, and write

X � paijqij for the generic pk � kq matrix with entries in R0.

2. As above except that R0 � Qpati,juq1¤i¤j¤k, and X � pati,juqij is the generic symmetric
pk � kq matrix with entries in R0.

In either situation, we may view X P GLk

�
R0
�
as an endomorphism of the R0-vector space

V �
Àk

i�1R
0. Let us fix a decomposition

V � V1 ` � � � ` Vn,

where each Vi is a direct sum of copies of R0. It follows from the theory of Schur complements3

and genericity of X that it can be written uniquely in the form

X � LBU,

where B �
Àn

i�1Bi is block-diagonal, L � I is strictly block lower-triangular, and U � I is
strictly block upper-triangular with entries in R0. From this we deduce that

UµXU�1 � UpLBUq�1dpLBUqU�1

� L� B � U ,

where

L � B�1
�
L�1dL

�
B, B � B�1dB, U � dU.U�1 (5.1)

are strictly block lower-triangular, block diagonal, and strictly block upper-triangular respec-
tively. By the cyclic invariance of the trace, we conclude that

βn
X � tr

�
Uµn

XU�1
�
� tr

�
pL� B � Uqn

�
. (5.2)

This formula can lead to more efficient ways of computing the βn
X than using the definition,

since many terms in an expansion of pL� B � Uqn have vanishing trace.

3Namely, the following identity for block matrices, where A, D are square matrices�
A B
C D



�

�
I 0

CA�1 I


�
A 0
0 D � CA�1B


�
I A�1B
0 I




which holds whenever the matrix A is invertible. It can be applied repeatedly to any decomposition of V as
a direct sum of two subspaces.
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5.2 Decomposition of type pm, 1q

Consider the special case

V � V1 ` V2,

where V1 �
�
R0
�`m

and V2 � R0 is one-dimensional. We have

L �

�
Im
ℓ 1



, B �

�
B1

b



, U �

�
Im uT

1



,

where ℓ � pℓ1 � � � ℓmq and u � pu1 � � �umq are p1�mq matrices and all blank entries denote zero
matrices. By solving X � LBU for ℓ, u, B, we find that

B1 � Xpm� 1,m� 1q,

b � detpXq{ detpXpm� 1,m� 1qq, (5.3)

where Xpm � 1,m � 1q denotes the pm �mq minor of X obtained by deleting row m � 1 and
column m� 1. It is invertible, hence in GLmpR

0q, by assumption of genericity. We find that

L �

�
b�1dℓ.B1



, B �

�
µB1

b�1db



, U �

�
duT



,

where all blank entries are zero. We have LBiL � UBiU � 0 for all i ¥ 0. Since
�
b�1db

�2
� 0,

B2 is zero except in the top-left corner and so B2L � UB2 � 0. It follows that βn
X is a linear

combination of traces of words in L, B, U of the form

Bi0LBi1UBi2LBi3U � � � , where i0, i1, . . . ¥ 0,

and where the matrices L and U alternate and are interspersed with a power of B; or a similar
expression in which L, U are interchanged. By cyclicity of the trace, the latter reduces to the
former; furthermore, the number of L’s and U ’s in such a word must be equal in order for the
trace to be non-zero. We can also assume i2k P t0, 1u for all k since B2L � UB2 � 0. In summary,
βn
X is a linear combination of traces of products of block-diagonal matrices:

B and LBiU for i ¥ 0.

Write

LBiU �

�
0 0

0 νi



,

where for all i ¥ 0, we define

νi � b�1
�
dℓB1

�
B�1

1 dB1

�i
duT

�
P Ri�2. (5.4)

By equation (5.2), we deduce that for all n ¥ 2,

βn
X � βn

B1
�
�
a linear combination of exterior products of νi, b�1db

�
. (5.5)

Lemma 5.1. If X is symmetric, νi � 0 and LBiU � 0 whenever i � 0, 1 pmod 4q.



Invariant Differential Forms on Complexes of Graphs and Feynman Integrals 27

Proof. Since X is symmetric, it follows that B1 is also symmetric, and ℓ � u. By the defini-
tion (5.4), we can write:

bνi � dℓ
�
dB1B

�1
1 � � �B�1

1 dB1

�
dℓT ,

where the term in brackets in the middle has degree i. Since transposition is an anti-homomor-
phism, we find that

pbνiq
T �

�
dℓ
�
dB1B

�1
1 � � �B�1

1 dB1

�
dℓT
�T

� p�1q
pi�2qpi�1q

2 bνi.

Since bνi is a p1 � 1q matrix and equals its own transpose, it must be equal to zero whenever
the sign in the right-hand side is negative, i.e., if i � 0, 1 pmod 4q. ■

We deduce the optimal power of detpXq in the denominator of the forms βn
X .

Theorem 5.2. For any invertible matrix X we have

β1
X � d logpdetpXqq

and

β2n�1
X P

1

detpXqn�1
Ω2n�1
Qrai,js{Q. (5.6)

If, furthermore, X is symmetric then the power of the determinant in the denominator drops by
another factor of two. Indeed, in this case we have

β4n�1
X P

1

detpXqn�1
Ω4n�1
Qrati,jus{Q

, (5.7)

i.e., β4n�1
X is a polynomial form in ati,ju, dati,ju, divided by detpXqn�1.

Proof. The theorem is first proven for generic matrices (Section 5.1, situation (1) in the general
case, and situation (2) for the case when X is symmetric). The statements for an arbitrary
invertible matrix follow by specialisation. In other words, we first prove the identity (5.6)
(resp. (5.7)) on the algebraic variety of generic (resp. generic symmetric) matrices which is an
open subvariety of the space of all invertible matrices. Since the identities are algebraic, they
remain valid on its Zariski closure, where strict minors of X (but not its determinant), are
allowed to vanish. The first statement can be proven by induction on the rank of X. It is clear
for matrices of rank 1. Using (5.3) we have

β1
X � β1

B1
� d log b.

Since B1 has smaller rank than X, the induction hypothesis gives

β1
X � d logpdetpXpm� 1,m� 1qqq � d log b

(5.3)
� d logpdetpXqq.

It is immediate from the definition of the invariant trace β2n�1
X of X that it only has denominator

detpXq, i.e., its entries lie in

Qraij , daij , detpXq�1s.

Let vdetpXq denote the valuation on R defined by the negative of the order of poles in detpXq.
It is known, for both generic symmetric and generic non-symmetric matrices, that detpXq is
irreducible. From equations (5.3) and (5.4) we obtain

vdetpXq

�
β2n�1
Xpm�1,m�1q

�
� 0, vdetpXq

�
b�1db

�
� vdetpXqpνiq � �1 for all i ¥ 0.
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All terms in (5.5) have degree at most one in b�1db since it squares to zero. Because deg νi �
i�2 ¥ 2, there can be at most n terms of type νi in the expression (5.5) for β2n�1

X . We therefore
deduce that vdetpXq

�
β2n�1
X

�
¥ �n� 1, which proves (5.6).

When X is symmetric, the proof of (5.7) goes along very similar lines. By Lemma 5.1,
ν0 � ν1 � 0 and therefore every non-trivial form νi has degree ¥ 4. It follows that there can be
at most n of them in the expansion (5.5) for β4n�1

X and therefore v
�
β4n�1
X

�
¥ �n� 1. ■

5.3 Decomposition of type p1, . . . , 1q

Consider a decomposition of the form X � LBU , where B is diagonal, and L (resp. U) is lower
(resp. upper) triangular with 1’s on the diagonal. Define L, B, U using (5.1). Since B is diagonal,
B2 � 0. Suppose that X is symmetric of rank 2n� 1 ¥ 3, and denote the diagonal entries of B
by b1, . . . , b2n�1. Write W � L� U . Using (5.2) and B2 � 0 we find that

β4n�1
X � trpW � Bq4n�1 � p4n� 1qtr

�
WpBWq2n

�
� � � � ,

where � � � denotes terms involving fewer than 2n matrices B (in some circumstances of interest,
these terms vanish for reasons of degree). This uses the fact that n ¥ 1. If we write

ΩB �
2n�1¸
i�1

p�1qibidb1 ^ � � � ^ xdbi ^ � � � ^ db2n�1

then one can deduce from the definition of the trace that the leading term of β4n�1
X is

tr
�
WpBWq2n

�
�

1

detpBq
ΩB ^

�¸
γ

W1,γp1q ^ � � � ^W2n�1,γp2n�1q



, (5.8)

where the sum ranges over all p2nq! � p2n� 1q!{p2n� 1q permutations γ of 1, . . . , 2n� 1 modulo
cyclic permutations.

6 Canonical differential forms associated to graphs

We define canonical differential forms associated to graphs via their Laplacian matrix and derive
some first properties. In this section, the forms will be viewed as meromorphic functions on
projective spaces (i.e., before performing any blow-ups).

6.1 Canonical graph forms

For any finite set S, let PS � P
�
QS
�
denote the projective space over Q of dimension |S| � 1

with projective coordinates xs for s P S. Let G be a connected graph.

Definition 6.1. The graph hypersurface XG � PEG is defined [6] to be the zero locus of the
homogeneous polynomial ΨG.

Define the open coordinate simplex σG � PEGpRq to be

σG � tpxeqePEG
: xe ¡ 0u.

The polynomial ΨG is positive on σG since by Theorem 3.3 it is a non-trivial sum of monomials
with positive coefficients. Therefore

σG XXG � ∅.
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Let ΛG be any choice of Laplacian matrix. Its coefficients are elements of

R0
G � Q

�
pxeqePEG

,Ψ�1
G

�
and ΛG P GLhG

�
R0

G

�
is invertible. Let R

G � Ω
�
Spec

�
R0

G

��
be the Kähler differentials on the

affine hypersurface complement AEGz
�
XG X AEG

�
.

Definition 6.2. For every integer k ¥ 1, define

ω4k�1
G � β4k�1

ΛG
P R4k�1

G .

Recall that this equals tr
��
Λ�1
G dΛG

�4k�1�
.

The general properties stated in Section 4.1 imply the following.

Theorem 6.3. The differential forms ω4k�1
G are well-defined, and give rise for all k ¥ 1 to

closed, projective differential forms

ω4k�1
G P Ω4k�1

�
P|EG|�1zXG

�
whose singularities lie along the graph hypersurface, where they have a pole of order at most
k � 1. In particular, they are smooth on the open simplex σG.

Proof. The invariance of β4k�1 (Lemma 4.3) implies that ω4k�1
G is independent of the choice

of bases which go into defining the Laplacian matrix ΛG. The fact that ω4k�1
G is closed follows

from Lemma 4.3pvq. Since detpΛGq is by definition the graph polynomial ΨG, it is immediate
from the definition of ω4k�1

G and the formula for the inverse of a matrix in terms of its adjugate
that

ω4k�1
G �

NG

Ψ4k�1
G

for some NG P Ω4k�1
�
Qrxe, e P EGs

�
,

where NG is a polynomial form of degree p4k � 1qhG. In particular, ω4k�1
G is homogeneous

of degree 0. The order of the pole is given by (5.7). The projectivity of ω4k�1
G follows from

vanishing under contraction with the Euler vector field:� ¸
ePEG

xe
B

Bxe



ω4k�1
G pxeq �

B

Bλ
ω4k�1
G pλxeq �

B

Bλ
β4k�1
λΛG

�
B

Bλ
β4k�1
ΛG

� 0,

where the penultimate equality is Lemma 4.4. ■

Note that since ΛG is symmetric, the forms β4n�3
ΛG

vanish for all n ¥ 0. If G has connected
components G1, . . . , Gn then using Lemma 4.3pviq, we have

ω4k�1
G �

ņ

i�1

ω4k�1
Gi

since ΛG �
Àn

i�1 ΛGi with respect to the decomposition H1pG;Zq �
À

iH1pGi;Zq.

Example 6.4. For G �W3, the wheel with 3 spokes, Example 4.7 gives

ω5
W3

� 10
ΩW3

Ψ2
W3

,

where ΩW3 �
°6

i�1p�1q
ixidx1 � � � xdxi � � � dx6. It is the Feynman differential form which computes

the residue in dimensional regularisation in massless ϕ4 theory. In general, this is not true: the
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forms ω4k�1
G have complicated numerators, which are strongly reminiscent of the kinds of nu-

merators occurring in a gauge theory [35]. It would be very interesting to interpret the canonical
forms ω4k�1

G more generally in terms of a suitable quantum field theory, or conversely, interpret
the integrands which arise in the parametric representation of quantum electrodynamics, for
instance, as matrix-valued differential forms in the spirit of Section 4.1.

Remark 6.5. More generally, for any exact sequence pSq Section 3.3 we may define

ω4k�1
S � β4k�1

ΛB
, (6.1)

where the Laplacian matrix ΛB is relative to a choice of basis B of H. The latter depends on the
basis B only up to the transformation (3.6), and since the forms β4k�1

ΛB
are invariant (Lemma 4.3),

it follows that ω4k�1
S is well-defined. As a consequence, for any regular matroidM , we may define

a form

ω4k�1
M ,

which does not depend on the choice of representation of the matroid.

6.2 First properties

The forms ω4k�1
G are invariant under automorphisms.

Lemma 6.6. Consider any automorphism π of a graph G. It induces a map π� : R0
G � R0

G

which permutes the edge variables via π�xe � xπpeq. Then

ω4k�1
G � π�ω4k�1

G .

Proof. The automorphism π induces an automorphism P of H1pG;Qq and hence acts on the
graph Laplacian via the formula π�ΛG � P TΛGP . The statement follows from the invariance
of βΛG

(Lemma 4.3). ■

The forms ω4k�1
 are compatible with contractions in the following sense. First of all, if γ is

a subset of the set of edges of G, consider the linear subspace

Lγ � PEG

defined by the vanishing of the edge coordinates xe for all e P Eγ . It is canonically isomorphic
to PEG{γ . A basic property of graph polynomials with respect to contraction of edges implies
that ΨG vanishes along Lγ if hγ ¡ 0, but in the case hγ � 0, its restriction to Lγ satisfies
ΨG

��
Lγ

� ΨG{γ . Thus Lγ is contained in the graph hypersurface XG if hγ ¡ 0 but otherwise if

hγ � 0 one has

Lγ XXG � XG{γ ,

via the canonical identification Lγ � PEG{γ .

Proposition 6.7. Let γ � EG such that hγ � 0, i.e., γ is a forest. Then

ω4k�1
G

��
Lγ
� ω4k�1

G{γ ,

as meromorphic forms on Lγ � PEG{γ . They are regular on the open complement of the graph
hypersurface LγzpLγ XXGq � PEG{γzXG{γ.
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Proof. Since ω4k�1
G is regular at the generic point of Lγ , and likewise for LI for all I � Eγ , the

statement for a general forest γ can be proved by contracting one edge in γ at a time. We can
thus assume that γ consists of a single edge e. Since in this case Lγ is the hyperplane defined
by xe � 0, it suffices to show that

ω4k�1
G

��
xe�0

� ω4k�1
G{e . (6.2)

By assumption, e has distinct endpoints, and therefore contraction of the edge e defines an iso-
morphism H1pG;Zq � H1pG{e;Zq. By definition of the graph Laplacian matrix, ΛG{e � ΛG

��
xe�0

from which (6.2) immediately follows. ■

The restriction of ω4k�1
G to a linear subspace Lγ , where hγ ¡ 0, is not defined. This is

because Lγ is contained in XG, along which ω4k�1
G may have poles.

6.3 Further graph-theoretic properties

6.3.1 Duality and deletion of edges

Lemma 6.8 (duality). Let G be a graph and qG the dual pcographicq matroid. Then

ω4k�1
qG

� i�ω4k�1
G

for all k ¥ 1, where i is the involution i : xe ÞÑ x�1
e . This relation holds, in particular, if G is

a planar graph and qG a planar dual.

Proof. This holds more generally for the form (6.1) associated to an exact sequence and its
dual, by (3.7). The latter, together with Lemma 4.3, implies that

ω4k�1
D � ω4k�1

ΛS
� i�ω4k�1

Λ�1
S_

� ω4k�1
ΛS

� i�ω4k�1
ΛS_

.

The form ω4k�1
D vanishes for k ¥ 1. In particular, the statement holds for any regular matroid M

and its dual M_, and in particular for graphs, whose matroids are regular. ■

Corollary 6.9 (deletion of edges). Let G be a graph. Then

ω4k�1
Gze �

�
i�eω

4k�1
G

���
xe�0

,

where iepxf q � xf if f � e and iepxeq � x�1
e . Informally, ω4k�1

Gze is the coefficient of xne in ω4k�1
G

of highest degree n.

Proof. Deletion of an edge is dual to contraction of the correponding edge in the dual matroid.
The statement then follows from the previous lemma and (6.2). ■

6.3.2 Series-parallel operations (dividing and doubling edges)

Lemma 6.10 (series). Let G1 denote the graph obtained from G by replacing an edge e with two
edges e1, e2 in series psubdividing e with a two-valent vertexq. Then

ω4k�1
G1 � s�eω

4k�1
G ,

where se : R

G Ñ R

G1 is the map

sexf �

#
xf if f � e,

xe1 � xe2 if f � e.
(6.3)
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Proof. A representative for the graph Laplacian matrix ΛG1 is obtained from ΛG by replacing xe
with xe1 � xe2 from which the result immediately follows. ■

Lemma 6.11 (parallel). Let G1 denote the graph obtained from G by replacing an edge e with
two edges e1, e2 in parallel pduplicate the edge eq. Then

ω4k�1
G1 � p�eω

4k�1
G

for all k ¥ 1, where pe � isei is the map

pexf �

#
xf if f � e,�
x�1
e1 � x�1

e2

��1
if f � e.

(6.4)

Proof. Let qG be the matroid dual to G. Contracting an edge on G corresponds to deleting
an edge in qG and vice versa. Since subdividing and duplicating edges are uniquely characterised
in terms of contractions and deletions, one verifies that subdivision of an edge e P G is dual
to the operation of duplicating the edge e P qG. It follows from Lemmas 6.8 and 6.10 that
ω4k�1
G1 � p�1q2p�eω

4k�1
G , where p�e � i�s�e i

�, which leads to the stated formula for p�e . ■

Remark 6.12. For k � 0, the form β1 is not projectively invariant and the relation needs to be
modified: ω1

G1 � p�eω
1
G � d logpxe1 � xe2q. It is equivalent to the formula ΨG1 � pxe1 � xe2qp

�
eΨG

(e.g., [15, Lemma 18]) via ω1
G � d logΨG.

Feynman integrals are known to satisfy a whole range of graph-theoretic identities [13, 15, 46],
and one can ask whether these identities hold on the level of the forms ω4k�1

G . Here we mention
just two of the most simple ones.

Lemma 6.13. Let G be a 1-vertex join of G1 and G2. Then

ω4k�1
G � ω4k�1

G1
� ω4k�1

G2
.

Proof. Since H1pG;Zq � H1pG1;Zq ` H1pG2;Zq, it follows from Lemma 4.3pviq that ΛG �
ΛG1 ` ΛG2 with respect to QEG � QEG1 `QEG2 . ■

Lemma 6.14. Let G and G1 be any two graphs with a pair of distinguished vertices tv1, v2u and
tv11, v

1
2u. There are two ways of joining these graphs together by gluing either vi with v1i por vi

with v13�iq for i � 1, 2 to obtain two 2-vertex joins G1 and G2. Their canonical differential forms

are equal: ω4k�1
G1

� ω4k�1
G2

.

Proof. By Whitney, the matroids associated to G1 and G2 are isomorphic, so ΛG1 is equivalent
to ΛG2 . ■

Remark 6.15. The operation in the lemma is not to be confused with the 2-vertex join G1 : G2,
for which we assume in addition that tv1, v2u (respectively tv

1
1, v

1
2u) are connected by an edge e

(resp. e1). It is defined by joining together G1, G2 by identifying v1 � v11 and v2 � v12 and
deleting the edges e, e1.

6.4 The Hopf algebra of canonical differential forms

Let us write Ω0
can � Z, generated by the constant form 1 of degree zero.

Definition 6.16. Let Ω
can �

À
d¥0Ω

d
can denote the graded exterior algebra over Z generated

by symbols β4k�1 for k ¥ 1. We can equip Ω
can with a coproduct

∆: Ω
can ÝÑ Ω

can bZ Ω
can

such that each generator β4k�1 is primitive: ∆β4k�1 � β4k�1 b 1� 1b β4k�1.
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Note that the coproduct is the same as that defined on the infinite general linear group (4.2).
An element ω P Ωn

can is primitive if and only if n � 4k � 1 for some k ¥ 1 and ω is proportional
to β4k�1.

Example 6.17. The smallest degrees k for which Ωk
can is non-zero are

0, 5, 9, 13, 14, 17, 18, 21.

The space Ω22
can has rank 2, generated by β5 ^ β17 and β9 ^ β13. One has, for example,

∆can

�
β5 ^ β9

�
� 1b

�
β5 ^ β9

�
� β5 b β9 � β9 b β5 �

�
β5 ^ β9

�
b 1.

Any element ω P Ωk
can defines a universal differential k-form which to any connected graph G

assigns the projective differential form

G ÞÑ ωG P Ωk
�
PEGzXG

�
.

It automatically vanishes on any graph with k edges or fewer since there are no projective
invariant differential forms of degree k in ¤ k variables. By Lemma 6.6 any canonical form ω is
invariant under automorphisms of G. A canonical form ω satisfies the functoriality properties
which are deduced from those for primitive canonical forms by taking exterior products (for
example, Proposition 6.7 holds verbatim for any ω P Ω

can). We leave the statements to the
reader.

Definition 6.18. Every canonical form defines universal cohomology classes in the cohomology
of graph hypersurface complements. For all ω P Ωk

can, we obtain a class

rωGs P Hk
dR

�
PEGzXG

�
in algebraic de Rham cohomology [36], for every graph G.

Remark 6.19. Let ω be a canonical form of degree k. Suppose that G satisfies eG � k � 1.
Suppose that the order of the pole in the denominators of ωG and ω

qG
are bounded by n (such an

n depends only on ω by Theorem 5.2). The projective invariance of ω, together with Lemma 6.8,
which implies that ωG � i�

�
ω
qG

�
, gives

ωG �
PG

Ψn
G

ΩG, where ΩG �
¸
i

p�1qixi dx1 ^ � � � ^ xdxi ^ � � � ^ dxeG ,

where PG is a polynomial in Qrxes of degree at most n� 1 in each variable xe.

6.5 Vanishing properties

We now consider the case of most interest, namely when the dimension of the simplex σG equals
the degree of the form ωG, i.e.,

eG � degpωGq � 1.

Proposition 6.20. Let ω P Ωk
can of degree k. Then for any graph G with k�1 edges the form ωG

vanishes if one of the following holds:

piq G has a vertex of degree ¤ 2,

piiq G has a multiple edge,

piiiq G has a tadpole,

pivq G is one-vertex reducible pcan be disconnected by deleting a vertexq,

pvq G has a bridge pcan be disconnected by deleting an edgeq. Thus in this situation, ωG va-
nishes unless G is core or “1-particle irreducible”.
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Proof. In the cases piq and piiq, G is obtained from a graph G1 with k edges by either duplicating
or subdividing an edge e. Then, by Lemmas 6.10 and 6.11,

ωG � f�ωG1 ,

where f � se (6.3) in the case piq and f � pe (6.4) in the case piiq. The differential form ωG1 is
projective of degree k in k variables and therefore ωG1 vanishes, as does ωG. The statement piiiq
is a special case of pivq. Suppose that G is a one-vertex join of two graphs G1 and G2. Using
Sweedler’s notation we can write

∆canω �
¸

ω1 b ω2.

Then by Lemma 6.13 and multiplicativity of the coproduct we have:

ωG �
¸

ω1G1
^ ω2G2

,

where each term satisfies ω1 P Ωk1
can and ω2 P Ωk2

can for some k1� k2 � k. Since eG1 � eG2 � k� 1
we must have eGi ¤ ki for some i � 1, 2, which implies that ωGi vanishes for the same reasons
as above. Therefore ωG is zero.

When G has a bridge e, let G1, G2 denote the two connected components of Gze. In this
situation ΛG � ΛG1`ΛG2 as in Lemma 6.13, and the proof proceeds as for a one-vertex join pivq
except that the equality eG1 � eG2 � k holds. ■

Corollary 6.21. Let ω P Ωn
can be of degree n and suppose that G is a connected graph with

eG � n� 1 edges and hG loops. Then ωG vanishes unless

hG ¥
eG
3
� 1.

If G is not three regular, then ωG vanishes unless hG ¡ eG
3 � 1.

Proof. Let d � 2eG{vG be the average degree of the vertices in G. By the previous proposition,
ωG vanishes unless every vertex in G has degree ¥ 3. Therefore d ¥ 3 with equality if and only
if G is three-regular. We deduce that

hG � 1 � eG � vG ¥ eG �
2

d
eG �

d� 2

d
eG

from which the statement follows. ■

6.6 Variants

Since there are several possible formulations of Laplacian matrices associated to graphs, it is
natural to ask if the associated invariant forms lead to the same differential forms. We show
that they do.

Lemma 6.22. Let LG be a matrix (3.4). Then, for all k ¥ 1,

β4k�1
LG

� β4k�1
ΛG

.

Proof. From Lemmas 3.5 and 4.3pviq, we have

βn
DG

� βn
ΛG

� βn
L�1
G
.

Let n ¡ 1. Then βn
DG

� 0, and Lemma 4.3piiq implies that βn
LG

� p�1qn�1βn
ΛG

. ■
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We now turn to the graph matrix defined in Section 3.4.

Proposition 6.23. Let MG be any choice of graph matrix. Then for all k ¥ 1,

β4k�1
MG

� β4k�1
ΛG

.

Proof. By Lemma 3.9 we may write MG � LBU , where L, B, U are block lower triangular,
diagonal and upper triangular respectively. Using the notation of Section 5.1 we set L �
B�1L�1dL.B, B � B�1dB, and U � dU.U�1, where

dL �

�
0 0

εGdD
�1
G 0

�
, dB �

�
dDG 0

0 dLG



, dU �

�
0 �d

�
D�1

G

�
εTG

0 0



.

Since DG is diagonal, dD�1
G .dDG � 0 and dL.dB � dB.dU � dL.B.dU � 0. From this we

deduce that

LB � BU � LU � 0.

Since also L2 � U2 � 0 we deduce that

pL� B � Uqn � Bn � Bn�1L� UBn�1 � UBn�2L.

By cyclicity, the traces of all terms on the right-hand side vanish except for the first, and
therefore trpωn

MG
q � trpBnq. By Lemma 4.3pviq we deduce that

βn
MG

� βn
DG

� βn
LG

.

The term βn
DG

vanishes for n ¡ 1 and we conclude using the previous lemma. ■

The previous proposition leads to closed formulae for the canonical differential forms ωG in
terms of graph polynomials and their “Dodgson” variants (Definition 3.10). If we define ηG to
be the pEG � EGq square matrix

pηGqij �

�
Ψij

G

ΨG
dxj



, 1 ¤ i ¤ j ¤ EG

then by writing the inverse of a matrix in terms of its adjugate matrix, we have

µMG
�

�
ηG 0
0 0



in block matrix notation. From this we deduce:

Corollary 6.24. The canonical form is given by

ω4k�1
G � tr

�
η4k�1
G

�
.

As a consequence, it can be written as a polynomial in
Ψij

G
ΨG

and dxj.

From this one can write down a closed formula for ω4k�1
G as a sum over permutations involving

products of Dodgson polynomials. For example,

β5
MG

� 10
¸

I�EG

¸
σPDihpIq

Ψ
iσ1 iσ2
G

ΨG

Ψ
iσ2 iσ3
G

ΨG

Ψ
iσ3 iσ4
G

ΨG

Ψ
iσ4 iσ5
G

ΨG

Ψ
iσ5 iσ1
G

ΨG
dxiσ1 � � � dxiσ5 ,

where the sum is over all subsets I � pi1, . . . , i5q � EG, and DihpIq � Σ5{D10 is the set
of dihedral orderings of I (the twelve ways of writing the elements of I around the vertices of
pentagon, up to dihedral symmetries). This formula easily generalises, but is of limited practical
use because of the sheer number of terms.
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Remark 6.25. Using condensation identities (e.g., [15, Sections 2.4–2.5]) which are based on
results of Dodgson and Leibniz, we can show that

β5
MG

� 10
¸

I�EG

�
Ψi1i2i3,i1i4i5

G

ΨG

Ψi2i4,i3i5
G

ΨG
�

Ψi1i3i5,i1i2i4
G

ΨG

Ψi2i3,i4i5
G

ΨG



dxi1 � � � dxi5 ,

which gives the optimal power of ΨG in the denominator (Theorem 5.2). This phenomenon
is very reminiscent of the cancellations which occur in the parametric formulation of quantum
electrodynamics [35] and suggests a matrix formulation of the latter. It also suggests a possible
formulation of canonical graph forms using generalised Gaussian integrals.

7 Algebraic compactification of the space of metric graphs

We construct an algebraic compactification of the space of metric graphs by blowing up, and
define an algebraic differential form upon it to be an infinite collection of differential forms of the
same degree which satisfy certain compatibilities. We then prove that the pull-backs of canonical
forms along the blow up satisfy all these compatibilities.

7.1 Reminders on linear blow ups in projective space

For any subset of edges I � EG, recall that LI � PEG denotes the linear space defined by the
vanishing of the coordinates xe for all e P I.

Consider subsets BG � 2EG of sets of edges of G with the properties:

piq EG P BG,

piiq I1, I2 P BG ùñ I1 Y I2 P BG.

Furthermore, we require the assignment G ÞÑ BG to satisfy various properties including Bγ �
tI P BG : I � Eγu for all subgraphs γ � G, and a similar property for quotients G{γ, for
which we refer to [17, Section 5.1]. Examples of interest satisfying all the required properties
include Bcore

G , consisting of all core subgraphs (the minimal case of relevance), or Ball
G consisting

of all subgraphs (the maximal case). We shall fix some such family of BG once and for all. For
the present application to canonical graph forms, Bcore

G suffices, but one can imagine situations
where one should take Ball

G , for instance if one were to consider differential forms with a more
complicated polar locus. We shall simply take BG � Bcore

G from now on.
For any graph G, let

πG : PG ÝÑ PEG (7.1)

denote its iterated blow-up along linear subspaces Lγ corresponding to γ P BG in increasing
order of dimension [6], [17, Definition 6.3]. It does not depend on any choices. It is equipped
with a divisor D � PG

D � π�1
G

� ¤
ePEG

Le



,

which is the total inverse image of the coordinate hyperplanes. Its irreducible components are
of two types: the strict transforms De of coordinate hyperplanes xe � 0, which are in one-to-one
correspondence with the edges of G, and the inverse images of Lγ , for every γ P BG with |γ| ¥ 2,
which we denote by Dγ . Let

rσG � π�1
G pσGq



Invariant Differential Forms on Complexes of Graphs and Feynman Integrals 37

denote the closure, in the analytic topology, of the inverse image of the open coordinate sim-
plex σG. It is a compact manifold with corners which we have in the past called the Feynman
polytope. The following theorem was first proved in [6] for primitive-divergent graphs (for
more general Feynman graphs, including those with arbitrary kinematics and masses, see [17,
Theorem 5.1]).

Theorem 7.1. The divisor D � PG is simple normal crossing. Every irreducible component is
canonically isomorphic to a space of the same type:

De � PG{e and Dγ � P γ � PG{γ .

The strict transform YG � PG of the graph hypersurface XG � PEG does not meet rσG. Its
intersection with the divisor D satisfies:

YG XDe � YG{e and YG XDγ �
�
P γ � YG{γ

�
Y
�
Yγ � PG{γ

�
.

In particular, the complements of the strict transform of the graph hypersurface in each
boundary component Dγ satisfy the product structure:

DγzpDγ X YGq �
�
P γzYγ

�
�
�
PG{γzYG{γ

�
. (7.2)

This product structure is fundamental to both the existence of the renormalisation group [20]
and also the coaction principle [17]. We call the maps

PG{e � De ãÝÑ PG,

P γ � PG{γ � Dγ ãÝÑ PG

face maps, since they induce inclusions of faces on the polytope rσG. It is clear that the assignment
G ÞÑ

�
PG, D

�
is clearly functorial in G with respect to graph isomorphisms.

7.2 Differentials on the total space PTot

If G has several connected components G �
�n

i�1Gi, let us set P
G � PG1 � � � � � PGn .

Let us define the total space PTot to be the collection of schemes
�
PG
�
G
as G ranges over all

graphs, together with morphisms

ie : PG{e ÝÑ PG,

iγ : P γ � PG{γ ÝÑ PG (7.3)

by taking products of face maps for every connected component of G. Every isomorphism
τ : G � G1 induces an isomorphism

τ : PG � PG1
. (7.4)

If G has connected components G1, . . . , Gn, define

rσG �
n¹

i�1

rσGi .

An orientation on G is equivalent to an orientation of each σGi and hence rσG.
Definition 7.2. Define a primitive algebraic differential form trωu of degree k on PTot to be
a collection of differential forms rωG, for every G, such that:
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1. For all G, the form rωG is projective and meromorphic on PG of degree k, and its restriction
to rσG is smooth (i.e., its poles lie away from rσG).

2. Its restriction along face maps (7.3) satisfies the compatibilities:

i�e rωG � rωG{e,

i�γrωG � rωγ ^ 1� 1^ rωG{γ ,

where, by abuse, rωγ denotes the pull-back along the projection onto the first component
P γ � PG{γ Ñ P γ , and similarly for rωG{γ . The collection of forms rω is also required to be
compatible with isomorphisms (7.4):

τ�rωG1 � rωG for all τ : G � G1.

An algebraic differential form trωu of degree k on PTot is then defined to be an exterior product
of primitive forms. Note that this will affect the formula for the restriction i�γ , but all other
properties remain unchanged.

The differential is defined component-wise: dtrωu � tdrωGuG. One can clearly define various
sheaves of differentials on PTot, but the above “global” definition is adequate for our purposes.
An algebraic differential form restricts to a smooth form rωG

��
rσG

of degree k on the polytope rσG,
for every G.

Remark 7.3. Instead of PTot we may also consider the collection of schemes
�
PG
�
G
, where G

ranges over all graphs of bounded genus ¤ g, equipped with the face maps. In this case, the
topological space given by the collection of rσG, together with the identifications induced by face
maps and automorphisms, is closely related to the quotient of the bordification [22] of Outer
space Og by the action of OutpFgq.

7.3 Canonical forms along exceptional divisors

Let ω P Ωn
can be a canonical form. Denote the exceptional divisor of (7.1) by E � D � PG and

define

rωG P Ωn
�
PGzpE Y YGq

�
to be the smooth differential form π�GpωGq for any connected G, where πG is the blow-up (7.1). It
could a priori have poles along components of the exceptional locus E . In fact, this is never the
case, even if G has subgraphs γ which are called “divergent” in physics terminology (meaning
that they satisfy hγ ¥ 2eγ).

Theorem 7.4. The form rωG has no poles along the divisor D and therefore extends to a smooth
form on PG z YG, i.e.,rωG P Ωn

�
PG z YG

�
.

Its restrictions to irreducible boundary components of D satisfy

rωG

��
De

� rωG{e

if De is the strict transform of the hyperplane Le corresponding to a single edge e of G, and in
the case when Dγ is an exceptional component corresponding to a core subgraph γ � G, satisfy

rωG

��
Dγ

�
¸rω1γ ^ rω2G{γ , (7.5)

where ∆canω �
°

ω1bω2 in Sweedler notation. The forms on the right-hand side of this formula
are viewed on DγzpDγ X YGq via the isomorphism (7.2).



Invariant Differential Forms on Complexes of Graphs and Feynman Integrals 39

Proof. It is enough to prove the statement for ω � β4k�1 a primitive form in Ω4k�1
can . The fact

that rω4k�1
G has no poles along an irreducible component of the form De, and the formula for

its restriction, are a consequence of Proposition 6.7. Now consider the case of an exceptional
divisor Dγ , where γ � G is a core subgraph. Local affine coordinates in a neighbourhood of
Dγ � P γ � PG{γ

�
or, to be more precise, of DγzpDγ X E 1q, where E 1 consists of all components

of E not equal to Dγ , which is isomorphic to an open affine subset of PEγ � PEG{γ
�
are given

by replacing xe with xez for all e P Eγ [17, Section 5.3] and setting some xe0 � 1 for e0 P Eγ .
In these coordinates, the locus Dγ is given by the equation z � 0.

There is a decomposition of the homology H1pG;Zq � H1pγ;Zq ` H1pG{γ;Zq which is ob-
tained by splitting the exact sequence

0 ÝÑ H1pγ;Zq ÝÑ H1pG;Zq ÝÑ H1pG{γ;Zq ÝÑ 0.

With respect to a suitable basis of this decomposition, the graph Laplacian matrix, in the local
affine coordinates described above, can be written in block form

ΛG �

�
zΛγ zB
zC D



, where D � ΛG{γ pmod zq

and Λγ , B, C, D are matrices whose entries are polynomials in the xe, for e P EG.
We can therefore write the graph Laplacian in the form

ΛG � ΛU, where we set Λ �

�
zΛγ 0
0 ΛG{γ



,

where the matrix U is defined by U � Λ�1ΛG. It satisfies

U �

�
z�1Λ�1

γ 0

0 Λ�1
G{γ

��
zΛγ zB
zC D



�

�
1 Λ�1

γ B

0 1



pmod zq.

In particular, the entries of ΛG, Λ and U have no poles at z � 0. Since detpUq � 1 pmod zq, the
inverse matrix U�1 has entries which have no poles at z � 0, and can be expressed as formal
power series in z whose coefficients are rational functions in the xe, for e P EG. We have

Λ�1
G dΛG � U�1Λ�1pdΛqU � U�1dU

and hence

U
�
Λ�1
G dΛG

�
U�1 � Λ�1dΛ� dU.U�1.

We wish to compute

β4k�1
ΛG

� tr
�
U
�
Λ�1
G dΛG

�4k�1
U�1

�
� tr

��
Λ�1dΛ� dU.U�1

�4k�1�
.

Now observe that the matrix

Λ�1dΛ �
dz

z

�
1 0
0 0



�

�
Λ�1
γ dΛγ 0

0 Λ�1
G{γdΛG{γ

�
is block diagonal, and furthermore, multiplying it by any matrix whose entries are rational
functions in z and which vanishes at z � 0 leads to a matrix whose entries have no poles at
z � 0 and which vanishes along z � 0. By an earlier computation, dU , and hence dU.U�1,
is strictly block upper triangular modulo terms which vanish along z � 0. It follows that any
product of the matrices Λ�1dΛ and dU.U�1 involving at least one factor of the form dU.U�1
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is strictly block upper triangular modulo terms which vanish along z � 0, and therefore has
vanishing trace at z � 0. We deduce that

β4k�1
ΛG

� β4k�1
Λ � terms vanishing at z � 0.

Since k ¥ 1, Lemmas 4.3pviq and 4.4 imply that

β4k�1
Λ � β4k�1

zΛγ
� β4k�1

ΛG{γ
� β4k�1

Λγ
� β4k�1

ΛG{γ
.

In particular, β4k�1
Λ and hence β4k�1

ΛG
have no poles at z � 0, and we conclude that

β4k�1
ΛG

���
z�0

� β4k�1
Λγ

� β4k�1
ΛG{γ

.

Since this calculation holds in every local affine chart, we deduce thatrβ4k�1
ΛG

� rβ4k�1
Λγ

^ 1� 1^ rβ4k�1
ΛG{γ

.

Since ∆canβ
4k�1 � β4k�1b1�1bβ4k�1, this proves (7.5). The case of a general element in Ωcan

follows from the multiplicativity of the coproduct. ■

Remark 7.5. Note that the previous theorem gives another way to derive the asymptotic
“factorisation” formula ΨG � ΨγΨG{γ which lies behind (7.2), by inspecting the determinant of
the matrix Λ which occurs in the proof.

Note that the core subgraphs γ which occur in the previous theorem are not necessarily
connected.

Corollary 7.6. For every canonical form ω P Ωn
can, the collection trωGuG defines an algebraic

differential form of degree n in the sense of Definition 7.2.

In this paper we will consider forms with poles along graph hypersurfaces only, even though
the Definition 7.2 allows more general polar loci in principle.

7.4 Canonical cohomology classes

We deduce the existence of universal compatible families of closed differential forms, and hence
cohomology classes, on the complements of graph hypersurfaces.

Definition 7.7. For every ω P Ωk
can we may define canonical (absolute) cohomology classes for

every graph G:

rrωGs
abs P Hk

dR

�
PGzY G

�
.

They satisfy a number of compatibilities including invariance under automorphisms and func-
toriality with respect to restriction to faces of the divisor D, which are cohomological versions
of Definition 7.2. As a consequence, these classes are deduced from the graph hypersurface
complement of the complete graph Kn, for n sufficiently large, by restriction (since every graph
is deduced from a complete graph by deleting edges). Examples suggest that rrωGs

abs is often
zero.

8 Canonical graph integrals and Stokes’ formula

We study integrals of canonical forms over coordinate simplices σG, which are always finite.
We then apply Stokes’ theorem to the Feynman polytope to deduce relations between canonical
integrals.
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8.1 Integrals of canonical differential forms

Let trωu be a closed algebraic differential form of degree k as in Definition 7.2.

Definition 8.1. Let pG, ηq be an oriented graph with k � 1 edges. Define

IpG,ηq

�
trωu� � »

rσG

rωG,

where the orientation on rσG is induced by the orientation η on the edges of G. Since rωG is
smooth and the domain rσG is compact, the integral is finite.

Lemma 8.2. The integral I is well-defined on the equivalence class rG, ηs and is thus defined
on the level of the graph complex GCN , for any N even.

Proof. Reversing orientations changes the sign:

IpG,�ηq

�
trωu� � �IpG,ηq

�
trωu�.

Furthermore, if τ : G � G is an automorphism of G, then

IpG,ηq

�
trωu� � IpG,τpηqq

�
trωu�

by the functoriality property τ�rωG � rωG which follows from Lemma 6.6. ■

From now on we drop the orientation in the notation for G, and assume that all graphs are
implicity oriented. We now let ω P Ωk

can be a canonical differential form.

Corollary 8.3. If G has k � 1 edges, the canonical integral equals

IG
�
trωu� � »

σG

ωG (8.1)

and is finite. It vanishes if any of the following are true: G has a tadpole or a bridge, G has
a vertex of degree ¤ 2, G has multiple edges, or G is one-vertex reducible.

Proof. By Theorem 7.4, rωG is a differential form in the sense of Definition 7.2 and so the
canonical integral converges. It can be written as an integral over the open simplex σG because
the complement rσGzσG has Lebesgue measure zero. The vanishing statement is a consequence
of Proposition 6.20. ■

It follows from duality properties (Lemma 3.7) of canonical forms that IGptωuq � IG_ptωuq
if G and G_ are planar graphs dual to each other.

In physics parlance, a graph G is called divergent if deg2G ¤ 0, i.e., 2hG ¥ eG.

Lemma 8.4. Suppose that ω is primitive pe.g., ω is a generator of the form β4k�1q. Then the
integral (8.1) vanishes unless

eG � 2hG,

or equivalently, deg2G � 0.

Proof. Since ω is primitive, and ΛG is a hG � hG matrix, Proposition 4.5 implies that

ωG � 0 unless degωG   2hG.

For the integral to be defined, degωG � eG�1 and therefore eG�2hG ¤ 0. Now by Lemma 6.22,
we may write ωG � β4k�1

LG
, where LG is the matrix (3.4) of size vG � 1, where vG is the number

of vertices of G. By Proposition 4.5,

ωG � 0 unless degωG   2pvG � 1q.

Using vG � eG� hG� 1 and the fact that degωG � eG� 1 we conclude that ωG vanishes unless
eG ¥ 2hG. This shows that ωG vanishes unless eG � 2hG. ■
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As a result, integrals of primitive forms will only detect elements in the zeroth homology of the
graph complex GC2, which motivates the second part of Conjecture 2.5 (namely equation (2.12)
and the remark which follows it).

Classes in higher homology groups can in principle be detected by integrals of canonical forms
which are not primitive.

8.2 Relations from Stokes’ theorem

Stokes’ theorem implies the following relation between graph integrals. It combines the diffe-
rential in a graph complex with the coproduct both on graphs and on differential forms.

Theorem 8.5. Let ω P Ωk
can be a canonical form of degree k. Write its coproduct in the form

∆canω �
°

i ω
1
i b ω2i . For any graph G with k � 2 edges,

0 �
¸

ePEG

»
σG{e

ωG{e �
¸
i

¸
γ�G

»
σγ

pω1iqγ �

»
σG{γ

pω2i qG{γ , (8.2)

where the sum is over all core subgraphs γ � G, such that eγ � degω1i � 1 and the orientation
on σΓ, for Γ P tG, γ,G{γu, is induced by any fixed orientation on G.

Proof. Here and later, we shall often write ω instead of ωG to keep the notations uncluttered.
Applying Stokes’ formula to the compact polytope rσG gives

0 �

»
rσG

drω � »
BrσG

rω.
By Theorem 7.1, the boundary BrσG is a union of facets rσG{e, where e P EG is an edge, andrσγ � rσG{γ , where γ � G is a core subgraph. Thus we obtain

0 �
¸

ePEpGq

»
rσG{e

rω��
rσG{e

�
¸
γ�G

»
rσγ�rσG{γ

rω��
rσγ�rσG{γ

.

By Theorem 7.4, we have

rω��
rσγ�rσG{γ

�
¸
i

rω1i��
rσγ
^ rω2i ��

rσG{γ
.

Since rσγ has dimension eγ � 1, the restriction of the holomorphic form rω1i to it vanishes unless
deg rω1i ¤ eγ � 1. Similarly, deg rω2i ¤ eG{γ � 1 is also required for non-vanishing of the differential
form rω2i , and hence

degω � deg rω1i � deg rω2i ¤ eγ � eG{γ � 2 � eG � 2.

Since this is an equality, we deduce that eγ � degω1i � 1. ■

The quadratic terms in the right-hand side of (8.2) include:»
σγ

1�

»
σG{γ

ωG{γ (8.3)

whenever G contains a core 1-edge subgraph γ, i.e., a tadpole. If G has no tadpoles the
terms (8.3) never occur. Similarly, the quadratic terms in (8.2) also include»

σγ

ωγ �

»
σG{γ

1 (8.4)
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whenever γ � G is a core subgraph and G{γ has a single edge. In this situation γ � Gze for e
an edge in G. Thus these terms can be rewritten in the form¸

ePEG

»
σGze

ωGze

since by Proposition 6.20pvq such an integral vanishes unless Gze is core.

Corollary 8.6. If G has no tadpoles we may rewrite (8.2) in the form

0 �
¸

ePEG

�»
σG{e

ωG{e �

»
σGze

ωGze



�
¸
γ�G

»
σγ�σG{γ

∆1
canω, (8.5)

where ∆1
canω � ∆canω � 1b ω � ω b 1 is the reduced coproduct on Ωcan.

Remark 8.7. It can often happen that terms in the formula (8.5) vanish. The terms (8.4)
vanish if, for example, for every edge e of G, the graph Gze has a vertex of valency ¤ 2. The
latter is guaranteed if G has no two vertices of valency ¥ 4 which are connected by an edge.

Likewise, the quadratic terms where ω1i and ω2i are non-trivial (have degree ¡ 0)»
σγ

ω1i �

»
σG{γ

ω2i (8.6)

often vanish. For example, if ω � ω4m�1 ^ ω4n�1 is the wedge product of two primitive forms,
then because ω1i and ω2i are both primitive, Lemma 8.4 implies that (8.6) vanishes unless deg2 γ �
deg2G{γ � 0, and in particular, deg2G � 0.

Further vanishing criteria can be obtained by combining Lemma 8.4 with the fact that if
a graph Γ satisfies 3hΓ � eΓ ¤ 2 then it has a vertex of valency ¤ 2 and thus vanishes in GC2.

8.3 Detecting graph homology classes

Using the formula (8.5), one can deduce the existence of non-vanishing homology classes in the
graph complex from the non-vanishing of canonical integrals. A simple case is as follows.

Corollary 8.8. Suppose that G P GC2 of degree 0 is closed pdG � 0q and homogeneous of edge
degree e. Let ω P Ωe�1

can be a primitive canonical form of degree e� 1. If the canonical integral is
non-vanishing:

IGpωq �

»
σG

ωG � 0

then the class rGs P H0pGC2q is non-zero.

Proof. Suppose that G � dX, where X is a linear combination of graphs in GC2 of degree 1.
Applying formula (8.5) to X implies that

0 �

»
dX

ω �

»
δX

ω.

By Lemma 8.4, the restriction of ω to δX vanishes, since deg2 δX � deg2X�1 ¡ 0. We therefore
deduce that 0 �

³
dX ω � IGpωq, a contradiction. ■

The proof implies that if ω P Ωcan is primitive, and X P GC2 has degree deg2X � 1 in the graph
complex with edge-grading degpωq � 2, then we have:»

dX
ω � 0. (8.7)

See Section 10 for examples of relations between canonical integrals obtained in this way.
There exist more elaborate versions of Corollary 8.8 involving diagram chases around the

graph complex. We describe a basic mechanism in the next paragraph.
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8.4 Applications

The following argument shows how cohomology classes may appear in unexpected degrees in
the graph complex.

Lemma 8.9. Suppose that X P GC2 of degree deg2X � n such that dX � δX � 0, and let
ω P Ωcan with degω � epXq � 1. Either

rXs P HnpGC2q

is non-zero, or there exists X 1 P GC2 satisfying dX 1 � δX 1 � 0 of degree deg2X
1 � n� 2 with»

X 1

ω �

»
X
ω mod (products of canonical integrals).

If n ¥ 0 and ω is a linear combination of products of at most two primitive canonical forms,
then in fact»

X 1

ω �

»
X
ω.

Proof. If the homology class rXs were to vanish, then there exists Y P GC2 such that dY � X.
Set X 1 � �δY . Since δ2 � 0 we have δX 1 � 0. Using dδ � �δd we also deduce that dX 1 � 0.
Now apply (8.5) to Y to obtain

0 � IdY pωq � IδY pωq � I∆1Y p∆
1
canωq,

which implies that IX 1pωq � IXpωq�I∆1Y p∆
1
canωq. The term I∆1Y p∆

1
canωq is a linear combination

of products of canonical integrals of factors of ω, which proves the first statement. For the second,
note that the degree of Y equals n � 1 ¥ 1, and so I∆1Y p∆

1
canωq vanishes when ω is a linear

combination of products of two primitive forms ω4i1�1 ^ ω4i2�1, by Remark 8.7. ■

Corollary 8.10. Suppose that X P GC2 of degree deg2X � n ¥ 0 such that dX � δX � 0,
and let ω P Ωcan of degree degω � epXq � 1 be a linear combination of products of at most 2
primitive canonical forms, such that»

X
ω � 0.

Then there exists an m ¥ 0, and an element Xm P GC2 satisfying dXm � δXm � 0, such that
its homology class rXms P Hn�2mpGC2q is non-zero and»

Xm

ω �

»
X
ω.

Proof. Apply the previous lemma repeatedly to X0 � X to obtain a sequence X � X0,
X1, . . . , Xm of elements satisfying dXi � δXi � 0 and such that IXipωq � IXpωq. Since the loop
number of Xi decreases by 1 at each step, this process terminates after a finite number of steps
by Proposition 6.20, and the last one in the sequence must be a non-trivial homology class. ■

In Section 10.3 we apply the corollary to an element X � δG, where G represents a class
in H0pGC2q with non-trivial coproduct.

Remark 8.11. In [38] it is shown that HpGC0,d � δq �
À

n¥1QrW2n�1s is generated by the
wheel classes. Thus, for any homogeneous Z P GC0 such that dZ � δZ � 0 which is not
proportional to a wheel class, there exists X such that pd � δqX � Z. By applying (8.5) we
deduce that

IZpωq � I∆1pXqp∆
1
canpωqq,

for any canonical differential form ω P ΩeZ�1
can . In particular, canonical integrals of any such Z

are trivial modulo products of lower order canonical integrals.
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9 Outer motive and canonical motivic periods of graphs

9.1 A motive associated to the graph complex

For any connected oriented graph G, one can define the graph motive [6, 17]

motG � HeG�1
�
PGzYG, DzpD X YGq

�
which is to be viewed in a category HQ of realisations over Q (see, for example, [18, 30]). If G
has connected components G1, . . . , Gn, define motG to be

Ân
i�1motGi . The objects motG are

equipped with face maps [17]

ie : motG{e ÝÑ motG,

iγ : motγ bmotG{γ ÝÑ motG, (9.1)

as well as maps induced by isomorphisms τ : G � G1 which we denote by:

τ : motG1 � motG. (9.2)

Note that the face maps increase the cohomological degree by one and correspond to boundary
maps in cohomology. Define the ind-motive of all graphs (resp. of bounded genus) to be a limit
of the graph motives with respect to (9.1) and (9.2):

MotGraphs �
à
G

motG{�, Mot¤g
Graphs �

à
hG¤g

motG{�. (9.3)

For the second line of (9.1), this means that the images of any two face maps

i : motg bmoth ÝÑ motG and i1 : motg bmoth ÝÑ motG1

are identified, and we take � to be the equivalence relation generated by this together with ie
(which is actually a special case of iγ , since mote is the trivial object), and τ . Since for any
two graphs g, h one can insert g into a vertex of h to obtain a graph G such that g ¤ G and
G{g � h, we deduce a product

Mot¤a
Graphs bMot¤b

Graphs ÝÑ Mot¤a�b
Graphs,

which is canonical, by definition of �. A similar product exists on MotGraphs by dropping the
restriction on loop numbers. The object Mot¤g

Graphs could be viewed as a motive associated
to Outer space Og. Note that, in reality, we are actually interested in the smallest quotients
of (9.3) whose dual Betti realisation contains the projective limit of the Betti classes rrσGs defined
presently, but for simplicity we will say nothing more about this.

9.2 Motivic period integrals

If G is equipped with an orientation, the Feynman polytope defines by Theorem 7.1 a canonical
Betti homology class

rrσGs P pmotGq
_
B

which satisfies the following properties with respect to face maps:

pi_e q
BrrσGs � rrσG{es,

pi_γ q
BrrσGs � rrσγs b rrσG{γs
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induced by the boundary map applied to graph polytopes, where rσG{e, rσγ � rσG{γ are given the
induced orientations. Furthermore, isomorphisms τ : G � G1 induce

pτ_qBrrσGs � rrσG1s,

where τ is compatible with the orientations on G, G1 (in the case when it reverses orientations,
the previous formula has a minus sign).

Now let ω P Ωk
can be a canonical differential form of degree k, and suppose that G is an

oriented graph with k � 1 edges. By Theorem 7.4, the form rωG has no poles along D � PG,
and therefore its restriction to D vanishes, because D is of dimension   k. It therefore defines
a relative cohomology class

rrωGs P pmotGqdR

whose image under the natural map pmotGqdR Ñ HeG�1
dR

�
PGzYG

�
is the absolute class rrωGs

abs

defined in Section 7.4.

Definition 9.1. Let G be an oriented graph with eG � k�1 edges. Define the motivic canonical
integral to be the “motivic period” [18]

ImGpωq � rmotG, rrσGs, rrωGss
m,

where the orientation on rσG is given by that of G.

The canonical integral IGpωq can be retrieved from its motivic version by applying the period
homomorphism [18], i.e., IGpωq � per ImGpωq.

Lemma 9.2. The motivic period ImGpωq only depends on the class of G in GCN .

Proof. Reversing the orientation ofG reverses the sign of rrσGs and hence of ImGpωq. Functoriality
with respect to isomorphisms:

ImGpωq � ImτpGqpωq

follows from the formalism of motivic periods and the fact (Lemma 6.6) that ω is invariant with
respect to automorphisms. Finally, it follows from Proposition 4.5 that ImGpωq vanishes if G has
a two-valent vertex, since ωG and hence rωG already vanishes. ■

It is undoubtedly true that ImGpωq and ImG_pωq are equal when G is a planar graph and G_

a planar dual, but the argument is more delicate.

9.3 Cosmic Galois group and Outer space

In [17], the cosmic Galois group (a name first suggested by Cartier) was defined to be the quotient
of the (de Rham) Tannaka group of the category HQ which acts on the system4 of objects motG.
It is a pro-algebraic group over Q which acts on the de Rham vector spaces motdRG in such a way
that it respects the (de Rham versions of) the face maps (9.1) and (9.2). In particular, it acts
on MotGraphs and Mot¤g

Graphs and respects the relations betwen motivic periods

ImG{epωq � ImG
�
idRe ω

�
,

Imγ pωqI
m
G{γpω

1q � ImG
�
idRγ pω b ω1q

�
,

ImGpωq � ImG1

�
τdRω

�
, (9.4)

where ω, ω1, ω2 are de Rham cohomology classes of the appropriate degrees and τ : G � G1.
It must be emphasized that the maps idRe , idRγ increase cohomological degree, and are not to be
confused with the restriction maps which go into Definition 7.2.

4To be more precise, on the system consisting of the smallest quotient objects motG Ñ σmotG with the
property that rrσGs P

�
motBG

�_
is in the image of

�
σmotBG

�_
.
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9.4 Motivic Stokes formula

The motivic periods ImGpωq, where ω is a canonical form, vanish in all the situations listed
in Proposition 6.20.

Theorem 9.3. The motivic version of (8.2) holds. If ω is a canonical form of degree k, and G
has k � 2 edges, then:

0 �
¸

ePEpGq

ImG{epωq �
¸
i

¸
γ�G

Imγ pω
1
iqI

m
G{γpω

2
i q, (9.5)

where the second sum is over all core subgraphs γ � G with eγ � ω1i� 1 and ∆canω �
°

i ω
1
ibω2i

is the coproduct applied to ω.

Proof. The proof using Stokes’ formula is valid in the context of motivic periods since it can
be expressed in terms of face maps via the long relative sequence of cohomology. Concretely,
one deduces from this the relation

0 �
¸
e

ieprrωG{esq �
¸
i

¸
γ�G

iγ
��rω1i��γ�b �rω2i ��G{γ�� (9.6)

and the identity then follows from the relations (9.4). ■

9.5 A question about the motivic Galois action

A canonical differential form ω of degree k defines a collection of classes

rrωGs P motdRG

for all G with eG � k � 1 edges. This collection satisfies the properties that it

� is functorial with respect to isomorphisms of graphs,

� vanishes on graphs satisfying the conditions of Proposition 6.20,

� satisfies the cohomological relations (9.6).

The cosmic Galois group respects all these properties. Consider the Q-vector space Hcan gene-
rated by the images of the classes rrωGs, for all G, under the de Rham versions of the maps (9.1)
and (9.2). It can be viewed as a Q-subspace of the de Rham total motive (9.3)

Hcan � MotdRGraphs.

Since the cosmic Galois group acts on this inductive limit (i.e., it respects the maps (9.1)
and (9.2)), it is natural to ask if it preserves the space Hcan. If so, it would be very interesting
to know how it acts upon it.

The examples in Section 10 seem to suggest, for example, that the cosmic Galois group
preserves the subspace generated by the canonical classes 1 and ω5.

Note that we do not suggest that the cosmic Galois group necessarily acts directly on Ωcan:
it is conceivable that a canonical form ω gives rise to algebraically independent motivic peri-
ods ImGpωq and ImG1pωq with entirely different Galois actions.
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9.5.1 Relation to Feynman integrals

For any oriented graph G with edges numbered from 1, . . . , n, let us write

ΩG �
ņ

i�1

p�1qiαidα1 ^ � � � ^ydαi ^ � � � ^ dαn. (9.7)

Quantum field theory provides, for every G with deg2G � 0 which has no subgraphs γ of degree
deg2 γ   0, a canonical differential form

ωFeyn
G �

ΩG

Ψ2
G

which by [6] defines a form rωFeyn
G � π�Gω

Feyn
G whose class is�rωFeyn

G

�
P motdRG .

The period integrals of these classes, called Feynman residues:

IFeynG �

»
σG

ωFeyn
G �

»
σG

ΩG

Ψ2
G

have been studied intensely (see [46] for a survey of known results). The set of all such classes
generates under the maps (9.1) and (9.2) a Q-vector space HFeyn. It can be viewed as a subspace

HFeyn � MotdRGraphs.

The examples of classes ω P Ωcan considered in Section 10 seem to be contained in HFeyn. For
example, one can express W4 as a minor of W5 by contracting one edge and deleting another.
Therefore by applying the two corresponding face maps, we can view the degree 7 class

�rωFeyn
W4

�
P

motdRW4
as a class of degree 9 in motdRW5

. We expect that it is proportional to the class of the
canonical form rrω9s (see discussion in Section 10). In practice, this means that canonical integrals
seem to reduce to Feynman residues by integration-by-parts identities, at least for graphs of small
loop order, i.e., Hcan appears to be contained in HFeyn at low orders. It would be very interesting
to know if this is always the case, and to understand in more detail the relationship between
the spaces Hcan, HFeyn and Hcan X HFeyn.

10 Examples

In the following examples, we will orient our graphs so that the integrals of canonical forms are
non-negative. In each example, the first step in computing a canonical integral is to compute
the integrand in parametric form using its definition and some of the tricks described in ear-
lier sections (notably a suitable LBU decomposition). For the first few examples, the integrals
themselves can then be computed directly using the algorithm of [14, 15] which has been imple-
mented in [7, 44]; the later ones require the more powerful approach of [10]. The fact that the
latter method is applicable uses Remark 6.19, as pointed out by Schnetz.

10.1 The form ω5

The canonical form of degree 5 was computed in Example 4.7. It is non-vanishing only on the
wheel with 3 spokes, the unique graph of degree zero at 3 loops in GC2 (all other graphs with 3
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loops and 6 edges have a doubled edge or two-valent vertex). The form ω5
W3

was computed in
Examples 3.4 and 6.4 and satisfies

ω5
W3

� 10ωFeyn
W3

.

Its canonical integral is thus proportional to the Feynman residue and gives

IW3

�
ω5
�
� 10IFeynW3

� 60ζp3q.

Since the (de Rham) Galois conjugates of the motivic version of ζp3q are 1 and itself, this
example provides some possible evidence in favour of Section 9.5.

10.2 The form ω9

Let G be the wheel with 5 spokes, and let S5 � EW5 denote its five inner spoke edges. With the
notation (9.7), one can compute:

ω9
W5

� 18

�
1

Ψ2
W5

� 12

±
ePS5

xe

Ψ3
W5



ΩW5 .

The corresponding canonical integral is

IW5

�
ω9
�
� 1260ζp5q.

It can be computed using the software implementations mentioned at the beginning of this
section. The integral of the first term

ωFeyn
W5

�
ΩW5

Ψ2
W5

is convergent and proportional to ζp7q, which is the Feynman residue of W5. Thus the canonical

integral IW5

�
ω9
�
has “weight drop”, and indeed one checks that

�rω9
W5

�abs
vanishes. Hodge-

theoretic considerations [17, Section 7.5, Example 9.7] imply that this integral is related via face
maps ιγ to periods of minors of W5. Concretely, the integrand ω9

W5
is exact, and so it would be

interesting, by a double application of Stokes’ formula (or for instance by [15, Proposition 37])
to relate it explicitly to the Feynman period of the wheel with four spokes W4, which is a minor
of W5 obtained by contracting one edge and deleting another.

The Feynman residue of the latter [13, 46] is

IFeynW4
�

»
σW4

ωFeyn
W4

�

»
σW4

ΩW4

Ψ2
W4

� 20ζp5q.

This suggests that the cohomology class rrω9
W5
s is in the image of HFeyn (Section 9.5). The same

comment applies to the graph Z5 in the figure below.
The form ω9 pairs with a number of other graphs with 10 edges and 5 loops. Two are depicted

in Figure 4: a graph T5 which is a two-vertex join of W3 with itself (Remark 6.15), and the
zig-zag graph Z5. One calculates, with some effort, that

IT5

�
ω9
�
� 0 and IZ5

�
ω9
�
� 630ζp5q.

Interestingly, ω9
T5

is not identically zero, although its integral vanishes. These results are con-
sistent with the formula (8.2). Indeed, one verifies that the graph homology class rT5s is zero,
and that with suitable orientations,

dX5 � 2Z5 �W5,
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X5T5 �W3 : W3 Z5

Figure 4. Two five-loop graphs with 10 edges (left), and a five loop graph with 11 edges (right).

where X5 is the graph depicted in Figure 4 on the far right. This identity implies the following
relation between homology classes

rW5s � 2rZ5s P H0pGC2q.

By the motivic version of (8.7) it also implies that

ImW5

�
ω9
�
� 2ImZ5

�
ω9
�
. (10.1)

Thus we see that (8.2) transfers information in a non-trivial way between different graphs. The
motivic version (9.5) implies an explicit constraint on the action of the cosmic Galois group:
Galois conjugates of motivic Feynman periods of the different graphs Z5 and W5 are constrained
by the relation (10.1).

10.3 The form ω5 ^ ω9

Recall that it follows from (1.2) and (1.3) that there exists an element ξ3,5 P GC2 with 16 edges,
8 loops, of degree zero, which satisfies dξ3,5 � 0 and is dual to rσ3, σ5s. Since the antisymmetrized
Connes–Kreimer coproduct is dual to the Lie algebra structure on graph cohomology Section 1.4,
it follows that ∆1ξ3,5 � W3 bW5 �W5 bW3 plus possible extra terms involving graphs with
tadpoles or vertices of degree ¤ 2 whose canonical integrals vanish by Proposition 6.20, and
which we can ignore.

Apply equation (8.5) to ξ3,5 and ω � ω5 ^ ω9 together with the above computations for the
wheel integrals to deduce that»

δξ3,5

ω5 ^ ω9 P Q�ζp3qζp5q,

where δξ3,5 P GC2 has edge grading 15, and loop grading 7. Since dξ3,5 � 0 we deduce that
dpδξ3,5q � 0, and we may apply Corollary 8.10 with X � δξ3,5 to deduce the existence of a non-
trivial class in either H1pGC2q or H3pGC2q with the same canonical integral. The computer
calculations mentioned in the introduction show that H1pGC2q vanishes at 7 loops, and hence

Corollary 10.1. There exists an element Ξ3,5 P GC2 at 15 edges, and 6 loops with the property
that dΞ3,5 � 0 such that

IΞ3,5

�
ω5 ^ ω9

�
� ζp3qζp5q.

Its homology class is non-zero:

0 � rΞ3,5s P H3pGC2q.

Similar arguments by applying (8.5) along the lines of Section 8.4 can be used to compute
other examples of non-trivial pairings between canonical forms and graph homology (see Table 2).
Note the similarity between this argument and that of [38], except for the additional role played
by the Lie coalgebra structure.
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10.3.1 The complete graph K6

Recall from Example 3.6 that the Laplacian LK6 of the complete graph K6 corresponds to the
generic symmetric matrix of rank 5. One verifies that the canonical form ω5 ^ ω9 is propor-
tional to the invariant volume form. One can subsequently deduce from this, with the help of
a computer, that

ω5
K6
^ ω9

K6
�

9!

8

±
ePEK6

xe

Ψ3
K6

ΩK6 ,

from which it is obvious that the associated canonical integral is positive and hence non-zero.
Schnetz, using the method of [10], has computed

IK6

�
ω5 ^ ω9

�
�

9!

16

�
360ζp3, 5q � 690ζp3qζp5q �

29π8

315



� 1708.1901 . . . .

The multiple zeta value ζp3, 5q �
°

1¤n1 n2

1
n3
1n

5
2
is expected to be transcendental over the Q-

algebra generated by odd zeta values. It would be very interesting to relate this integral, via
Stokes’ formula and face maps, to the Feynman residue of the complete bipartite graph K3,4, as
one has the following identity:

IK6

�
ω5 ^ ω9

�
�

9!

16

�
15ζp3qζp5q �

25

96

»
σK3,4

ωFeyn
K3,4



(the Feynman residue for K3,4 is called P6,4 in [46]). It would be very interesting to interpret
this identity by relating it to the Borel regulator [47].

10.4 Further wheels

For the wheel with seven spokes, we check that

ω13
W7

� 26
�
1� 60Y � 360Y 2

�ΩW7

Ψ2
W7

, where Y �

±
ePS7

xe

ΨW7

and S7 � EW7 denotes the internal spokes of W7. Its canonical integral is evidently positive and
hence non-zero. Schnetz has confirmed using [10] that

IW7

�
ω13
�
� 24024ζp7q.

In general, one can write a graph Laplacian for wheel matrices explicitly as in [6, formula (11.3)]
and use formula (5.8) to compute the canonical forms to leading order. We can easily deduce
that, for example

ω4n�1
W2n�1

� p8n� 2qωFeyn
W2n�1

�
mod

¹
ePS2n�1

xe



.

We expect that ImW2n�1

�
ω4n�1

�
is a non-zero rational multiple of the motivic odd zeta value

ζmp2n� 1q of weight 2n� 1. Computations to appear in the forthcoming preprint [10] suggest
that the rational coefficient is given by

IW2n�1pω
4n�1q

?
� p2n� 1q

�
4n� 2

2n� 1



ζp2n� 1q.
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Remark 10.2. The above examples suggest considering the following family of period integrals.
For any odd wheel W2n�1, with n ¥ 1, consider

Ipkqn �

»
σW2n�1

�±
ePS2n�1

xe

ΨW2n�1


kΩW2n�1

Ψ2
W2n�1

for all k ¥ 0, where S2n�1 denotes the internal spokes of W2n�1. A standard Picard–Fuchs
argument implies that they satisfy recurrence relations in k. It is shown in [10] using Gegenbauer
polynomial techniques that

Ipkqn �
2

p2k � 2q!

�
4n

2n


 8̧

m�1

±k
ℓ�1

�
m2 � ℓ2

�
m4n�1

which, by expanding the product in the previous expression, is a sum of odd single zetas with
weights from 4n� 2k � 1 to 4n� 1.

10.5 Summary

The following table summarizes the canonical integrals which are known or conjectured at present
(right three columns) and compares them with Feynman residues of primitive divergent graphs
(left two columns).

Graph G Feynman IFeynG Graph G ω P Ωcan Canonical IGpωq

W3 6ζp3q W3 ω5 60ζp3q

W4 20ζp5q W5 ω9 1260ζp5q

W5 70ζp7q W7 ω13 24024ζp7q
...

...
...

...
...

Wn�1

�
2n
n

�
ζp2n� 1q W2n�1 ω4n�1 p2n� 1q

�
4n�2
2n�1

�
ζp2n� 1q?

W3 : W4 120ζp3qζp5q Ξ3,5 ω5 ^ ω9 ζp3qζp5q

K3,4 �ζp3qζp5q � �P3,5 K6 ω5 ^ ω9 �ζp3qζp5q � �P3,5

In the above table, the quantity

P3,5 � ζp3, 5q �
29

12
ζp8q

is a multiple zeta value of weight 8 and an asterisk denotes a known rational number. The fact
that the canonical integral for K6 produces the same period P3,5 strongly suggests that it can be
reduced to the Feynman residue of K3,4 (and to products of the Feynman residues for W3, W4)
by application of Stokes’ formula and relations in the cohomology of graph hypersurface com-
plements. Note that K3,4 is not a minor of K6, but the Feynman residue for K3,4 has weight
drop (lower than expected transcendental weight) which suggests that P3,5 is a generalised Feyn-
man period of a graph which is a common minor of both K3,4 and K6, which might explain its

simultaneous appearance in IFeynK3,4
and IK6

�
ω5 ^ ω9

�
.
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