Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 100, 26 pages      arXiv:2102.12383      https://doi.org/10.3842/SIGMA.2021.100
Contribution to the Special Issue on Algebraic Structures in Perturbative Quantum Field Theory in honor of Dirk Kreimer for his 60th birthday

$c_2$ Invariants of Hourglass Chains via Quadratic Denominator Reduction

Oliver Schnetz a and Karen Yeats b
a) Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 11, 91058, Erlangen, Germany
b) Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

Received February 25, 2021, in final form November 02, 2021; Published online November 10, 2021

Abstract
We introduce families of four-regular graphs consisting of chains of hourglasses which are attached to a finite kernel. We prove a formula for the $c_2$ invariant of these hourglass chains which only depends on the kernel. For different kernels these hourglass chains typically give rise to different $c_2$ invariants. An exhaustive search for the $c_2$ invariants of hourglass chains with kernels that have a maximum of ten vertices provides Calabi-Yau manifolds with point-counts which match the Fourier coefficients of modular forms whose weights and levels are [4,8], [4,16], [6,4], and [9,4]. Assuming the completion conjecture, we show that no modular form of weight 2 and level $\leq1000$ corresponds to the $c_2$ of such hourglass chains. This provides further evidence in favour of the conjecture that curves are absent in $c_2$ invariants of $\phi^4$ quantum field theory.

Key words: $c_2$ invariant; denominator reduction; quadratic denominator reduction; Feynman period.

pdf (1041 kb)   tex (518 kb)  

References

  1. Bloch S., Esnault H., Kreimer D., On motives associated to graph polynomials, Comm. Math. Phys. 267 (2006), 181-225, arXiv:math.AG/0510011.
  2. Borinsky M., Schnetz O., Graphical functions in even dimensions, arXiv:2105.05015.
  3. Broadhurst D.J., Kreimer D., Knots and numbers in $\phi^4$ theory to $7$ loops and beyond, Internat. J. Modern Phys. C 6 (1995), 519-524, arXiv:hep-ph/9504352.
  4. Brown F., On the periods of some Feynman integrals, arXiv:0910.0114.
  5. Brown F., The massless higher-loop two-point function, Comm. Math. Phys. 287 (2009), 925-958, arXiv:0804.1660.
  6. Brown F., Feynman amplitudes, coaction principle, and cosmic Galois group, Commun. Number Theory Phys. 11 (2017), 453-556, arXiv:1512.06409.
  7. Brown F., Notes on motivic periods, Commun. Number Theory Phys. 11 (2017), 557-655, arXiv:1512.06410.
  8. Brown F., Doryn D., Framings for graph hypersurfaces, arXiv:1301.3056.
  9. Brown F., Schnetz O., A K3 in $\phi^4$, Duke Math. J. 161 (2012), 1817-1862, arXiv:1006.4064.
  10. Brown F., Schnetz O., Modular forms in quantum field theory, Commun. Number Theory Phys. 7 (2013), 293-325, arXiv:1304.5342.
  11. Brown F., Schnetz O., Yeats K., Properties of $c_2$ invariants of Feynman graphs, Adv. Theor. Math. Phys. 18 (2014), 323-362, arXiv:1203.0188.
  12. Brown F., Yeats K., Spanning forest polynomials and the transcendental weight of Feynman graphs, Comm. Math. Phys. 301 (2011), 357-382, arXiv:0910.5429.
  13. Chorney W., Yeats K., $c_2$ invariants of recursive families of graphs, Ann. Inst. Henri Poincaré D 6 (2019), 289-311, arXiv:1701.01208.
  14. Denham G., Schulze M., Walther U., Matroid connectivity and singularities of configuration hypersurfaces, Lett. Math. Phys. 111 (2021), 11, 67 pages, arXiv:1902.06507.
  15. Hu S., Schnetz O., Shaw J., Yeats K., Further investigations into the graph theory of $\phi^4$-periods and the $c_2$ invariant, Ann. Inst. Henri Poincaré D, to appear, arXiv:1812.08751.
  16. Itzykson C., Zuber J.B., Quantum field theory, International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York, 1980.
  17. Kompaniets M.V., Panzer E., Minimally subtracted six-loop renormalization of $O(n)$-symmetric $\phi^4$ theory and critical exponents, Phys. Rev. D 96 (2017), 036016, 26 pages, arXiv:1705.06483.
  18. Lefschetz S., On the fixed point formula, Ann. of Math. 38 (1937), 819-822.
  19. McKay B.D., Piperno A., Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014), 94-112, arXiv:1301.1493.
  20. Panzer E., Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Computer Phys. Comm. 188 (2015), 148-166, arXiv:1403.3385.
  21. Panzer E., Schnetz O., The Galois coaction on $\phi^4$ periods, Commun. Number Theory Phys. 11 (2017), 657-705, arXiv:1603.04289.
  22. Patterson E., On the singular structure of graph hypersurfaces, Commun. Number Theory Phys. 4 (2010), 659-708, arXiv:1004.5166.
  23. Rella C., An introduction to motivic Feynman integrals, SIGMA 17 (2021), 032, 56 pages, arXiv:2009.00426.
  24. Schnetz O., Quantum periods: a census of $\phi^4$-transcendentals, Commun. Number Theory Phys. 4 (2010), 1-47, arXiv:0801.2856.
  25. Schnetz O., Quantum field theory over $\mathbb F_q$, Electron. J. Combin. 18 (2011), 102, 23 pages, arXiv:0909.0905.
  26. Schnetz O., Numbers and functions in quantum field theory, Phys. Rev. D 97 (2018), 085018, 20 pages, arXiv:1606.08598.
  27. Schnetz O., Geometries in perturbative quantum field theory, Commun. Number Theory Phys. 15 (2021), 743-791, arXiv:1905.08083.
  28. Schnetz O., HyperlogProcedures, Version 0.5, 2021, Maple package available at https://www.math.fau.de/person/oliver-schnetz/.
  29. Yeats K., Some combinatorial interpretations in perturbative quantum field theory, in Feynman Amplitudes, Periods and Motives, Contemp. Math., Vol. 648, Amer. Math. Soc., Providence, RI, 2015, 261-289, arXiv:1302.0080.
  30. Yeats K., A few $c_2$ invariants of circulant graphs, Commun. Number Theory Phys. 10 (2016), 63-86, arXiv:1507.06974.
  31. Yeats K., A special case of completion invariance for the $c_2$ invariant of a graph, Canad. J. Math. 70 (2018), 1416-1435, arXiv:1706.08857.
  32. Yeats K., A study on prefixes of $c_2$ invariants, in Algebraic Combinatorics, Resurgence, Mould and Applications (CARMA), Vol. 2, IRMA Lectures in Mathematics and Theoretical Physics, Vol. 32, European Mathematical Society, Berlin, 2020, 367-383, arXiv:1805.11735.
  33. Zinn-Justin J., Quantum field theory and critical phenomena, International Series of Monographs on Physics, Vol. 77, The Clarendon Press, Oxford University Press, New York, 1989.

Previous article  Next article  Contents of Volume 17 (2021)