Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 097, 16 pages      arXiv:2105.11074      https://doi.org/10.3842/SIGMA.2021.097
Contribution to the Special Issue on Mathematics of Integrable Systems: Classical and Quantum in honor of Leon Takhtajan

Liouville Action for Harmonic Diffeomorphisms

Jinsung Park
School of Mathematics, Korea Institute for Advanced Study, 207-43, Hoegiro 85, Dong-daemun-gu, Seoul, 130-722, Korea

Received May 25, 2021, in final form October 27, 2021; Published online November 02, 2021

Abstract
In this paper, we introduce a Liouville action for a harmonic diffeomorphism from a compact Riemann surface to a compact hyperbolic Riemann surface of genus $g\ge 2$. We derive the variational formula of this Liouville action for harmonic diffeomorphisms when the source Riemann surfaces vary with a fixed target Riemann surface.

Key words: quasi-Fuchsian group; Teichmüller space; Liouville action; harmonic diffeomorphism.

pdf (385 kb)   tex (19 kb)  

References

  1. Ahlfors L.V., Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math. 74 (1961), 171-191.
  2. Jost J., Compact Riemann surfaces. An introduction to contemporary mathematics, 3rd ed., Universitext, Springer-Verlag, Berlin, 2006.
  3. Krasnov K., Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000), 929-979, arXiv:hep-th/0005106.
  4. Krasnov K., Schlenker J.-M., On the renormalized volume of hyperbolic 3-manifolds, Comm. Math. Phys. 279 (2008), 637-668, arXiv:math.DG/0607081.
  5. McIntyre A., Park J., Tau function and Chern-Simons invariant, Adv. Math. 262 (2014), 1-58, arXiv:1209.4158.
  6. Park J., Takhtajan L.A., Teo L.-P., Potentials and Chern forms for Weil-Petersson and Takhtajan-Zograf metrics on moduli spaces, Adv. Math. 305 (2017), 856-894, arXiv:1508.02102.
  7. Park J., Teo L.-P., Liouville action and holography on quasi-Fuchsian deformation spaces, Comm. Math. Phys. 362 (2018), 717-758, arXiv:1709.08787.
  8. Sampson J.H., Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), 211-228.
  9. Takhtajan L.A., Teo L.-P., Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Comm. Math. Phys. 239 (2003), 183-240, arXiv:math.CV/0204318.
  10. Tromba A.J., Teichmüller theory in Riemannian geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992.
  11. Wolf M., The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), 449-479.
  12. Zograf P.G., Takhtadzhyan L.A., On Liouville's equation, accessory parameters, and the geometry of Teichmüller space for Riemann surfaces of genus $0$, Math. USSR-Sb. 60 (1988), 143-161.
  13. Zograf P.G., Takhtadzhyan L.A., On uniformization of Riemann surfaces and the Weil-Petersson metric on Teichmüller and Schottky spaces, Math. USSR-Sb. 60 (1988), 297-313.

Previous article  Next article  Contents of Volume 17 (2021)